TCP vs. HTTP for Lup Interface Page 1 of 2
Motorola December 9, 2003

Note – This White Paper comments on the relative advantages of TCP vs. HTTP for communication in a positioning scheme by a UE and related equipment. For any specific solution framework, most points will hold; the examples and names may need to be revised.

Item: Utilization of WAP GW.

· WAP GW is primarily responsible for adaptation of WSP to HTTP. The WSP protocol is used OTA from UE to WAP GW. It is a somewhat compressed representation of a service request that is mapped to HTTP for transmission to the external web server. The WAP GW awaits the response from the HTTP request and formats this response for transmission back to the UE.

· In consideration of Mobile Profiled TCP (WAP 225), the TCP transmission path may be directed via WAP GW if configured to do so, but is not specifically required. In fact, TCP could be supported full end-to-end (i.e. bypassing proxies) where feasible, as the optimizations identified are negotiated during TCP connection. It is managed by network configuration. Even though such connections may bypass proxies, they may still go through network gateways for such services as NAT conversions or routing control.

· Where UE generates HTTP directly, the adaptation role of the WAP GW is not needed and the communication could be directed via alternate routing. This determination is a configuration issue handled by the network operator.

Comparison: HTTP versus TCP for transport

· HTTP info:

· HTTP is a request/response protocol. It is best used where a communication from the ‘client’ results in a response from the ‘server’.

· HTTP has overhead, in the form of text-based headers, which are added to every request and response. Some optimizations have been developed (e.g. WSP and WBXML) but depend upon an interim step (via WAP GW) to convert from WSP to HTTP. This requires processing resources and adds delay to the communication.

· HTTP address resolution for can be resolved external of the client by use of HTTP proxy. An address (in web form http://host.domain/) is used by the client and is resolved to an IP address in the proxy. This permits dynamic resolution (various approaches possible) without involving client.

· Given address resolution by using a proxy. HTTP schemes permit clients to use a single address (HTTP proxy) to communicate with endless other entities. This permits a single persistent connection to be used for communication with various entities (proxy must preserve sequence). Where communication responsiveness is critical, separate links to proxy would permit non-sequential communication).

· TCP info:

· TCP is a lower-level protocol where a communication pipe is needed between two entities. It does not presume ‘client’ or ‘server’ roles though the protocols operating over the TCP may do so.

· TCP connections are normally done on a session-by-session basis and may persist where there is continuing communication required.

· A ‘client’ may need to originate a TCP session to get through a proxy since the addressing restrictions may restrict ‘incoming’ connection requests. The session origination role does not mandate any application role. Note that most IM services depend upon clients opening sessions with IM servers, but once established, the server may send messages as needed.

· IP addresses for TCP sessions may be configured (system level or DHCP) or acquired by DNS query as needed.

Analysis

1) UE may need to communicate with various entities. These may change as the device roams. While HTTP provides address flexibility when used with a proxy, it may require coordination of the proxy location and the visited network in roaming cases.

a) Where the client would use HTTP proxy normally operated in the home network, the communication may be forced into circuitous routes as the traffic would go in and out of networks, only to return.

b) The alternative is for communication to be directed to local LCS which would either need to act as a WAP GW (for WSP clients) or clients talk in native HTTP.

c) TCP address resolution would need to be handled in a somewhat localized form, but would not get confused with HTTP configuration information normally supporting user activities.

2) UE protocols do not map into request/response scheme consistently. This would tend to discount usability of HTTP in favor of TCP that is not dependent upon this flow.

a) The PDINT message from UE to Positioning Server would seem to be without a specific response. The PDMESS messaging for coordinating information, as currently conceived, would not fit into the request/response mode as originated by UE.

b) The handling of the SLREQ is related to a timer to be sure a SLRESP is received (assuming mapped into HTTP request and responses). As much activity is occurring between these events, it may be that the related timer may be greater than timers available in the associated HTTP proxies which may drop the path for the response – killing the opportunity for the message. While the timer on the proxies could be expanded, it may have harmful side effects (e.g. resource utilization, user perceptions) if it impacts other non-location activities.

3) Application control of the communication would favor TCP. With the various error cases presented, TCP provides a higher level of flexibility to applications. These would be able to rely on application specified duration of the session (not dependent upon persistent HTTP via proxies) as well as unsolicited messages traveling in either direction at any time.

a) Message content format could be anything agreed for the interface and can be handled in either HTTP or TCP. HTTP would probably define the MIME for the content while use of TCP would require the application level protocol to define explicitly. In either case, capability negotiation may be needed to agree the acceptable formats. Direct application control would probably provide a more consistent scheme rather than coordinating that at the HTTP header level.

b) Errors and invalid responses can be handled more directly in TCP protocols. When using HTTP, these types of messages can utilize a response payload, but there are efforts to map the HTTP error codes. These tend to result in confusing or inconsistent handling as there are rules for HTTP error handling which may differ from the desired actions.

4) As mentioned above, TCP involves less message overhead:

a) HTTP Header:

Depending on implementation, a simple HTTP header could contain 80+ additional bytes.

POST /HTTP/1.1

Content-Type: multipart/related; type=””

Content-Length: XXX

a) TCP Header:

With this alternative, the ASN.1 PER payload would be transported directly over TCP.
