Doc# OMA-LOC-2012-0177R01-CR_DynNav_1_0_TS_Loop_Problem_SmartND[image: image6.jpg]
Change Request

Doc# OMA-LOC-2012-0177R01-CR_DynNav_1_0_TS_Loop_Problem_SmartND
Change Request

Change Request

	Title:
	Loop Problem in Smart ND case
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	LOC

	Doc to Change:
	OMA-TS-REST_NetAPI_DynNav-V1_0-20120524-D

	Submission Date:
	6 JUL 2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Hongbeom Ahn, LGE, hongbeom.ahn@lge.com
Jaehyuk Choi, LGE, jaehyuk.choi@lge.com

	Replaces:
	n/a

1 Reason for Change

This CR aims at fixing a bug on the smart ND application and the problem is described as follow.

The figure below demonstrates the normal flow of the Smart ND application case. As the application is notified new real-time traffic information regarding the registered route by the server, the application will re-calculate the route to make a detour. However, as the flows inside the red dotted box, the procedure can be easily repeated and going into a loop.
[image: image1.png][image: image2.png]
So, a resolution is proposed to prevent this loop situation. if the application makes the repetition(re-calculation + response + performance checking) several times, the application request traffic information at which the repetition is occurred. Thus the application can get the traffic information and find the best route where the repetition is occurred.

In accordance with these changes, the appendix section of partial route is changed.

R01: Editorials
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Agree to changes and update DynNav 1.0 TS accordingly
6 Detailed Change Proposal

5.3.2 Request of Traffic Information Related to Routes Estimated by the Application in Smart ND
This section describes a typical scenario of DynNav application where a smart ND, with route estimation functionalities, requests from the DynNav server traffic information related to one or more estimated routes. The main functionalities defined for this scenario are: (1) preliminary access to traffic events related to selected areas, (2) access to performance parameters for a set of routes estimated by smart ND and (3) the subscription to notification services for real time traffic information updates, (4) current position reporting by the application, and (5) access to traffic information for routes described with partial information, in case of re-routing by the smart ND.

In this scenario the user of the DynNav application defines the journey parameters (e.g. origin, destination, and road preferences), these parameters are uploaded on the DynNav server by the application; the smart ND estimates one or more geographical areas related to the defined journey and it accesses traffic information (events and performances parameters) reported by the DynNav server for the selected areas; Using this traffic information, the ND can propose to the user a set of routes for the defined journey, trying to avoid congested road segments; the user selects a reference route. The application uploads the selected route on the DynNav server accessing to related detailed traffic information (real time and forecast performance parameters). Furthermore, for real time optimal route estimation, the application subscribes to notification services for the trip, in order to receive updated traffic information related to the route.
At a given moment, an accident and/or severe congestion may occur along the current route: a notification message is triggered by the DynNav server toward the application. The application accesses updated traffic information available for the route: as a consequence of degraded performances, the ND estimates an alternative route and requests related traffic information from the DynNav server. If the new route is less congested than the previous one, the old one is then removed by the ND, since the ND is no longer interested in the notification service for this resource. In case the performances of the proposed alternative route are poor, before removing the previous one, the ND may look for a less congested one. The ND can repeatedly estimate a set of alternative routes uploading them on the server. The application may choose to upload partial route information for bandwidth optimization (see Appendix H).

The application periodically reports its current position to the DynNav server, based on travelled distance: With updated position information the server can remove from the route representation the segments already travelled by the vehicle. In a later stage the vehicle diverts from the planned route, the ND estimates a new route that is uploaded on the server to access related traffic information: The new route replaces the previous one and the notification service will cover the new resource.

The sequence describes the following operation on the resources:

· To define and modify the parameters of a trip, create and modify resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips
· To define areas related to the trip, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/areas
· To access traffic events related to the area, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/events/{eventId}

· To access traffic information related to a route, create or modify a full format route under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes
· To subscribe to notification service for an area and/or trip with the related route, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/subscriptions
(the server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)
· To remove an old route, delete a route under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes
· To send notification to the application with the identifiers for the updated resources, create resource under the resource defined by the application
(This resource is provided by the client)

[image: image3]
Outline of the flows:

1. The application creates a Trip with the journey parameters defined by the user using POST and it receives from the server a representation of created “trip” resource, with trip identifier and defined parameters. The application specifies that routes estimation functionalities are not requested.
2. The application creates one or more areas, related to the defined trip using POST, to access traffic events reported for the defined areas. The server replies with representations of areas that include identifiers of traffic events (accidents, constructions, congestions, etc.).

Note: according to event data structure [TTI RTM] performance parameters are defined as traffic events.
3. The application requests the reported traffic events using GET: This information is used by the ND to propose a route for the defined journey, trying to avoid critical road segments (affected by accidents, construction, or congestions). The access to traffic events may be limited to categories selected by the user.
4. The application uploads an estimated route (selected by the user among a set proposed by ND) on the server using POST. The server replies with a representation of the ‘route’ resource, which contains performance parameters and links to traffic events.

5. The application subscribes to the notification service for the area selected (step 2) and for the defined trip (step 3) using POST. The application will be notified of performance parameters and traffic events related to the selected area and to all the routes uploaded for the trip.
6. The application periodically updates its current position using PUT, to modify the origin parameter of Trip resource. This operation is triggered when the vehicle drives a certain distance from the previous reporting position; the DynNav server utilizes this information to delete the segments already travelled from the route(s) information.

7. When traffic events and/or severe congestion along the proposed routes are detected by the server, the server notifise the application. The server provides updated traffic information on the current route, using POST on the url specified by the application.
8. The application accesses the updated traffic information (traffic events and performance parameters) related to the route using GET.
9. The application decides to re-calculate a new route under the conditions:

a) The application receives the updated traffic information in step 8.

b) The application detects that the vehicle is deviating and diverting from the defined route.

The application uploads the new calculated route to the server with create or modify operation using PUT on an existing route or POST on route factory resource, depending on whether or not the application wishes to keep valid the previous route. The server replies with a representation of the “route” resource which contains performance parameters.
This step may be repeated several times until the performance of the re-calculated route is better than the previous routes. However, in order to avoid going into a loop, the application defines a new area to acquire traffic information where the repetition is occurred at this stage with operations similar to those described in the step 2 and 3.
Note: for bandwidth optimization, the application can choose to use partial route schema (see Appendix H), uploading the changed segments with respect to already defined reference route.

10. The application deletes the previous routes from the set of proposed routes when the previous routes are no longer in use. The application deletes the new calculated route from the set of proposed routes when the performance of the new route is worse than the previous routes. The application unsubscribes the previous routes from notification service using DELETE. (if the new route has replaced the old one, with a modify operation, at the step 9, the DELETE operation is not needed).
Note: If the DELETE operation is executed on a route that is referenced in resources described with partial route information, the server has to keep the resources description consistent (i.e. complete route description should be provided for route previously encoded as partial).
Appendix H. Partial Route Encoding Schema

The section provides an overview of the partial route encoding schema used for describing route information that shares a significant number of segments with an already defined route assumed as reference. The use of partial route information is limited to Smart ND scenario where the application uploads on the server a set of estimated routes. (see in section 5.3.2).

[image: image5.png]
Figure 5 Example of Partial Route Description
As showed in Figure 5, the application can choose to provide route information only the sequence of segments that is partially changed with respect to a reference route (in the example of Figure 5, the sequences of segments between 4~5, 11~13 and 24~28 are partially modified from the reference route. Multiple deviations (in the figure, there are 3 deviations) may be included in partial route description. Information to merge the partial route with the reference route is provided in the partial route resource: in details the following parameters defined for the route structure are used:
· the firstSegment carries the information of the index of the first changed segment in the reference route information for each single deviation of the partial route (The 4th, 11st and 24th segments in the reference route in the Figure 5);

· the lastSegment carries the information of the index of the last changed segment in the reference route information for each single deviation of the partial route (The 6th, 15th and 27th segments in the reference route in the Figure 5);

· the numSegment carries the information about the number of segments that constitutes each single deviation (2,4 and 5in the example of Figure 5, respectively);

If a reference route is deleted on the server, the overall route resource information for routes has to be kept consistent (i.e. the partial routes should be encoded with complete segments sequence in next GET operation).
If received network performance of the partial route is not better than the reference route, the application immediately removes the uploaded partial route information using DELETE operation. And then, the application repeatedly re-estimates the route itself to find better route with limitation. If the performance of re-calculated partial route is worse than the reference route, the application will create a description of the area where the re-estimation is occurred in order to request traffic information and prohibit the repetition.
Figure � SEQ Figure * ARABIC �3� Sequence for Smart ND

4. POST: create a route calculated by application

1. POST: create trip description

Response: created trip id

3. GET: request the traffic events

Create a trip

Response: performance parameters

Response: traffic events

Calculate route(s) �with traffic events

9. PUT/POST: modify/create calculated route

Response: performance parameters

2. POST: create area description

Response: event ids related to the area

7. POST: notification under CallBackNotifURL

Response

8. GET: request the traffic info based on the notification

Response:

Response

6. PUT: update the trip parameter

Create a subscription for the trip

Application

Server

Server

Read traffic events

Response

5. POST: subscription to the trip

Create a route �resource

Create traffic events related to the area

10. DELETE: remove the previous route resource

Response

Update the trip parameter (origin)

Update the route resource

Remove the previous route

Read the updated �traffic information

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

