Doc# OMA-ARC-2007-0023-INP_PEM-1-TS-Encoding_scheme_for_PEM_1_parameters_in_BLOB_Parameter.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2007-0023-INP_PEM-1-TS-Encoding_scheme_for_PEM_1_Parameters_in_BLOB_Parameter.doc
Input Contribution

Input Contribution

	Title:
	PEM-1 TS Encoding Scheme for PEM-1 Parameters in BLOB Parameter
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	28 Jan 2007

	Source:
	Michael Brenner, Alcatel-Lucent

mrbrenner@alcatel-lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Progressing the PEM-1 TS, consistent with a previously outlined plan.
2 Summary of Contribution

The proposal is for specifying a simple, efficient binary encoding scheme for encapsulating PEM-1 Template parameters into an Input-Policy-Data or Output-Policy-Data binary string. Such a mechanism is needed for the following reasons:

· Supporting a straightforward concatenation of attribute-value-pairs that compose a PEM-1 Template.

· Take advantage of the uniformity of the entities that are to be concatenated, and provide a very simple encoding method that will result in optimal performance at both requestor and receiver termination points.

· Provide a method that is completely neutral to any technology bindings, so that the resulting binary string can be transported over any protocol that supports binary strings as possible payload.

See detailed proposal section for the method details, and the changes proposed for the PEM-1 TS.
3 Detailed Proposal

Change:
5.1.6
Encoding Scheme for PEM-1 Parameters in PEM-1 BLOB Parameters
The PEM-1 Input BLOB Parameter and the PEM-1 Output BLOB Parameter may incorporate one or more input, respectively output PEM-1 Parameters, following a Standard or Custom PEM-1 Template definition. If more than one PEM-1 parameter is needed, all parameters must be concatenated in a binary string (a PEM-1 Input BLOB Parameter or a PEM-1 Output BLOB parameter, as the case may be). . Each PEM-1 Parameter within a selected PEM-1 Template to be encapsulated in a PEM-1 Input BLOB Parameter or a PEM-1 Output BLOB Parameter shall be encoded using the encoding scheme defined below. Optional PEM-1 Template parameters are supported. An optional PEM-1 Parameter is one that may or may not be sent by the requestor, in accordance with the definition of the selected PEM-1 Template. The PEEM enabler implementation may provide a default value in the absence of an optional parameter, if needed, or have a different mechanism to complete evaluation of the rules, in the absence of such parameter. The encoding scheme specified is selected on the basis of its simplicity, primarily because it minimizes processing performance impact, and it has inherent flexibility in supporting the expected frequent changes in PEM-1 Templates and PEM-1 Parameters.

.

For each PEM-1 Parameter in a PEM-1 Template, the PEM-1 Parameter identifier, and the PEM-1 Parameter actual value shall be encoded as an “Attribute-Value-Pair” in the binary string representing the PEM-1 Input BLOB Parameter, or PEM-1 Output BLOB Parameter, as follows:
<PEM-1 Parameter Identifier><Null><Encoding of PEM-1 Parameter Actual Value>

Where

<PEM-1 Parameter Identifier> is the identifier of the PEM-1 Parameter, as defined in a PEM-1 Template definition, and adhering to the following rules:
· The first character must be either alphabetic or an underscore.
· The next characters can be digits (0-9), alphabetic or underscores.
· The alphabetic characters are case sensitive.
· The total length of the name is unlimited.
<Null> is the ASCII null character (\0).
<Encoding of PEM-1 Parameter Actual Value> is the encoded actual value of the PEM-1 parameter to be passed.
The first 2 columns in the table 1 below represent the PEL and PEM-1 supported data types; the 3rd column represents the encoding rules for each of the supported data types, when a PEM-1 Parameter of that particular data type is passed via a PEM-1 Input BLOB Parameter or a PEM-1 Output BLOB Parameter.
	PEEM Data Types
	Description
	Encoded representation

	int
	4 byte signed: -2147483648 to 2147483647
Note: long int may need to be supported in future (require 8 bytes).
	<IntLength><IntValue>

WHERE:

<IntLength> is 2 bytes indicating the number of bytes in <IntValue>

and
<IntValue> is either 4 or 8 byte integer
Note: for most cases, support of 4 byte integer may be sufficient, in which case the <IntLength> may be redundant. However, the <IntLength> is needed in order to anticipate potential support needed for 8 byte integers (long int), without the need to change the encoding rules.

	float
	Floating-point number, 3.4e +/- 38 (7 digits)
Note: digits refer to the floating point maximum number of decimals digits, not to number of bytes needed to represent it.

· Single precision, called "float" occupies 32 bits (4 bytes) and has a significand precision of 24 bits. This gives it an accuracy of about 7 decimal digits.

· Double precision, called "double" occupies 64 bits (8 bytes) and has a significand precision of 53 bits. This gives it an accuracy of about 16 decimal digits. Double precision may need to be supported in future.

	<FloatLength><FloatValue>

WHERE:

<FloatLength> is 2 bytes indicating the number of bytes in <FloatValue>

and

<FloatValue> is either 4 or 8 byte float
Note: for most cases, support of 4 byte floating point (single precision) may be sufficient, in which case the <FloatLength> may be redundant. However, the <FloatLength> is needed in order to anticipate potential support needed for 8 byte float (double precision), without the need to change the encoding rules.

	char
	Character, 1 byte, signed: -128 to 127
	<CharValue> is 1 byte

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).
	<NumberofArrayElements>

<ArrayFieldEncoding>

<ArrayFieldEncoding>

 :

<ArrayFieldEncoding>

WHERE:

<NumberofArrayElements> is 2 bytes indicating how many elements are in the array.

<ArrayFieldEncoding> depends on the particular data type of the parameter, as identified by its identifier. It can consist of any encoded representation documented in this table, corresponding to the specific data type. The data type represented (the array element) may consist of another array, or even a structure.

All elements in the array must be of the same data type supported by PEEM, unlike a struct where each struct field can consist of a different data type supported by PEEM.

	struct
	A complex type that contains a sequence of objects of different types.
	<StructFieldName><Null><StructFieldEncoding>

<StructFieldName><Null><StructFieldEncoding>

 :

<StructFieldName><Null><StructFieldEncoding>

<Null>
WHERE:

<StructFieldName> is the PEM-1 Parameter identifier of the particular struct field. Each field must correspond to a PEM-1 parameter identifier, since a field may or may not be present (some PEM-1 Parameters in the struct may be optional).
<Null> is the ASCII null character (\0)

<StructFieldEncoding> is the encoding corresponding to the data type of the <StructFieldName> PEM-1 Parameter, as defined in this table. It may consist of another struct.

<Null> is the ASCII null character (\0)
Each element in the struct can be of any data type supported by PEEM, unlike an array where each array field must be of the same data type supported by PEEM.
Note: the intermediate <Null> between <StructFieldName> and <StructFieldEncoding> are needed in order to be consistent with the general encoding scheme (distinguish between identifiers and actual values).

The final <Null> is necessary in order to support the case were optional PEM-1 Parameters may be missing, hence the struct may not be completely passed, and therefore the parser needs a different indication as to when to complete the struct parsing, then the one that is implicit from the knowledge of the struct.

	string
	A sequence (array) of characters.
	<StringLength><StringData>

WHERE:

<StringLength> is 2 bytes indicating number bytes in <StringData>

<StringData> contents of the string

	bool
	A type that can only take the logical values TRUE or FALSE
	<BoolValue>

WHERE
<BoolValue> is one byte. The only admissible actual values are 0 (interpreted as FALSE) and 1 (interpreted as TRUE).

Table 1: Encoding of PEM-1 Parameter Identifier-Value pairs in a PEM-1 BLOB Parameter
A PEM-1 Input BLOB Parameter or PEM-1 Output BLOB Parameter that encapsulates more than one PEM-1 Parameter, shall have the following structure, where in fact the <Encoding of PEM-1 Parameter Actual Value> may further be submitted to additional encoding rules, as we noticed for the complex data types:
<PEM-1 Parameter Name-1><Null><Encoding of PEM-1 Parameter-1 Actual Value>
<PEM-1 Parameter Name-2><Null><Encoding of PEM-1 Parameter-2 Actual Value>

…

<PEM-1 Parameter Name-n><Null><Encoding of PEM-1 Parameter-n Actual Value>
Each of the PEM-1 Parameters after the first is concatenated to the encoding of the PEM-1 Parameter that preceding it, until all parameters have been exhausted. The encoding rules are used by the sending party to create the PEM-1 BLOB Parameter (input or output), and by the receiving party to parse the binary string; in both cases the parties need to also use the PEM-1 Template specification that defines the PEM-1 Template and the PEM-1 Template parameters and data types.

The receiving party would normally encounter first a Parameter that uniquely identifies the PEM-1 Template, and that would allow it to know what other PEM-1 Parameters to expect. However, even in the absence of a PEM-1 Template identification, the parser knows all the allowed PEM-1 Parameter identifiers. Since each identifier-value pair representing a PEM-1 Parameter starts with the identifier, which is separated from the corresponding value by a <Null> character, the parser can extract an identifier. Each identifier has a corresponding data type (identifiers and data types are specified in section 5.6), and each data type is encoded according to the encoding scheme specified in Table 1 above. Therefore, the parser knows how to extract the value for any given identifier. Once the value is extracted, the parser proceeds to parse the next identifier, if more PEM-1 Parameters are present, The length of the PEM-1 Input BLOB Parameter, or the PEM-1 Output BLOB Parameter are passed separately, outside the PEM-1 BLOB Parameter, since each protocol binding may have its own way to pass payload data length. The parser knows when to stop, when the parsing has exhausted the length of the PEM-1 BLOB Parameter passed via the specific technology binding scheme (see section 5.7).
For example, let’s first take the case of identification of a principal (johnsmith@someprovider.com), and assume that the identification is represented by a PEM-1 Parameter of type structure “Consumer” that has 2 fields: UserId and DomainId. This is encoded as:

<UserId><Null><9><johnsmith><DomainId><Null><16><someprovider.com><Null>
Where:

· <UserId> is a 6 byte ASCII string containing the characters “UserId”

· <9> is 2 bytes containing the value 9 (the length in bytes of the UserId value = johnsmith)
· <johnsmith> is a 9 byte ASCII string containing the characters “johnsmith”

· <DomainId> is a 8 byte ASCII string containing the characters “DomainId”

· <16> is 2 bytes containing the value 16 (the length in bytes of the DomainId value = someprovider.com)
· <Null> is 1 byte containing the ASCII value ‘\0’
Note that the terminating <Null> seems redundant, even in the case another PEM-1 Parameter would have followed, since the parser could have recognized the end of the identification structure once the value for its last field (DomainId) has been extracted.

Let’s assume now that the identification structure is used in combination with other PEM-1 Parameters, to form a PEM-1 Template used in evaluating a policy for this principal, when the principal is asking to obtain another principal’s (janedoe@someprovider.com) location. In order to evaluate the policy, let’s assume the input context needs to include the requestor’s identification, the target’s identification, the target attribute (location) and the time intervals at which the location needs to be obtained (60 seconds). The PEM-1 Parameters involved are of the following data types: 2 structures, to support the Consumer and Target identification respectively, each with 2 string fields (UserId, and DomainId), 1 string, to support the TargetAttributeId (value = Location), and 1 integer to support the Intervals (value = 60). Let’s also assume that the template was defined with a fixed order (in which the Consumer identification structure is passed first, followed by the Target identification structure), but since both principals are subscribers of the same provider, the domain for the target principal is an optional parameter. This is encoded in a PEM-1 Input BLOB Parameter as:
<UserId><Null><9><johnsmith><DomainId><Null><16><someprovider.com><Null><UserId><Null><7><janedoe><Null><TargetAttributeId><Null><8><Location><Intervals><Null><4><60>
Where:

· <UserId> is a 9 byte ASCII string containing the characters “UserId”

· <9> is 2 bytes containing the value 9 (the length in bytes of the UserId value = johnsmith)
· <johnsmith> is a 9 byte ASCII string containing the characters “johnsmith”

· <DomainId> is a 8 byte ASCII string containing the characters “DomainId”

· <16> is 2 bytes containing the value 16 (the length in bytes of the DomainId = someprovider.com)
· The 2nd <UserId> is a 6 byte ASCII string containing the characters “UserId”

· <janedoe> is a 7 byte ASCII string containing the characters “janedoe”

· <TargetAttributeId> is a 17 byte ASCII string containing the characters “TargetAttributeId”

· <8> is 2 bytes containing the value 8 (the length in bytes of the TargetAttributeId value = Location)

· <Location> is a 8 byte ASCII string containing the characters “Location”

· <Intervals> is a 9 byte ASCII string containing the characters “Intervals”

· <4> is 2 bytes containing the value 4 (the length in bytes of the integer representing the Intervals value = 60)

· <60> is 4 bytes containing the integer value 60

· <Null> is 1 byte containing the ASCII value ‘\0’
In this second example, the <Null> after the Target identification value (janebrown) is needed, because the parser may expect otherwise the DomainId identifier-value pair, which is absent because the parameter is optional.

The example above is only informative, and serves as an aid to understand the encoding scheme. The exact PEM-1 Parameters, their data types, admissible values are documented in section 5.6, and the encoding rules to be used are those in the table 1, that correspond to the data types of specific PEM-1 Parameters defined in section 5.6.
End of Change
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The recommendation is to agree to the encoding scheme for PEM-1 parameters in a binary string, and agree to include the supporting text in the detailed proposal as a new section 5.1.6 in the PEM-1 TS.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

