Doc# OMA-ARC-PEEM-2007-0033-INP_PEM1_TS_add_support_for_URI_data_type.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-PEEM-2007-0033-INP_PEM1_TS_Add_support_for_URI_data_type.doc
Input Contribution

Input Contribution

	Title:
	PEM1 TS Add support for URI data type
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	June 3 2007

	Source:
	Michael Brenner, Alcatel-Lucent

mrbrenner@alcatel-lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

5 Reason for Contribution

Progressing the PEM1 TS.
6 Summary of Contribution

Some policy parameters may be ideally handled as URI (a well specified derived data type from string). This contribution adds support for URI derived data type to the existing set of agreed data types.
7 Detailed Proposal

Change 1:
2.1 Normative References

	[ASN.1 Notation]
	· ASN.1 notation:

· ITU-T Rec. X.680 | ISO/IEC 8824-1

· ITU-T Rec. X.681 | ISO/IEC 8824-2

· ITU-T Rec. X.682 | ISO/IEC 8824-3

· ITU-T Rec. X.683 | ISO/IEC 8824-4

http://www.itu.int/ITU-T/studygroups/com17/languages/

	[ASN.1 encoding]
	· ASN.1 encoding rules:

· ITU-T Rec. X.690 | ISO/IEC 8825-1 (BER, CER and DER)

· ITU-T Rec. X.691 | ISO/IEC 8825-2 (PER)

· ITU-T Rec. X.693 | ISO/IEC 8825-4 (XER)

· ITU-T Rec. X.694 | ISO/IEC 8825-5 (XSD mapping)

http://www.itu.int/ITU-T/studygroups/com17/languages/
· RFC 3641 (GSER) , http://tools.ietf.org/html/rfc3641

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[PEEM RD]
	“Policy Evaluation, Enforcement and Management Requirements”, Open Mobile Alliance, OMA-RD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?pck=RD&file=OMA-RD-Policy_Evaluation_Enforcement_Management-V1_0-20050112-C.pdf

	[PEEM AD]
	“Policy Evaluation, Enforcement and Management Architecture”, Open Mobile Alliance, OMA-AD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/ftp/Public_documents/ARCH/Permanent_documents/OMA-AD-Policy_Evaluation_Enforcement_Management-V1_0_0-20060625-D.zip

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC 2396]
	"Uniform Resource Identifiers (URI): Generic Syntax", Berners-Lee, T., Fielding, R. and L. Masinter, August 1998, URL: http://www.rfc-editor.org/rfc/rfc2396.txt

	[J2SEBLOB]
	“Interface Blob”, java.sql, J2SE v.1.4.2, URL: http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Blob.html

	
	<< Add/Remove reference rows as needed! >>

End of Change 1
Change 2:
3.3 Abbreviations

	ASN.1
	Abstract Syntax Notation One

	OMA
	Open Mobile Alliance

	BLOB
	Binary Large Object

	PEEM
	Policy Evaluation, Enforcement and Management

	PEM-1
	PEEM Callable interface

	PEM-2
	PEEM Management interface

	PEL
	(PEEM) Policy Expression Language

	URI
	Uniform Resource Identifier

End of Change 2
Change 3 – introduce new section, including support for URI:
5.6 I/O parameters
Input/output parameters listed will be replicated over one or more templates. For convenience, they have been grouped here by the nature of the information they convey (e.g. parameters relative to template identification, originator identity, etc). PEEM PEM-1 templates contain different combinations of parameters specified in this document.
Editor’s note: The parameters included in a specific grouping are preliminary and therefore subject to changes. The type of the parameters (int, string, Boolean, etc …) and the nature of the parameters (mandatory, optional) has not been established yet – this will happen at a later stage (e.g. after all potential parameters are collected, and the final templates are agreed, or by the time we have a good justification for each parameter).
5.6.1 PEM-1 parameters data types

The PEM-1 parameters data types include basic data types, selected derived data types (e.g. URI data type) and some complex data types. These data types SHALL by any protocol bindings. Additional data types may be derived from these data types, on a need basis.
The table below represents the supported data types:
	PEM-1 Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters

	bool
	A type that can only take the values TRUE or FALSE

	URI
	A type derived from string, with a well-specified structure as per [RFC 2396]

Table 5.6.1-1: PEM-1 parameters data types
Appendix D is documenting all possible data types, hence, if a policy may need additional data types, those could be easy added later when the need is confirmed, rather than incurring the work now when the need is unknown.

End of Change 3
Change 4:
D.1.4 Conclusion on XML data types

As with any binding, what is of interest is that the data types that the PEL needs to support can be supported by the protocol. The analysis is showing that is indeed the case with XML data types, albeit some additional work on deriving some user-derived XML data types will likely be needed. However, to minimize unnecessary work in PEL and PEM-1 specifications and their later implementations, in reality only a subset of the data types supported in programming languages is needed initially, rather then supporting the entire super-set of data types available in programming languages.
Uniform Resource Identifier (URI) (see [URI]) is a primitive data type in XML (see anyURI), but is not a primitive data type in most programming languages. However, since in essence it is nothing more than a string with a well- defined structure, any language can provide such a data type by deriving it from the data type string.
Other types can be derived and added to PEL on a need-basis later on.
End of Change 4
Change 5:
D.2.1.2 Diameter AVP data formats versus common programming languages supported data types

This section presents a comparison between common programming languages supported data types (from an analysis in a separate contribution) and the data formats supported by Diameter, in order identify the differences and draw appropriate conclusions.

	C/C++/Java “Supported” Data Types
	Diameter basic or derived AVP data formats
	Comments/conclusion

	void
	No equivalent
	Not a problem; there is no need to support void in Diameter, since void is only use as a convenience to be consistent for a function that does not return a value – so it will be data type internal to the policy only (if needed)

	int
	Integer32
	Match

	unsigned int
	Unsigned32
	Match

	signed int
	Integer32
	Match

	short int
	No equivalent
	No match. Will need to decide whether there is a need to support in PEL. Possibilities include to not support, or to support with the caveat that Diameter implementation will need to verify that an Integer32 passed instead is indeed in the range that fits into a short int.

	unsigned short int
	No equivalent
	Similar to above.

	signed short int
	No equivalent
	Same as above.

	long int
	Integer64
	Match

	unsigned long int
	Unsigned64
	Match

	signed long int
	Integer64
	Match

	float
	Float32
	Match

	double
	Float64
	Match

	long double
	Float64
	Match

	char
	Could be derived from OctetString
	Not a problem to support, needs some work. Possibilities include defining a derived AVP (an OctetString of 1) or just verifying that indeed an OctetString passed only has 1 character, before passing it to the policy.

	unsigned char
	Could be derived from OctetString
	Similar to above

	signed char
	Could be derived from OctetString
	Similar to above

	enum
	Enumerated
	Match

	array
	OctetString (for arrays of bytes only)

For others, or in general, could be derived from existing AVP formats.

	Not a problem to support, needs some work. Probably define derived AVPs (one for each possible type of member in the array – e.g. one for int, one for float, etc …) using Grouped data formats.

	function
	No equivalent
	Not a problem; there is no need to support functions in Diameter, since there is no need to pass functions as parameters.

	struct
	Could be derived from Grouped
	Not a problem to support, needs some work. Probably define derived AVPs for specific structures.

	union
	No equivalent.
	Not sure how to support, but maybe it is not needed. May need more investigation.

	string
	OctetString
	Match

	wchar_t
	Could be derived from OctetString
	Not a problem to support, needs some work. Probably define derived AVP from OctetString.

	bool
	Could be derived from Integer32.
	Not a problem to support, needs some work. Probably define derived AVP from Int32.

	See string
	OctetString
	Match

	See int
	Integer32
	Match

	See long
	Integer64
	Match

	See unsigned int
	Unsigned32
	Match

	See unsigned long
	Unsigned64
	Match

	See float
	Float32
	Match

	See double
	Float64
	Match

	See struct
	Grouped
	Not a problem to support, needs support in Diameter.

	Derived from string
	Address

	Not a problem to support in PEL via a “typedef” from string (if needed; probably consumed at Diameter protocol level).

	Derived from string
	Time
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	UTF8String
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	DiameterIdentity
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	DiameterURI
	Not a problem to support in PEL via a “typedef” from string (if needed)

	See enum
	Enumerated
	Match

	Derived from string
	IPFilterRule
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	QoSFilterRule
	Not a problem to support in PEL via a “typedef” from string (if needed)

The conclusion is that, should a subset of the basic and some complex data types analyzed for programming languages be supported in PEL, Diameter can match the parameters data types as dictated by the policy with a few exceptions (short int, unsigned short int, signed short int, function, union), but may require some work for some of the others. Of course, the more data types are supported in PEL, the more work in new AVPs to be supported in Diameter. Likewise, a PEL that supports the typical programming language data types can support all passed parameters data types from/to Diameter (in some cases the use typedef may be needed to cast some derivations of data types in PEL in order to do so – but this can be done on a need basis). In principle, any of the parameters passed via Diameter can be matched with existing basic data types and structures supported in programming languages.

A subset of the data types supported in programming languages would be in general a much preferable way to start with, rather then supporting the entire super-set of data types available in programming languages.
Uniform Resource Identifier (URI) (see [URI]) is a derived data type in XML (see DiameterURI), but is not a primitive data type in most programming languages. However, since in essence it is nothing more than a string with a well defined structure, any language can provide such a data type by deriving it from the data type string.
Other types can be derived and added to PEL on a need-basis later on.

A special note on the use of Vendor-ID qualifier. If the ‘V’ flag is set in the Diameter header, the Vendor-ID parameter acts as a “namespace” to allow a different interpretation for a certain AVP, then the standard interpretation as per IETF specifications (such AVPs are no longer managed by IANA, but by the organization that owns that particular Vendor-ID). Several scenarios related to additional AVP codes could happen:

1. ARC could decide at PEEM PEL TS time that some additional AVP codes are needed
2. A Service Provider that deploys PEEM may decide that additional PEEM derived data types, and hence additional AVP codes, are needed,.

 The process for defining additional AVP codes is documented in [RFC 3588].
End of Change 5
8 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

9 Recommendation

Agree to all 5 changes proposed for PEM-1 TS to support URI data type.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

