OMA-TS-REST_FuncArea_API-V1_x-yyyymmdd-D
Page 13 V(33)

	[image: image1.jpg]
	

	RESTful Network API –
[Functional Area]

	Draft Version 1.0 – dd Mmm yyyy

	Open Mobile Alliance

	OMA-TS-REST_FuncArea_API-V1_x-yyyymmdd-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© yyyy Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
4.1
Version 1.0
8
5.
[Functional Area] API definition
9
5.1
Resources Summary
9
5.2
[Functional Area] Data Types
14
5.2.1
XML Namespaces
14
5.2.2
Structures
14
5.2.2.1
Type: [Type Name (without lightweight resources)]
15
5.2.2.2
Type: [Type Name (with lightweight resources)]
15
5.2.3
Enumerations
15
5.2.3.1
Enumeration: [Enumeration Name]
16
5.2.4
Values of the Link “rel” attribute
16
5.3
Sequence Diagrams
16
5.3.1
[Title of flow scenario]
16
6.
Detailed specification of the resources
19
6.1
Resource: [Description of the resource]
19
6.1.1
Request URI variables
19
6.1.2
Response Codes and Exceptions
19
6.1.3
GET
19
6.1.3.1
Example 1: [Example title] (Informative)
20
6.1.3.1.1
Request
21
6.1.3.1.2
Response
21
6.1.3.2
Example 2: [Example title] (Informative)
21
6.1.3.2.1
Request
21
6.1.3.2.2
Response
21
6.1.4
PUT
21
6.1.4.1
Example 1: [Example title] (Informative)
22
6.1.4.1.1
Request
22
6.1.4.1.2
Response
22
6.1.4.2
Example 2: [Example title] (Informative)
22
6.1.4.2.1
Request
22
6.1.4.2.2
Response
22
6.1.5
POST
22
6.1.5.1
Example 1: [Example title] (Informative)
23
6.1.5.1.1
Request
23
6.1.5.1.2
Response
23
6.1.5.2
Example 2: [Example title] (Informative)
23
6.1.5.2.1
Request
23
6.1.5.2.2
Response
23
6.1.6
DELETE
23
6.1.6.1
Example 1: [Example title] (Informative)
24
6.1.6.1.1
Request
24
6.1.6.1.2
Response
24
6.1.6.2
Example 2: [Example title] (Informative)
24
6.1.6.2.1
Request
24
6.1.6.2.2
Response
24
Appendix A.
Change History (Informative)
25
A.1
Approved Version History
25
A.2
Draft/Candidate Version 1.0 History
25
Appendix B.
Static Conformance Requirements (Normative)
26
B.1
SCR for REST.FUNCAREA Server
26
B.1.1
SCR for REST.FUNCAREA.FUNCTION Server
26
Appendix C.
Application/x-www-form-urlencoded Request Format for Selected REST Operations (Normative)
27
C.1
[Operation]
27
C.1.1
Example (Informative)
28
C.1.1.1
Request
28
C.1.1.2
Response
28
Appendix D.
JSON examples (Informative)
29
D.1
[Example Title] (section [section number cross reference])
29
Appendix E.
[Baseline specification] operations mapping (Informative)
30
Appendix F.
Light-weight resources for [FuncArea] (Informative)
31
Appendix G.
Authorization aspects (Normative)
32

Figures

11Figure 1 Resource structure defined by this specification

17Figure 2 [Caption of this flow]

Tables

30Table 1 [Baseline specification] operations mapping

1. Scope

<< Alternative 1: This is a suggestion for the introduction if there is a baseline specification. If the baseline is Parlay X, substitute [BASELINE_REF] with [3GPP 29.199-nn]. Use either alternative 1 or alternative 2.>>

This specification defines a RESTful API for [Functional Area] using HTTP protocol bindings, based on [the baseline spec, for instance the similar API defined in [BASELINE_REF]].
<< Alternative 2: This is a suggestion for the introduction if there is no baseline specification. Use either alternative 1 or alternative 2.>>

This specification defines a RESTful API for [Functional Area] using HTTP protocol bindings.
<< Use TimesNewRoman font size 10 for main body text >>
2. References

2.1 Normative References

	[BASELINE_REF]
	Baseline specification, if applicable. If the baseline is Parlay X part nn, the reference text is as follows: 3GPP Technical Specification, “Open Service Access (OSA); Parlay X Web Services; Part [nn]: [Functional Area] (Release 8)”, URL:http://www.3gpp.org/

	[OMA_REST_TS_Common]
	“Common definitions and specifications for OMA REST interfaces”, Open Mobile Alliance™, OMA-TS-REST_Common-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1 [only needed if www-form-urlencoding is supported]

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“White Paper on Guidelines for OMA REST API specifications”, Open Mobile Alliance™, OMA-WP-Guidelines_for_REST_API_specifications, URL:http://www.openmobilealliance.org/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].

3.3
Abbreviations
	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

4. Introduction

<< Alternative 1: This is a suggestion for the introduction if there is a baseline specification. Use either alternative 1 or alternative 2. >>

The Technical Specification for the OMA RESTful [Functional Area] API contains HTTP protocol bindings for the [Baseline specification] [BASELINE_REF] specification, using the RESTful architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
<< Alternative 2: This is a suggestion for the introduction if there is no baseline specification. Use either alternative 1 or alternative 2. >>

The Technical Specification for the OMA RESTful [Functional Area] API contains HTTP protocol bindings for [Functionality], using the RESTful architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

<< Include a list of supported operations >>

5. [Functional Area] API definition
This section is organized to support a comprehensive understanding of the [Functional Area] API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_TS_Common(if needed)] resp. [OMA_REST_TS_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URI variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 5 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Appendix E lists the [Baseline specification] equivalent operation for each supported REST resource and method combination, where applicable. [This paragraph applies verbatim if there is a baseline specification such as Parlay X and may apply in a modified form if there is another baseline specifications For ParlayREST, substitute [Baseline specification] with “Parlay X”. Not present if there is no baseline spec.]
Appendix F provides a list of all lightweight resources. [Only applicable if lightweight resources are defined by the specification, otherwise not present.]
For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [OMA_REST_TS_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription.
Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the [Functional Area] API.

<< Include a resource structure diagram

Use curly brackets around a path component if the text represents a placeholder that will be substituted by an actual value in a URL instance.
Do not use curly brackets around a path component if the text will appear verbatim in a URL instance.
Use text without mark-up for parts of the resource tree that do not have associated HTTP methods.
Use a box with a document icon for resources that do have associated HTTP methods.
Use a flat hexagonal box with a document icon as a placeholder for one or more lightweight resources
Editable PPT versions of the figures are provided below, as editing the embedded figure is problematic

[image: image2.wmf]example-structure.zip

[image: image3.wmf]example-structure-with-LW.zip

 >>

<< Alternative 1: Resource structure diagram without lightweight resources. Use either alternative 1 or alternative 2. >>

[image: image4.emf]/callSessions//{serverRoot}/{apiVersion}/ thirdPartyCall/{callSessionId}/participants/{participantId}/terminate

<< Alternative 2: Resource structure diagram with lightweight resources. Use either alternative 1 or alternative 2. >>

[image: image5.wmf]/

callSessions

//{

serverRoot

}/{

apiVersion

}

/

thirdPartyCall

/{

callSessionId

}

/

participants

/{

participantId

}

/

terminate

/[

ResourceRelPath

]

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Note: this part of the TS uses a landscape layout, started and terminated by a section break.

<<Naming conventions for resources
Names will start with a letter and be mixed case, with the leading letter of each but the first word capitalized. Words will not be separated by white space, underscore, hyphen or other non-letter character.

For names consisting of concatenated words, all subsequent words start with a capital. For example, “concatenatedWord”. If a lowercase name starts with an abbreviation, all characters of the abbreviation are de-capitalized, e.g. “smsService”.

Path components of resource names are mixed case, with the leading letter lowercase. The leading path component which identifies the API (e.g. thirdpartycall) is all lowercase, and is aligned with the namespace name of the related XML schema.

Note that deviations from this the naming convention SHOULD be the exception and thoroughly justified, e.g. in case of re-use of existing resource structures.>>

Purpose: [Description of the purpose of this (set of) resource(s)]
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/Functional Area
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	[Description of the resource.
Will be repeated in the headlines in section 6.x]

	[URL for the resource]

	[Data structure(s)]
In case there are different data structures applicable, use the following schema. If applicable, also mention ResourceReference.

Data structure
(used for METHOD)

common:ResourceReference (OPTIONAL alternative for POST response)

	[Description of the operation or “no”]

	[Description of the operation or “no”]

	[Description of the operation or “no”]

	[Description of the operation or “no”]

	<< Example below - DELETE this and following Row>>

	All Participants of a Call Session
	callSessions/{callSessionId}/participants

	CallParticipantList
(used for GET)

CallParticipantInformation
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Get a list of participants of a call session
	no
	Add participant to call session
	no

	<< Add/Remove rows to this table as needed - DELETE This Row>>

<< Include separate tables for each purpose>>

<< Use Arial Narrow font size 10 for these tables >>

5.2 [Functional Area] Data Types
5.2.1 XML Namespaces

The XML namespace for the [Functional Area] data types is:

urn:oma:xml:rest:[funcarea]:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_TS_Common] (delete if not used). The use of namespace prefixes such as 'xsd' is not semantically significant.
5.2.2 Structures

<<Naming conventions for structures
Names will start with a letter and be mixed case, with the leading letter of each but the first word capitalized. The conventions for the leading letter of the first differ depending on the context:

· Type names start with an uppercase letter

· Element and attribute names in types start with a lowercase letter

Words will not be separated by white space, underscore, hyphen or other non-letter character. For names consisting of concatenated words, all subsequent words start with a capital. For example, “concatenatedWord”. If a lowercase name starts with an abbreviation, all characters of the abbreviation are de-capitalized, e.g. “smsService”.

Note that deviations from this the naming convention SHOULD be the exception and thoroughly justified, e.g. in case of re-use of existing data types.>>

<< Intro in case the document does not use the concept of light-weight resources. Pick one alternative and DELETE this comment >>

The subsections of this section define the data structures used in this RESTful API.
Some of the structures can be instantiated as so-called root elements.

<< Intro in case the document does use the concept of light-weight resources. Pick one alternative and DELETE this comment >>

The subsections of this section define the data structures used in this RESTful API.
Some of the structures can be instantiated as so-called root elements, i.e. they define the type of a representation of a so-called heavy-weight resource.

The column [ResourceRelPath] in the tables below, if used, includes relative resource paths for light-weight resource URLs that are used to access individual elements in the data structure (so-called light-weight resources). A string from this column needs to be appended to the corresponding heavy-weight resource URL in order to create light-weight resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath].

5.2.2.1 Type: [Type Name (without lightweight resources)]
<< This defines the format of the subsections in case the type does not use the concept of light-weight resources. DELETE this comment >>

[Brief description of the type]
	Element
	Type
	Optional
	Description

	[Element Name]

	[Type]
	[Yes/No/
Choice]
	[Description of the Element]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

<< In case of a root element, include the following text below the table:

A root element named [typeName] of type [TypeName] is allowed in request and/or response bodies.

Or

A root element named [typeName] of type [TypeName] is allowed in notification request bodies.

5.2.2.2 Type: [Type Name (with lightweight resources)]
<< This defines the format of the subsections in case the type does use the concept of light-weight resources. DELETE this comment >>

[Brief description of the type]
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	[Element Name]
	[Type]
	[Yes/No/
Choice]
	[relative path of light-weight resource or “Not applicable”]
	[Description of the Element]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

<< In case of a root element, include the following text below the table:

A root element named [typeName] of type [TypeName] is allowed in request and/or response bodies.

Or

A root element named [typeName] of type [TypeName] is allowed in notification request bodies.

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.3 Enumerations

<<Naming conventions for enumerations
Names will start with a letter and be mixed case, with the leading letter of each but the first word capitalized. The conventions for the leading letter of the first differ depending on the context:

· Enumeration type names start with an uppercase letter

· Enumeration value names in types start with a lowercase letter

Words will not be separated by white space, underscore, hyphen or other non-letter character. For names consisting of concatenated words, all subsequent words start with a capital. For example, “concatenatedWord”. If a lowercase name starts with an abbreviation, all characters of the abbreviation are de-capitalized, e.g. “smsService”.

Note that deviations from this the naming convention SHOULD be the exception and thoroughly justified, e.g. in case of re-use of existing data types.>>

The subsections of this section define the enumerations used in this RESTful API.
5.2.3.1 Enumeration: [Enumeration Name]
	Enumeration
	Description

	[Enumeration Value Name]
	[Description of the enumeration value]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· One

· Two

<< Include a bullet list with possible “rel” string values >>
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
[some intro text]
5.3.1 [Title of flow scenario]
This figure below shows a scenario for [description of scenario].

The resources:

· To [description of operation], [create/read/update/delete] resource under [resource URL]
· To [description of operation], [create/read/update/delete] resource under [resource URL]
<< Include a flow diagram, and add a figure caption
Use solid lines for requests

Use dotted lines for responses

Use numbers if you want to reference in the text

If multiple servers are involved, name them (e.g. Foo Server, Bar Server), otherwise do not name the server
An editable PPT versions of the figure is provided below, as editing the embedded figure is problematic

[image: image6.emf]example-flow.zip

example-flow.zip

>>

[image: image7.emf]3. Remove a callparticipant(includingresourceURLwithparticipantId) fromthesessionApplicationServer1. POST CallSessionInformationResponse withcreatedcallsessionresourceincl. callSessionId2. POST CallParticipantInformationtoresourceURLofnewcallsessionResponse withinformationabout addedcallParticipantincl. resourceURLwithparticipantId

Create a newcallsessionAdd participanttosession

4. GET participantlistforcallSessionIdResponse withinformationabout eachparticipantincl. theirstatus

Fetch participants

5. TerminatethecallsessionResponse orerrormessage

TerminatecallsessionRequest removalofparticipant

Response whetherremovalwas successful

Delete participantfromsession

Figure 2 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]
3. [High-level description of 1 or more steps in the flow diagram]
6. Detailed specification of the resources
6.1 Resource: [Description of the resource]
<< Description of the resource in the title heading should match the description of the resource from the first column of the purpose table in section 5.1 >>

The resource used is:
[resource URL]

[without lightweight resources usually http://{serverRoot}/{apiVersion}/funcarea/...]
[with lightweight resources usually http://{serverRoot}/{apiVersion}/funcarea/.../[ResourceRelPath]]
This resource is used for [descriptive explanation of the resource].

6.1.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use (e.g. 1 for version 1.x)

	[ResourceRelPath]
	Relative resource path for a light-weight resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable see 5.6.1.1. [This row is only present in case the resource has lightweight child resources]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

<< Light-weight resource relative paths. This subsection is only applicable if the resource allows accessing individual sub-trees in the data structure using the lightweight resource mechanism (i.e. [ResourceRelPath is part of the resourceURL]>>
6.1.1.1 Light-weight relative resource paths

The following table describes the types of light-weight resources that can be accessed by using this resource, applicable methods, and links to data structures that contain values (strings) for those relative resource paths.

	Light-weight resource type
	Method supported
	Description

	[Description of the type]

	[list of HTTP methods, POST not allowed]
	[Description and reference to the allowed values]

	<< Example - DELETE This Row>>

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.4 for possible values for the light-weight relative resource path.

6.1.2 Response Codes and Exceptions
For HTTP response codes, see [OMA_REST_TS_Common].
For Policy Exception and Service Exception fault codes applicable to [Functional Area], see [BASELINE_REF].
<< Note that the second sentence is applicable if there is Parlay X legacy, but may be adopted if there are exceptions coming from other underlying systems. In case there are no error handling mechanisms / exceptions from underlying systems, the second sentence can be omitted.>>

6.1.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

Request URL parameters are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

<< Not all operations have Request URL parameters. Delete this table as appropriate >>

6.1.3.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

<< Prior to Candidate approval, a TS with XML examples MUST be submitted to the OMA XML validation service for validation of the examples: http://www.openmobilealliance.org/xml/. It is RECOMMENDED to do the same prior to or as part of CONR.
The examples must use real-world values. See document OMA-ARC-REST-2010-0675R01

The following conventions apply:

· {serverRoot} http://example.com/exampleAPI also to be updated in the tables where {serverRoot} is defined in section 6.x.

· {version} In our case this is 1 matching the TS version.

· {userId} E-mail names: mailto:alice@example.com mailto:bob@example.com or phone numbers: tel:+1-555-555-0100 to tel:+1-555-555-0199. In fact, only 555-0100 through 555-0199 are now specifically reserved for fictional use, with the other numbers having been released for actual assignment.

· {deviceAddress}, {senderAddress} Typically a phone number

· {equipmentId} Typically a manufacturer type name or serial number

· {memberListId} Typically a group name, “friend”, “list123”

· {contactId} Typically a person’s name, “bob”

· {memberId} Typically a phone number or e-mail address or SIP URI

· {subscriptionId} Typically a number or a sequence of digits and letters, “sub123”

· {messageId} Typically a number or a sequence of digits and letters, “msg123”

· {interactionId} Typically a number or a sequence of digits and letters, “int123”

· {registrationId} Typically a number or a sequence of digits and letters, “reg123”

· {requestId} Typically a number or a sequence of digits and letters, “req123”

· {ruleId} Typically a number or a sequence of digits and letters, “rule123”>>

6.1.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.3.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.1.4.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].

6.1.5.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.5.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/POST]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.1.6.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

OMA-TS-REST_[FuncArea]_API-V1_0
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.FUNCAREA Server

	Item
	Function
	Reference
	Requirement

	REST-FUNCAREA-SUPPORT-S-001-M
	Support for the [FuncArea] RESTful API
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	PARLAYREST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	PARLAYREST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
PARLAYREST-CN-SUBSCR-INDCALLDIR-S-003-O

	PARLAYREST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	PARLAYREST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for Selected REST Operations
(Normative)
<< Some APIs do support form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of url-encoding. >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of url-encoding. >>

This section defines a format for the [FuncArea] REST API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server.

The encoding is defined below for all [FuncArea] REST operations which are based on POST requests.

<< List the operations for which url-encoded is supported. >>
C.1 [Operation]
This operation is used to create an outgoing message request.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [OMA_REST_TS_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [OMA_REST_TS_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. [Baseline specification] operations mapping
(Informative)
<< This appendix is only needed for specifications which define REST bindings for an existing interface / API, such as Parlay X. For other specs it will not be present.
For ParlayREST specifications, substitute [Baseline specification] with “Parlay X”>>

The table below illustrates the mapping between REST resources/methods defined in this specification and [Baseline specification] [[BASELINE_REF]] equivalent operations.

	OMA REST Resource
	OMA REST
Method
	OMA REST
Section reference
	[Baseline specification] equivalent operation

	[Resource description from first column in one of the tables in section 5.1]
	[GET/PUT/POST/DELETE]
	[section cross-reference]
	[Operation name from
Baseline specification]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

Table 1 [Baseline specification] operations mapping
Appendix F. Light-weight resources for [FuncArea]
(Informative)

The following table lists all [FuncArea] data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	Person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

�Note that this reference may change during the work on the OMA API governance. Template users to check this in CONR.

�Note that this may change subject to the decisioon in the API versioning discussion

(yyyy Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(yyyy Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1357635463/example-structure.zip

example-structure.ppt

/callSessions

//{serverRoot}/{apiVersion}

/ thirdPartyCall

/{callSessionId}

/participants

/{participantId}

/terminate

_1358696492/example-structure-with-LW.zip

example-structure-with-LW.ppt

/callSessions

//{serverRoot}/{apiVersion}

/ thirdPartyCall

/{callSessionId}

/participants

/{participantId}

/terminate

/[ResourceRelPath]

_1357634611/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

