OMA-Service_Environment-V1_0-20040416-D
Page 29 V(29)

	[image: image13.png]System 2 System 3

System 1

Interface

Resource

	

	OMA Service Environment

	Draft Version 1.0 – 16 April 2004

	Open Mobile Alliance

	OMA-Service_Environment-V1_0-20040416-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Introduction
7
4.1
General
7
4.2
How to use this Specification
8
4.2.1
Internal to the OMA
8
4.2.2
External to the OMA
8
4.3
Specification compliance
8
5.
Motivation
9
5.1
Existing service development and integration
9
5.2
End user perception
9
5.3
OMA Enablers and Enabler reuse
9
6.
OMA Enabler architectures
11
6.1.1
OMA "silo" architectures
11
6.1.2
Target architecture (OSE architecture)
11
7.
The OSE Architecture
12
7.1
General
12
7.2
The OSE conceptual architecture
12
7.3
The OSE logical architecture
12
7.4
Architecture Principles
14
7.4.1
Extensibility
14
7.4.2
Reuse of Enablers
14
7.4.3
Single component interfaces
14
7.4.4
Application development interfaces
14
7.4.5
Life cycle management
15
7.4.6
Evolution
15
7.4.7
Application and Enabler Exposure management
15
7.5
OSE Elements
15
7.5.1
General
15
7.5.2
Interfaces of the OSE
16
7.5.3
Applications
18
7.5.4
Resources
18
7.5.5
Infrastructure
18
7.5.6
Enabler implementations
19
7.5.7
Policy Management
19
7.5.8
Migration from OMA Enabler architectures towards the OSE
22
Appendix A.
Change History (Informative)
25
A.1
Approved Version History
Error! Bookmark not defined.
A.2
Draft Version 1_0 History
25
Appendix B.
Deriving an OMA Service Environment architecture
26
Appendix C.
Reference Points versus Interfaces
28

1. Scope

The present document describes the OMA Service Environment (OSE), which is a flexible and extensible architecture that offers support to a diverse group of application developers and service providers.

The OSE specification describes an evolving and consistent environment for how all OMA enablers, as defined by existing and future OMA Technical Plenary working groups, interact with one another to provide suite of consistent, widely accessibly Services to the end user.

The primary intention of the OSE is to promote a common structure and rule set across the whole of OMA for how OMA Enablers are specified and how they interact with one another whilst ensuring architecture integrity, scalability and interoperability, all of which strive to reduce Architecture silo design and hence reduce integration and deployment complexities.

The technical specification work and the evaluation of technologies are outside the scope of the present document. However, the present document strives to provide a consolidated view of the existing technologies available in the OMA and external liaison relationships.

The present document is applicable to the OMA member organisation. However, to encourage technical alignment and common structures for Enablers developed outside the OMA the present document will be classified an external OMA publication.

2. References

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	
	

2.2 Informative References

	[ARCHMAP]

	"OMA-Mapping of Existing Architectures V2.0". Open Mobile Alliance(.
 URL: http://www.openmobilealliance.org/

	[ARCHPRIN]

	"OMA-Architecture Principles V1.1". Open Mobile Alliance(.
 URL: http://www.openmobilealliance.org/

	[ARCHREQ]

	“OMA Architecture Charter, Open Mobile Alliance(,

URL:http//www.openmobilealliance.org/

	[ARCHINVEN]

	

	
	“OMA Mappin g of Existing Architecture”, Version 2.1, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/
“OMA Architecture Principles”, Version 1.1.1, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/
“OMA Architecture Requirements, Open Mobile Alliance™, URL:http://www.openmobilealliance.org/
“Inventory of Existing Architectures to OMA", Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purposes of the present document, the terms and definitions given in [OMADir] and the following apply:

	OMA Service Environment
	A conceptual and logical architecture that provides a common structure and rule set for specifying Enablers

	Conceptual Architecture
	Directs attention to an appropriate decomposition of the system without delving into the technical detail. Moreover, it provides a useful mythology for communicating the architecture to non-technical audiences. Essentially, the conceptual architecture consists of an Architecture diagram (without interfaces) and an informal component specification for each component (high level description)

	Logical Architecture
	Incorporates the detailed architecture diagram (with interfaces), elements and interface specifications. This architecture is used to derive detailed architecture to which an implementation can be made

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	OSE
	OMA Service Environment

	EPEM
	Execution Policy Enforcement Management

	SLA
	Service Level Agreement

	
	

4. Introduction

4.1 General

The OMA specifies Enablers, which provide standardized components that create an environment in which services may be developed and deployed. The decomposition into these components and the interactions between them comprise the OSE.

By promoting a common structure and rule set, as described by the OMA Architecture Principles specification [Principles], for specifying OMA Enablers and by satisfying the Service Environment requirements as defined in (ARCHREQ), the OSE specification describes an evolving and consistent Service Environment, i.e. the OMA Service Environment, for how all OMA Enablers interact with one another to provide suite of consistent, widely accessibly, Services to the end user whilst ensuring architecture integrity, scalability and interoperability. All of which strive to reduce Architecture silo design and hence reduce integration and deployment complexities. The primary intention for the OSE specification is to address the issues as described in clause 5 "Motivation" and to promote and create end-user centric service coherence, irrespective of the underlying access technology, and to widen the service availability to the end user.

· The latter will be achieved by simplifying: The controlled exposure of resources to internal and third parties application developers in order for them to create and run compelling new services;

· The integration and management of resources;

· The evolution of OMA current silo-like conglomerate architecture to an integrated unified and well coordinated OMA service enabler environment;

The implication of the OSE specification is threefold:

· The OSE specification will describe in general terms the OMA Service Environment and will identify the OSE core components;

· The OSE will provide the vision and migration path between existing and future OMA Enabler activities within the OMA;

· The OSE will describe how OMA Enablers will interact with other Service Enablers and OSE core components to provide a comprehensive set of cohesive user-centric services.

In general the goals of the OSE are:

· Minimise time to market for new services;

· Enable rapid development and deployment of innovative new applications;

· Support reuse of OSE resources and to reduce vertical architecture silos;

· Open up service creation to 3rd parties while protecting the service providers assets and enabling varied business models;

· Broadening the developer pool;

· Allowing automated management of business relationships;

· Developing an evolution path to an integrated and unified service enabler environment.

Achieving the above aims will increase the intrinsic value of resources deployed in a service provider domain by increasing their usage and potential for revenue generation and decreasing service providers’ capital investments.

The remainder of this document will further elaborate on the topics previously identified.

4.2 How to use this Specification

4.2.1 Internal to the OMA

· In general, to gain overall understanding of how OMA Enablers interact in order to support variety of services;

· Provide guidance when creating new or evolving existing OMA Enablers;

· Specifically, to gain an understanding of the key components within the OSE and to determine the interactions (e.g. for reusability) of a particular Service Enabler with other core components, e.g. other OMA Enablers;

· Specifically, to determine the interactions between developing OMA Enablers and existing OMA Enablers and core components.

4.2.2 External to the OMA

· In general, to gain overall understanding of how OMA Enablers interact in order to support variety of services;

· Specifically, to gain an understanding of the key components within the OSE and to determine the interactions of a particular Service Enabler with other core components, e.g. other OMA Enablers;

· Specifically, to determine the interactions between existing Non-OMA Enablers with OSE identified core components, e.g. other OMA Enablers.

4.3 Specification compliance

Compliance to this specification is defined by the following:

· An OMA Enabler that is compliant with the OSE SHOULD be able to delegate all processing tasks that are fulfilled by the OMA Enablers and core components.

· A service implementation that comes with its own implementation of an OMA Enabler SHOULD allow other service implementations to re-use this implementation through delegation.

5. Motivation

5.1 Existing service development and integration

Services architectures known today are either created by standards bodies and therefore are targeted to a particular service (such as Wireless Village or LIF), or are developed by software vendors or system integrators, in which case they apply only for a single product or solution. This monolithic approach to services creates a number of issues for the Service Provider:

· Integration and deployment of services is complicated and expensive;

· High implementation efforts for applications wanting to use several capabilities;
· There is no integration of the different services from the point of view of the user to provide a uniform view of the services.

The term "silo" has become popular in this context as it highlights the fact that the implementation of the service has been done by integrating different components vertically and per-service. Implementation and integration work done for one service cannot be re-used in others due to the lack of standards.

The "silo" nature of both standards and products results in a number of problems that raise costs and slow down deployment for new services. From a Service Provider's perspective:

· Integration with underlying network infrastructure must be done from scratch for each deployment, which results in duplication of integration work.

· Many functions and data are duplicated with the introduction of new services. E.g. each service implementation tends to have its own subscriber database, or its own way of authenticating subscribers or accounting service usage. There’s no way of sharing, e.g. the preferred notification method (email, SMS or voice call) across services.

Another problem of the "silo"“ architecture is that each service comes typically with its own management facilities, and the way the service is actually deployed in the network is also different. The "silo" architecture of services also requires detailed knowledge about the network to integrate the actual service implementation with underlying network infrastructure, or with terminals. Some components, such as user profiles, need to be developed again for each service and cannot be re-used from others. The result is non-satisfying time-to-market as well as high costs and inconsistent user interfaces across multiple services.

5.2 End user perception

From an end user perspective, the independent deployment of service leads to inconsistent user experience when using different services offered by a single provider or even when using the same service in different environments (e.g. through roaming). From the end-user perspective the inconsistency in user experience may be derived by the limitations in:

· User centric and service centric capabilities making end-user services non-coherent;

· Service continuity caused through user mobility and service mobility;
· End-user ability to chose how services are accessed and used, but when available choices are limited and not consistent;

· The beholder’s (e.g. SP, End-user, Enterprise) perception on their relationship and interaction with other actors, and the roles that each actor fulfils, within the user mobility and service mobility eco-system.
5.3 OMA Enablers and Enabler reuse

OMA has incorporated a large number of previously separate organizations. The work of integrating the architectures of these separate efforts is ongoing. One of these efforts includes the standardisation of OMA Enablers, which provide for a number of needs:

· They are used to solve problems in a way that provides service components that are interoperable, allowing interaction between components and applications developed by and offered by different providers.

· They also can be used for portability, allowing the same applications to operate across a wide variety of environments.

· They also allow for reuse, so that commonly used functions can be provided for by standard components instead of recreating those same capabilities in each application.

The latter point emphasises the need to identify potential areas of overlap and to avoid duplication, especially where OMA provides more than one way of providing the same capability. This is true within a particular area (e.g. location or instant messaging) where there previously existed more than one organization at work, but also across areas where often the same capabilities are needed, but are provided in different ways.

An integral part of the removal of duplication in the OMA Service Environment, is to identify opportunities to abstract out common functions that are needed across OMA (and externally) and to create new standardised OMA Enablers to provide those common functions. All future OMA Enablers would then use those OMA Enablers to provide those common functions (unless they had special needs that made the common function not appropriate).

In addition to overlaps and the detection of common functions, another key goal is the identification of gaps where new standards are needed. This gap analysis can only be successful if driven by market level requirements. If a new Service Enabler does not meet the unfulfilled requirements for a Service, then there is no gap to fill. Use cases are an important tool in determining where gaps exist. In analysing different possible technical solutions for architecture that meets the requirements derived from a use case, if a functional need that would benefit from standardization is detected, that gap is a potential candidate for a new OMA Enabler.

6. OMA Enabler architectures

6.1.1 OMA "silo" architectures

OMA (and its previous affiliates) produces open standards Service Enablers which are used as building blocks to provide services to end users or to maintain or enhance the environment in which services are provided. As described in clause 5 "motivation" these standards have been developed, in most cases, with no concern for how they would interact with each other, nor do they seek to provide unified and consistent structure by, for example, identifying potential areas of overlap and avoiding duplication, especially where OMA provides more than one way of providing the same capability. For a detailed architecture view of OMA "silo" architectures and their specification details refer to [ARCHINVEN].

6.1.2 Target architecture (OSE architecture)

Enabler specifications should be aware that enablers will be deployed within the OSE and be able to rely on the OSE for delegation of functions (refer to subclause 7.3.7 "Policy Management for a description of the OSE delegation mechanisms). These delegated functions should no more be included within each enabler specification. As a result, enabler implementations will not provide these functions themselves, but rather can rely on delegation to reuse or share functions.

7. The OSE Architecture

7.1 General

As previously described, the OSE supports a flexible, extensible architecture that offers support to a diverse group of application developers and service providers. The architecture satisfies the pre-requisites of the OMA Service Environment as defined in clause 4 "Introduction" and satisfies the Requirements for the Service Environment as defined (see ARCHREQ].

Achieving the pre-requisites will increase the intrinsic value of resources deployed in a service provider domain by increasing their usage and potential for revenue generation and decreasing service providers’ capital investments.

7.2 The OSE conceptual architecture

Editor's Note: This section needs to be completed

7.3 The OSE logical architecture

Figure 1 presents the generic logical view of the service provider portion of the OSE architecture. This view focuses on identifying and positioning the different systems present in the OSE.

[image: image2.wmf]SP portion of OSE Picture

Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

…

Enabler

implementation

SP Domain

To Resources in

operators, terminals,

SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Figure 1 – Generic logical view of the OSE architecture.

The different elements are as described in subsequent sections of the OSE specification. The enabler implementations may encompass any OMA enabler including Execution Enforcement and Policy Management (EPEM). Enablers and Execution environment infrastructure provide support for example, integration, security, charging, O&M, registry / directories, life cycle management.

The OSE does not impose any enabler in the Service Provider domain (i.e. no mandatory statement is specified). This leaves complete freedom to the service provider that deploys OMA enabler implementations / OSE; including EPEM.
Figure 2 illustrates the logical view of the service provider portion (see note 1) of the functionalities / mechanisms of the OSE architecture (see note 2).

NOTE 1: The Service Provide portion is described, because figure 1 does not illustrate all possible actors or components. For example, terminals are not illustrated. The figure would however be very similar when enablers or applications are located on terminals.

NOTE 2: Mechanisms include bindings and flows. Functionalities include all the other aspects described in the picture.

Each of the OSE elements is detailed in the following sections. The resources in the service provider domain are effectively shielded from the application execution environment and exposed in a controlled manner through the OSE and it's Policy Management capabilities.

In OMA, the OSE Policy Management capabilities are fulfilled by EPEM. In subsequent figures, which show mechanisms and flows in the OSE, EPEM appears as a central component. This does not imply that EPEM is an enabler that is more important than others enablers in the OSE; It does imply that implies that when looking at the protection and delegation capabilities provided by the OSE for enabler implementations, EPEM plays a central role by processing all OMA-level exchanges to and from the protected resources.

In the service provider environment, implementations of the OMA enablers expose standard APIs for application use. These enabler implementations connect to the actual resources present in the service provider domain. Through this abstraction, it is possible to add or modify the underlying resources without having to affect the application development interfaces exposed by the enabler implementations (and therefore without affecting the applications), something especially important when using multiple vendors, supporting different network technologies or relying on different providers. Such additions and modifications of resources will be more effective by further evolving the OSE to an integrated and unified environment, hence reducing the number of required APIs.

[image: image3.wmf]SP portion of OSE Picture

Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

EPEM

Applications

…

…

Enabler

implementation

SP Domain

To Resources in

operators, terminals,

SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Figure: 2 logical view of the mechanism and functions of the OSE Architecture (service provider portion).

Figure 2 illustrates the relationship between applications and requests and resources in the service provider domain. In fact, the concepts and picture are the same even if the requesting element is an enabler situated in the same service provider domain or in a different service provider domain. All enablers in the service provider domain operate the same whether the request comes from applications or enabler, in the same domain or a different one. The specific results of authentication or authorization of the requestor might yield different constraints on what the request might achieve, but the policy evaluation and enabler execution always follow the same process.

The dotted line across EPEM, as illustrated in Figure 2, represents the fact that EPEM is a single logical entity but that it may be implemented with multiple components. The OSE does not mandate any OMA Enabler in the SP domain, which therefore allows flexibility in how OMA Enablers are implemented and deployed..

7.4 Architecture Principles

The OSE architecture is based upon a number of key principles, designed to satisfy the aims and Architecture requirements as described previously. This architecture can be realized in many technologies, including but not limited to, Parlay and web services. These key principles are described in the following subclauses.

7.4.1 Extensibility

New enablers can be introduced by developing an enabler implementation that connects to an underlying resource in the service provider.

The enabler application development interfaces can be communicated to third party developers directly (e.g. by written documents so the applications can statically bind to the destination enabler) or registered with the discovery enabler to allow the application to dynamically bind to the destination enabler.

Policies can be loaded dynamically for OSE evaluation and enforcement to protect the new enabler.

Policies associated to other resources can be updated to exploit (e.g. via delegation) the new enabler implementation as well as to allow the new enabler implementation to use other existing enabler implementations already deployed in the domain. So when a new enabler implementation is added to the OSE, it is easy to allow other enablers to use it for protection and reuse or delegation simply by adding corresponding policy assertions to their policies.

Life cycle management interfaces are expected to provide support for upgrade of enablers when new releases are installed and deployed.

7.4.2 Reuse of Enablers

From the perspective of the applications, the service provider domain is a set of capabilities embodied as implementations of enablers.

Enabler implementations may reuse other enablers located in either the same service provider domain or different service provider domains.

By simplifying the mechanism for enabler reuse, OSE can eliminate vertical "silo" problem and can simplify the integration of new applications and enablers into the service provider domain.

7.4.3 Single component interfaces

Through the capabilities of the OSE, the application development interfaces of enablers are exposed to other requestors. These interfaces are made available to developers and applications as discussed in subclause 7.5.7 "Policy Management".

The enabler implementations are responsible for abstracting the underlying resources by mapping between the underlying protocols and the needs of the application development interfaces.

7.4.4 Application development interfaces

The application development interfaces are the interfaces offered by the enabler implementations for the development of applications or other enabler implementations that use them. The application development interfaces follow the OMA specifications and they are technology specific realizations of the specified interfaces (e.g. web services, Java, .Net and CORBA).

7.4.5 Life cycle management

In the service provider domain, certain functions are needed to provide basic support to the enabler implementations. These functions include:

· Creation

· Deployment

· Activation & deactivation

· Management:

· Dependency management

· Upgrade

· Removal

The OSE provides the necessary infrastructure to perform these functions. Each enabler implementation may expose life cycle management interfaces as specified by OMA.

7.4.6 Evolution

The proposed OSE architecture consists of enablers and resources that have been specified and made available by a number of different standards and specification organizations. The OSE provides a general framework such that the above resources including enabler implementation may be accessed in a uniform and consistent manner.

Furthermore, through the use of EPEM and the reuse of enabler implementation that can be facilitated by EPEM (delegation), the OSE architecture will benefit from a self-controlling scheme of reducing silos and moving further towards integration and unification of enablers and resources in terminals and Service Provider domains.

7.4.7 Application and Enabler Exposure management

The OSE exposes functionality and resources to third party application and enablers in a controlled manner. The OSE provides a policy-based mechanism to protect the underlying Service Provider's resources from unauthorized requests and manages their use (e.g. through appropriate charging, logging and enforcement of user privacy or preferences). The OSE provides a consistent and centralized management mechanism if the Service Provider requires such control.

The OSE architecture also manages the procedures applied for both hosted (in the same domain) and third party applications and enablers. This is achieved by having OSE process all requests to and from the enabler implementations and enforce the appropriate policies. The OSE processes requests whether they originate from applications or enablers either from the service provider or towards the Service Provider.

7.5 OSE Elements

7.5.1 General

The OSE architecture consists of the following main elements:

· The enabler implementation, which provide the standardized public interfaces that are used to access the resources in a manner that is suitable for application development. Examples of enabler implementations include OMA-defined Location or Device Management interfaces;

· Enabler interface bindings, which provides the specific formats (syntax) and protocols used to access enablers using particular programming languages (e.g., Java or C) or network protocols (e.g., web services);

· EPEM, which controls access to a Service Provider’s enablers and resources from applications or enablers;

· Enabler life cycle management interfaces that allow the Service Provider to control these enablers;

· Standard Application development interfaces that are connected by Enabler implementations to the actual resources present in the service provider domain.

7.5.2 Interfaces of the OSE

7.5.2.1 General

The OSE architecture consists of a set of interfaces. These interfaces are what are standardized in OMA. The Architecture requirements document [ARCHREQ] describes a set of mechanisms. Given that "mechanisms" are not defined, but could be regarded as interfaces on which operations are performed, it is possible to derive a set of interfaces. These interfaces could be implemented in various ways, e.g. as one component (software module) for each interface, one single component implementing all interfaces, or a mixture of these two options.

7.5.2.1.1 Derived Interfaces

In accordance with the Architecture requirements document [ARCHREQ] the following interfaces have been derived. Each interface is cross referenced to one or several Architecture requirements, as described in Appendix B.

· Interface for “operations and management” (1)

· Interface for the discovery of service enablers (14)

· Interface for the registration of service enablers (19)

· Interface for the discovery of services (17)

· Interface for the registration of services (18)

· Interface for discovery of conditions for the use of service enablers (16)

· Interface towards a policy management mechanism (21)

· Interface to provision services, service enablers and user parameters (6)

· Interface for subscription management (17)

· Identity management mechanism associating device identification (13) with federated identity (14)

· Interface to network exposing network characteristics (9)

· Interface to charging (3) (to gather accounting and charging information (3))

· Interface to authentication function (11)

· Interface to authorization function (10)

· Interface from authorization function to charging enabler (and the reverse)) (10)

· A method to connect between identity (12), authorization (12), and authentication (12) components, e.g. cookies or other session tokens

· Policy (constraints) in all interfaces

· Access to “back-end systems” (charging (4), accounting (4), payment(4), provisioning (7), Operations & Management , etc.); this can be resolved by interfacing these through a component, and using the standard OMA between the enabler and the component

These interfaces can be described in terms of components, which implement interfaces. These are tantamount to the "mechanisms" discussed in the specification. For the sake of clarity, it should be noted that components can be combined in ad-hoc ways, and the analysis here does not mandate any single method to combine components. Given this, the following architecture can be derived. Note that this of course only represents one possible realization, i.e. it is a use case framework. It also only represents those components which are required by the OMA Architecture requirements document. It is quite possible that there are other components which are required to make actual use cases work.

7.5.2.1.2 OSE categorised Interfaces

Figure 3 illustrates the interfaces of the OSE architecture. It also shows the flow when an application accesses an enabler implementation such as location or device management. The solid lines represent request messages and the dashed lines represent response messages.

[image: image4.wmf]Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

…

Enabler

implementation

I0+I1

I0

I3

SP Domain

EPEM

To Resources in

operators, terminals,

SPs

I2

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Fig 3 - Types of interfaces in OSE

Table 1 Enumeration of the interfaces within the scope of OMA and its enabler implementations.

	Interface
	Description
	Comments

	I0
	Application development interface provided by an enabler implementation
	Each enabler specification defines this interface for implementations for the development of services or applications that use them.

	I1
	I0+I1 is the enhanced interface to an enabler implementation exposed through EPEM.
	EPEM may add (see note 4) SP required parameters (I1) to the enabler interface (I0), based on service provider-defined policies (e.g. credentials or account information as imposed by security policy, …) (see note 5).

	I2
	Driver to the underlying resource that partially or completely implements the enabler's function
	Translates from possibly proprietary or legacy interface, or lower level standard interface to standardized enabler interface.

	I3
	Life cycle management interfaces exposed to the SP platform.
	As defined in OSPE

NOTE 4: Assume separation of enabler parameters and SP policy derived parameters

NOTE 5: Appropriate design of the enabler implementations should allows separation between these parameters and the parameters core to the enabler functionality. Depending on the technology choices made to realize and implement the enablers (including EPEM), I1 may be empty. But in general these interfaces I0 and I0+I1 should be considered as different. An enabler implements and exposes the standardized interface I0 as specified by the OMA specifications. If well designed for ruse I0 focus solely on the interface and parameters needed to carry the core enabler function.

When the Service Provider imposes policies, for example, when requiring authentication, authorization or charging, the request must now add the necessary information. If I0 was well designed, I0 does not carry that information. So, additional parameters must be passed. They are defined as I1.

An enabler developer implements the enabler specification I0, which requests only the parameters in I0 that are needed to execute the defined enabler functions. Service Providers are then able to request additional parameters (e.g. charging tokens, identity credentials), as defined by policies, in order to correctly access the resource. These constitute I1. This however does not affect the application developer and application portability if well designed. It is possible based on technology choices to have the application still binding to I0 and adding I1 to the request when executing the call (e.g. I0 in the body of the request versus passing I1 in the header)
7.5.2.2 Interfaces towards third parties

The EPEM is the gatekeeper or protector for third party applications or enablers to gain access to the capabilities exposed by the service provider. The enabler implementations generate the semantics of messages as defined by the enabler specification; the binding elements provide the specific syntax to express these messages in the selected format such as web services, Java or .Net.

7.5.3 Applications

The OSE architecture places no constraints on application deployment.

This environment may reside within the service provider domain or outside the domain (i.e. in a third party domain).

There are many possible service provider-specific applications that manage and maintain important information in the service provider domain. A Partner Subscription Manager application, for example, might be responsible for the provision and maintenance of third party profiles. This application could provide a combination of interfaces suited to both human users and automated processes. An example usage of the Partner Subscription Manager application could be that a developer accesses a web site (that provides a GUI into this application) and chooses the capabilities that they need. They then define a Service Level Agreement (SLA) for its use.
7.5.4 Resources

The Resources are the underlying capabilities present in the service provider domain and for which an application development interface is provided via the enabler implementation. The resources, which may expose lower level standardized protocols or interfaces, are invoked by these enabler implementations.

7.5.5 Infrastructure

The service provider platform provides the functions responsible for aspects monitoring, life cycle management, system support (e.g. thread management, load balancing and caching), operation, management and administration. These may not directly be exposed to applications. Enabler implementation and resources can rely on these infrastructure capabilities (such as thread management, load balancing, fault detection, caching).

NOTE: The infrastructure is outside the scope of OMA.

7.5.6 Enabler implementations

Enabler implementations provide a standardized public exposure for the underlying resources, in a way that is suitable for application development. The enabler will amalgamate, abstract and/or repackage the capabilities of the resource, and present them as necessary after binding to a particular syntax.

Enabler implementations may be invoked explicitly by applications or other enabler implementations. They may also be invoked implicitly (i.e. not the explicit target of a request) to perform a function (cf. the notion of non callable enabler).
Editor's Note: The notion of callable enabler refers to the notions of callable enabler as discussed in the past by the architecture WG; albeit this concept required further discussion and agreement as to their characteristics. The term callable enabler has been described as a way for familiarity

Enabler implementations present life cycle management interfaces that allow the service provider to rely on infrastructure capabilities to manage these components (e.g., start, stop, trace and remove of components).

OMA defines many enablers such as location and device management. In addition, other functionalities (e.g. authentication, access control, discovery and directories) are expected to be provided either through enabler implementations, infrastructure features or applications (e.g. 3rd party management and transaction management) available in the domain.

7.5.7 Policy Management

7.5.7.1 General

The EPEM is the gatekeeper or protector for third party applications or enablers to gain access to the enablers and resources exposed by the service provider. The enabler implementations generate the semantics of messages as defined by the enabler specification; the binding elements provide the specific syntax to express these messages in the selected format such as web services, Java or .Net.

EPEM provides a mechanism for service providers to enforce policies such as for security, access control, privacy, or charging, on any request into a service provider enabler. EPEM processes application or enabler requests to any resource. EPEM may use enablers to evaluate and enforce the policies that have been specified by the service provider and/or the target enabler. EPEM may also be used to compose enablers and resources into higher level functions.

EPEM can be requested by any other authorized (as determined by the policies associated to EPEM) element of the OSE to evaluate and enforce policies. From SLAs, policies can be derived. EPEM and every other enabler will enforce these policies on any request. The infrastructure may query the SLAs to determine the quality of service etc. associated to the SLAs and prioritise accordingly.

EPEM is a logical component of OSE. Implementations of EPEM may be as a separate, standalone component in a service provider deployment. Or EPEM implementations may be embedded within enablers. EPEM implementations may transparently intercept requests when they enter the service provider domain, or enabler implementations may explicitly invoke execution of EPEM. An EPEM implementation might even be the destination for requests that are then forwarded to the true enabler implementation.

EPEM may provide additional functionalities such as callable EPEM instead of proxied EPEM, which are beyond the scope of the present document.
The service provider who provides a resource may set policies. They may also be combined with policies derived from preferences or rules set up by end-users that may be affected by usage of the resource or from the terms (SLAs) agreed for third parties to use a resource. Service providers may also accept to enforce additional policies on behalf of other parties.

7.5.7.2 Trusted and Un-trusted Applications and Enablers

The OSE architecture applies the same rigid procedures for both hosted (in the same domain) and third party applications and enablers. This is achieved by having EPEM process all requests to and from the enabler implementations and enforce the appropriate policies. The EPEM processes requests whether they originated from applications or enablers, from within the service provider or externally to the Service Provider. This is illustrated in figures 2 and 4.

[image: image5.wmf]Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

…

Enabler

implementation

SP Domain

Request to enabler through enabler

application development interface

Appropriate request reach target

enabler

SP Domain

Enabler

implementation

issues a request

to another enabler

resource

Appropriate request

reach target enabler

EPEM

EPEM enforces policies on

request (relying on available

enablers)

EPEM enforces policies on

requests between enabler

implementations

To Resources in

operators, terminals,

SPs

Request affects

the target

resource

Request affects

the target

resource

Fig 4 - Flow within the service provider domain

7.5.7.3 Controlled exposure of resources

The OSE exposes functionality and resources to third party application and enablers in a controlled manner. EPEM provides a policy-based mechanism to protect the underlying SP resources from unauthorized requests and manages their use (e.g. through appropriate charging, logging and enforcement of user privacy or preferences). EPEM provides a consistent and centralized management mechanism if the Service Provider requires such control. In the case where no policies are to be enforced by EPEM, zero policies can be applied If the service provider has (legacy) enabler implementations that all do authentication and authorization and just wishes to provide authentication and authorization, there is no need to do additional policy enforcement. Instances where Policies are set to zero means that EPEM is not required to be deployed in the OSE. However, if the service provider wishes to add a charging or logging step (assuming that there is no available enabler to perform these functions) the service provider can use EPEM with policies only related to charging or logging.

When the enabler implementation is able to delegate (or reuse) authentication and authorization, and the policies are able to cover authentication and authorization, EPEM is therefore required to provide enforcement.

Therefore, for any enabler implementation purchased by a service providers that does not delegate (or reuse) functions, the service provider can identify those reusable functions that it already supports and only specify associated assertions in the policies for these functions. The Service Provider, will not use related assertions in the policies that are associated to the enabler implementation that is unable to delegate its functions.

As illustrated in Figure 5a and Figure 5b, requests can come from applications or enabler implementations in third party domains.

NOTE: Throughout this document, EPEM can also protect applications that can therefore also be considered as other resources. Of course, applications themselves are outside the scope of OMA.

[image: image6.wmf]SP portion of OSE Picture

Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

…

Enabler

implementation

Third Party

–

Un

-

trusted

Domain

SP Domain

Request to enabler through enabler

application development interface

Appropriate request

reach target enabler

EPEM

EPEM enforces policies on

request (relying on available

enablers)

To Resources in

operators, terminals,

SPs

Request affects

the target

resource

Figure 5a - Controlled Exposure to third party applications

[image: image7.wmf]Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

…

…

Enabler

implementation

Third Party

–

Un

-

trusted

Domain

SP Domain

Request to enabler through enabler

application development interface

Appropriate request reach target

enabler

Enabler

implementation

…

…

EPEM

EPEM enforces policies on

request (relying on available

enablers)

To Resources in

operators, terminals,

SPs

Request affects

the target

resource

Figure 5b - Controlled Exposure to third party enabler implementations

7.5.7.4 Management of third party engagement

The implication of an increasing number of third party service providers creating and running applications that requires resource access from a service provider is that there will be many more business relationships to manage. To achieve the cost effectiveness required, these relationships would need to be managed in a highly automated manner. This will be achieved by deriving policies from Service Level Agreements (SLAs) signed by third parties. Mechanisms to select SLAs and to enter into binding agreements are needed and may be provided by the infrastructure in the service provider domain (e.g. as a separate application deployed in the Service Provider domain). Such applications may facilitate the management of 3rd parties by the service provider, possibly automate it or even provide self service features to the third parties.

7.5.7.5 Using the exposed resources

[image: image8.wmf]Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

…

Discovery

enabler

implementation

SP Domain

Possible discovery of

Interface by application

developer

Uses bindings

Possible interface

description provided through

another communication

Application

calls enabler

1b

2

4

1c

Possible discovery of

Interface by application

at execution

Application

Developer

1

EPEM

Enforces policies

1a

To Resources in

operators, terminals,

SPs

5

3

Figure 6 – Third Party engagement steps

Figure 6 illustrates the steps of determining the interfaces associated to a target enabler. Steps 1a/1b describe two alternative steps at application development. Step 1c is an alternative discovery that can take place at execution. After establishment of a relationship, .a third party can discover the resources exposed by the service provider. This may be achieved through the use of a discovery enabler. It is also possible that the interfaces of a resource are communicated through other exchanges between the service provider and the third party and incorporated by the application developer when developing the application.

The applications that have been created and deployed in the application execution environment, now bind with those enabler application development interfaces. EPEM processes the exchanges to control third party access to the enablers. Any exchange is controlled by EPEM. However based on the resources, the requestor or the nature of the request the policy may be a zero policy.

7.5.8 Migration from OMA Enabler architectures towards the OSE

7.5.8.1 General

Figure 7 illustrates a simplified view of the OMA enabler reference Point view as described in [ARCHINVEN].

[image: image9.wmf]Backend Systems, Network Infrastructure

(e.g. operator

‘

s charging)

End User

Device

Responding

Application or content

Requesting

Application

R1

R2

R3

R4

SP Domain

EPEM

Enabler

Implementation

R0

Figure7– Access to enablers managed by EPEM

Editor's Note: Figure 7 is not agreed. The modifications shown to EPEM and the interfaces to EPEM is an Editor's proposal based on discussions during the OSE Arch London F2F interim meeting

Figure 7 consists of 5 domains:

· End User Device;

· Requesting Application;

· Responding Application or Content;

· Backend Systems;

· "OMA System".

The "OMA System" depicts all architectures that are currently present in OMA, whereas the other domains represent and generalize the entities accessing the "OMA System" from outside.

The "End User Device" domain contains a number of functionalities; most of them are applications that are able to send requests into the "OMA System” (= requesting applications). The significant difference between those and the domain “Requesting Application” is that the applications in the End User Device access the “OMA System” over wireless connections, whereas the applications in the domain “Requesting Applications” access it over wired connections. Because this difference is important (e.g. for performance, communication patterns, transmission costs, etc), it has been explicitly introduced into the overall picture.

The “Requesting Applications” domain basically calls the “OMA System” over wired connections. The “end User Device” domain hosts applications that call the “OMA System” over wireless connections. It also hosts applications that respond to requests coming from or through the “OMA System”. The picture does not define who owns or hosts the “Requesting applications”. They could be based somewhere in the Internet, belong to an operator or something else.

The “Backend Systems” refer either to an operator’s or company’s infrastructure (e.g. charging systems, or the wireless network as a source for location information, etc.) or any other system different from the other domains. The picture does intentionally not define who owns or hosts those systems.

The “Responding Applications or Content” domain represents content to be accessed from or through the “OMA System”, or any application that is called from or through the “OMA System”. This domain basically delivers data to the “OMA System” on request. The picture does not define who owns or hosts the “Responding Applications or Content”. They could be based somewhere in the Internet, belong to an operator or something else.

7.5.8.2 Migration through the use of EPEM

Based on the equivalency between Reference Points and interfaces as discussed in Annex B, the existing OMA enablers can optionally be integrated with the EPEM as illustrated in Figure 7 In this case, any exchange to and from any enabler is logically processed by EPEM as illustrated in Figure 7. R0, R1, R2 and R4 in Figure 7each represent a combination of Reference Points that can be exploded into actual Reference Points (For description of OMA Enabler Reference Point view refer to [ARCHINVEN].

R1, R2 and R4 in Figure 7 represent the combination of I0 and I1, as described in figure 3. R3 represents I2 in figure 3.

As a result of this, EPEM is logically present across each reference point in Figure 7.Specific Service Provider deployments may not require any policies to be enforced by EPEM, in which case the Service Provider may choose not to deploy an EPEM enabler implementation.

In some cases, specific SP deployments may require policies to be enforced by EPEM only on some (not all) of their Reference Points, in which case the Service Provider may choose to deploy an EPEM enabler implementation only on those Reference Points. It is possible that they may wish not to deploy an EPEM enabler.

Without requiring any changes to existing enabler specifications, service providers can introduce an implementation of EPEM to perform certain policy enforcement operations that do not conflict with existing enabler implementations. For example, an enabler may specify its own methodology to ensure security and so conforming enabler implementations will implement the defined security methodology. However, EPEM could be used for functions not defined by the enabler and not provided by the enabler implementation.

Appendix A. Change History
(Informative)

A.1 Draft Version 1_0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-Service_Environemt-V1_0
	24-Feb-2003
	1, 4
	The initial version of this document. Scope and Introduction

	
	01-Jun-2003
	All
	Revised title, scope and Introduction. New document structure and Editor's text proposals based on input contributions OMA-ARC-AF-003, 0090, OMA-ARC-2003-0034, 148, 102r2

	
	14-July-2003
	All
	Updated version following agreements made during first full document review at OMA AT, Atlanta 2003. Updated version includes agreed figure 1 from input contribution OMA-ARC-2003-0118, which was submitted to Arch Interim meeting in Sweden.

	
	30-July-2003
	7, 8
	Updated version to include input contribution OMA-ARC-2003-0116R2, which was presented and agreed in Atlanta.

	
	06-August-2003
	All
	Updated version following contributions and agreements made during the interim Architecture meeting in Birmingham. Updated version includes agreements based on input contributions: OMA-ARC-2003-0204, 205, 207, 216, 217, 219 and 221R1.

	
	01-April-04
	All
	Updated following Arch Interim OSE meeting. Inclusion of contribution OMA-ARC-2004-0005R01, 0073, 0074, 0077 , and IC 2004-0023 as agreed in OMA TP BH. Editorial sweep performed by Editor.

	
	16-April-04
	All
	Ported to new OMA specification template

Appendix B. Deriving an OMA Service Environment architecture

A set of architectural components can be derived from the OMA Architecture Requirements. The Architecture requirements analysed for the purpose of deriving the components are as described.

· 6.1# 16. When authorized, Principals MUST be able to set policies (e.g. charging policies and privacy policies) on any request (including discovery)

· 6.1.1#1 The OMA Service Environment MUST provide mechanisms for authentication of users, applications and third-party service providers, and authorization for the use of service enablers across and within service provider domains.

· 6.1.1#5. The OMA Service Environment MUST enable single sign-on and single log-out to span enablers in a single domain or across multiple Service Provider domains. One-time authentication or a SSO MUST remain valid throughout a continuous session

· 6.1.1#11. The OMA Service Environment MUST support a mechanism to federate and de-federate identity information across Service Provider domains.

· 6.1.1#14. The OMA Service Environment MUST provide an interface between the authorization function and the charging enabler.

· 6.1.2#2 The OMA Service Environment MUST provide an interface where Accounting and Charging information is to be gathered.

· 6.1.3#3 The OMA Service Environment MUST enable the communication of service monitoring data (e.g. performance measurements) between actors.

· 6.1.3#5 The OMA Service Environment MUST provide the means to manage the activation, registration, authentication, and authorization of users and service components.

· 6.1.3#8. The OMA Service Environment MUST provide a mechanism by which device and network information can be communicated to an authorized third-party (with respect to the information holder) in a manageable way. This mechanism MUST allow for the automated discovery of new devices and new characteristics in existing devices.

· 6.1.3#9 The OMA Service Environment MUST provide a mechanism to enable third-parties to obtain an identification for an end-user who uses a particular device to access authorized third-party applications.

· 6.1.3#10 The OMA Service Environment MUST provide a mechanism to allow third-parties to discover the device(s) currently used by an end-user, if registered on a network (e.g. where to send a notification to the employee).

· 6.1.3#11 The OMA Service Environment MUST provide a mechanism for an authorized third-party to discover the conditions for using a service enabler exposed by a particular service provider in a dynamic manner.

· 6.1.3#12 The OMA Service Environment MUST support a mechanism for service providers and other authorized actors to enforce the conditions for use of a service enabler.

· 6.1.3#13 The OMA Service Environment MUST have a single logical point that handles subscriber and subscription information.

· 6.1.5#4 The OMA Service Environment MUST provide a common mechanism for Provisioning of services, service enablers and user parameters.

· 6.1.5#5 The OMA Service Environment SHOULD provide a mechanism to manage and use policies (e.g. access policies, charging polices, service level agreements, etc.).

· 6.3.2#1 The OMA Service Environment MUST have a single logical access point (e.g. Common Directory) to handle: 1) registration, 2) discovery and 3) functions and data that handle information relevant to more than one single service enabler.

· 6.3.2.1#1 The OMA Service Environment MUST support Service Registration for Services visible to the end-user.

· 6.3.2.1 #2 The OMA Service Environment MUST support Service Discovery for services visible to the end user.

· 6.3.2.1#3 The OMA Service Environment MUST support Discovery for an implementation of a Service Enabler.

· 6.3.2.1#4 The OMA Service Environment MUST support Registration for an implementations of a Service Enabler.

· 6.3.2.1#5 Within the OMA Service Environment it MUST be possible to register, discover, and retrieve information (e.g. a service enabler’s address) using a resource identifier (e.g. a user identifier).

6.3.3#1 The OMA Service Environment MUST define a common interface for the operations and management (O&M) of both common and service-specific enablers or applications (including service monitoring and end-to-end service delivery).

Appendix C. Reference Points versus Interfaces

It is possible to model interactions between architectural entities by means of:

Interfaces that solely focus on how the resource can be interacted with, independently of who interacts with the resource

[image: image10.emf]Resource

Interface:

potentially “anybody”

can connect

Figure 8: Interface schematically

Reference points that in addition explicitly enumerate the end points that can interact with the resource. A Reference Point is a conceptual point at the conjunction of two non-overlapping functional groups (source: ITU-T I.112). It consists of none or any number of interfaces of any kind. This means a Reference Point can host more than one transport protocol or payload. If a Reference Point is defined between two architectural entities, it does not necessarily require an interface (transport protocol, payload, API, etc.) to be associated at all. This means the two architectural entities can communicate using any protocol over any interface (it is not defined, but the communication relationship exists) .

There is always only one or no Reference Points between the same two architectural entities, no matter how many interfaces / protocols / API’s may exist between the two.

[image: image11.emf]Resource

Reference Point:

explicitly connects each

partner

Resource

Figure 9: Reference Point schematically

Reference points are commonly used in communities that specify, design, implement or deploy network-level systems (e.g., Telco environments). Communities that specify, design, implement, or deploy software systems rather rely on interface descriptions (e.g., IT environments).

However, the two approaches provide equivalent views of the system either through the interfaces that it exposes or through reference points that typically explode each interface into multiple reference points; one per end point / architectural entity that can interact with the system through that interface. References points (between two end points) that support multiple transport protocols map to one interface with multiple interface realizations.

The relationship of interfaces to reference points is illustrated in Figure 10.

[image: image12]
Figure 10 – Equivalency between interface point of view and reference point of view

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]
(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]

[image: image1.jpg]«“+OMa

Open Mobile Alliance

_1143530170.ppt

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

SP Domain

Enabler implementation issues a request to another enabler resource

Appropriate request reach target enabler

EPEM

EPEM enforces policies on request (relying on available enablers)

EPEM enforces policies on requests between enabler implementations

Request affects the target resource

Request affects the target resource

To Resources in

operators, terminals, SPs

_1143531182.ppt

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

…

Enabler

implementation

Third Party – Un-trusted Domain

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

Enabler

implementation

…

EPEM

EPEM enforces policies on request (relying on available enablers)

Request affects the target resource

To Resources in

operators, terminals, SPs

_1143532309.ppt

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Discovery

enabler

implementation

SP Domain

Possible discovery of

Interface by application

developer

Uses bindings

Possible interface description provided through another communication

Application calls enabler

Possible discovery of

Interface by application at execution

Application

Developer

EPEM

Enforces policies

1b

2

4

1c

1

1a

To Resources in

operators, terminals, SPs

5

3

_1143533081.ppt

Backend Systems, Network Infrastructure

(e.g. operator‘s charging)

End User

Device

Responding

Application or content

Requesting

Application

R1

R2

R3

R4

SP Domain

EPEM

Enabler

Implementation

R0

_1143531046.ppt

SP portion of OSE Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Third Party – Un-trusted Domain

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

EPEM

EPEM enforces policies on request (relying on available enablers)

Request affects the target resource

To Resources in

operators, terminals, SPs

_1143529645.ppt

SP portion of OSE Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

EPEM

Applications

…

Enabler

implementation

SP Domain

To Resources in

operators, terminals, SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

I0+I1

I0

I3

SP Domain

EPEM

I2

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Application

Execution Environment

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

I0+I1

I0

I3

User

I1

SP Domain

EPEM

I2

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

To Resources in

operators, terminals, SPs

SP portion of OSE Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Third Party – Un-trusted Domain

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

EPEM

EPEM enforces policies on request (relying on available enablers)

Request affects the target resource

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

…

Enabler

implementation

Third Party – Un-trusted Domain

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

Enabler

implementation

…

EPEM

EPEM enforces policies on request (relying on available enablers)

Request affects the target resource

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

SP Domain

Enabler implementation issues a request to another enabler resource

Appropriate request reach target enabler

EPEM

EPEM enforces policies on request (relying on available enablers)

EPEM enforces policies on requests between enabler implementations

Request affects the target resource

Request affects the target resource

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Discovery

enabler

implementation

SP Domain

Possible discovery of

Interface by application

developer

Uses bindings

Possible interface description provided through another communication

Application calls enabler

Possible discovery of

Interface by application at execution

Application

Developer

EPEM

Enforces policies

1b

2

4

1c

1

1a

To Resources in

operators, terminals, SPs

5

3

_1143529906.ppt

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

I0+I1

I0

I3

SP Domain

EPEM

I2

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

To Resources in

operators, terminals, SPs

_1141101384.ppt

Resource

Reference Point:

explicitly connects each

partner

Resource

_1143529469.ppt

SP portion of OSE Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

SP Domain

To Resources in

operators, terminals, SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

_1141101185.ppt

Resource

Interface:

potentially “anybody”

can connect

