 STYLEREF ZDID * MERGEFORMAT
Page 14 V(39)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for
Image Share

	Draft Version 1.0 – 03 Nov 2011

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_ImageShare-V1_0-20111103-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
9
4.1
Version 1.0
9
5.
Image Share API definition
10
5.1
Resources Summary
10
5.2
Data Types
15
5.2.1
XML Namespaces
15
5.2.2
Structures
15
5.2.2.1
Type: ImageShareSessionInformation
15
5.2.2.2
Type: FileInformation
16
5.2.2.3
Type: FileSelector
17
5.2.2.4
Type: HashInformaiton
17
5.2.2.5
Type: SessionInvitationNotificaiton
17
5.2.2.6
Type: ReceiverSessionStatus
18
5.2.2.7
Type: ImageShareEventNotification
18
5.2.2.8
Type: SessionAcceptanceNotification
19
5.2.2.9
Type: ImageShareSubscriptionList
19
5.2.2.10
Type: ImageShareNotificationSubscription
20
5.2.2.11
Type: ImageFileNotification
20
5.2.2.12
Type: FileRange
21
5.2.3
Enumerations
21
5.2.3.1
Enumeration: EventTypes
21
5.2.3.2
Enumeration: ReceiverStatus
21
5.2.4
Values of the Link “rel” attribute
21
5.3
Sequence Diagrams
22
5.3.1
Subscribe and unsubscribe to image share notifications
22
5.3.2
Image share with successful result
23
5.3.3
Image share session failure
25
5.3.3.1
Cancelling an image share invitation
25
5.3.3.2
Declining an image share session invitation
26
5.3.3.3
Image file transfer failed
26
5.3.3.4
Image file transfer aborted
27
6.
Detailed specification of the resources
28
6.1
Resource: All subscriptions to image share notifications
28
6.1.1
Request URL variables
28
6.1.2
Response Codes and Error Handling
28
6.1.3
GET
29
6.1.3.1
Example 1: Reading all active image share notification subscriptions (Informative)
29
6.1.3.1.1
Request
29
6.1.3.1.2
Response
29
6.1.4
PUT
29
6.1.5
POST
29
6.1.5.1
Example 1: Creating a new subscription to image share notifications using tel URI, response with copy of created resource (Informative)
30
6.1.5.1.1
Request
30
6.1.5.1.2
Response
30
6.1.5.2
Example 2: Creating a new subscription to image share notifications using ACR, response with location of created resource (Informative)
30
6.1.5.2.1
Request
30
6.1.5.2.2
Response
31
6.1.6
DELETE
31
Appendix A.
Change History (Informative)
32
A.1
Approved Version History
32
A.2
Draft/Candidate Version 1.0 History
32
Appendix B.
Static Conformance Requirements (Normative)
33
B.1
SCR for REST.IMAGESHARE Server
33
B.1.1
SCR for REST. IMAGESHARE.FUNCTION Server
33
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
34
C.1
[Operation]
34
C.1.1
Example (Informative)
35
C.1.1.1
Request
35
C.1.1.2
Response
35
Appendix D.
JSON examples (Informative)
36
D.1
[Example Title] (section [section number cross reference])
36
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
37
Appendix F.
Light-weight resources for ImageShare (Informative)
38
Appendix G.
Authorization aspects (Normative)
39

Figures

13Figure 1 Resource structure defined by this specification

25Figure 2 Subscribing to and unsubscribing from image share notifications

26Figure 3 Image share session with successful result

29Figure 4 Cancelling an image share invitation

31Figure 5 Declining an image share session invitation

33Figure 6 Image file transfer failed

34Figure 8 Image file transfer aborted

Tables

1. Scope

This specification defines a RESTful API for Image Share using HTTP protocol bindings.
2. References

2.1 Normative References

	[IR.79]
	“Image Share Interoperability Specification”, URL:
http://gsmworld.com/documents

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, July 2011, URL: http://tools.ietf.org/html/draft-uri-acr-extension-03

	[RC API RD]
	APIs for Rich Communications Requirements, OMA-RD-RC_API-V1_0, Open Mobile Alliance, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_ImageShare]
	“XML schema for the RESTful Network API for Image Share”, Open Mobile Alliance™, OMA-SUP-XSD-rest_netapi_imageshare-V1.0, URL:http://www.openmobilealliance.org/

	[RFC2045]
	“Multipurpose Internet Mail Extensions(MIME) Part One: Format of Internet Message Bodies”, N. Freed, November 1996, URL: http://www.ietf.org/rfc/rfc2045.txt

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2327]
	“SDP: Session Description Protocol”, M. Handley, April 1998, URL: http://www.ietf.org/rfc/rfc2327.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC4975]
	“The Message Session Relay Protocol (MSRP)”, B. Campbell et. al, September 2007, URL: http://www.ietf.org/rfc/rfc4975.txt

	[RFC5547]
	“Session Description Protocol (SDP) Offer/Answer Mechanism to Enable File Transfer”, M. Garcia-Martin, May 2009, URL: http://www.ietf.org/rfc/rfc5547.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. It is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Originator
	The party that initiates an image share session.

	Receiver
	The party that is invited to an image share session to receive images.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

Additionally, all definitions from the OMA Dictionary apply [OMADICT].

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Image Share contains HTTP protocol bindings for sharing the images, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

5. Image Share API definition
This section is organized to support a comprehensive understanding of the Image Share API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all lightweight resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.

5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Image Share.
The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

[image: image2]
Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
In this specification, the image share session refers to 1-1 image share session which incorporates exactly 2 participants: an Originator and a Receiver.

Ed. Note: Remove the “OPTIONAL” in the method columns once this information has been reflected in SCRs.

Purpose: Handling of image share sessions
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/imageshare/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All image share sessions
	/sessions
	ImageShareSessionInformation
common:ResourceReference (OPTIONAL alternative for POST response)
	no

	no

	Create a new image share session

	no

	Individual image share session

	/sessions/{sessionId}
	ImageShareSessionInformation
	Read information about an image share session (OPTIONAL)
	no

	no

	Cancel an image share session invitation (Originator)

Decline an image share session invitation (Receiver)

Terminate an image share session

	Individual image share session status

	/sessions/{sessionId}/status
	ReceiverSessionStatus
	no

	no

	Accept an image share invitation
	no

Purpose: Handling of image share subscriptions

	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/ImageShare/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to image share notifications
	/subscriptions
	ImageShareSubscriptionList (used for GET)

ImageShareNotificationSubscription (used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Read the list of active image share notification subscriptions (OPTIONAL)
	no

	Create a new subscription for image share notifications
	no

	Individual subscription to image share notifications
	/subscriptions/{subscriptionId}

	ImageShareNotificationSubscription
	Read an individual subscription (OPTIONAL)
	no

	no

	Cancel subscription and stop corresponding notifications

Purpose: Handling of image share notifications
	Resource
	URL
Base URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about session invitations
	Specified by client when subscription is created or provisioned
	SessionInvitationNotification
	no
	no

	Notify client about incoming image share invitations
	no

	Client notification about image share events
	Specified by client when subscription is created or provisioned
	ImageShareEventNotification
	no

	no

	Notify client about image share events
	no

	Client notification about image share session acceptance
	Specified by client when subscription is created or provisioned
	SessionAcceptanceNotification
	no

	no

	Notify client that the Receiver has accepted the image share invitation
	no

	Image file notification
	Specified by client when subscription is created or provisioned
	ImageFileNotification
	no

	no

	Notify the client about image file URL for subsequent retrieval
	no

The following table gives an overview of the different types of notifications. It is also outlined which image share session party receives notifications of a particular type, whether a response is needed, and which resources a notification links to via the <link> element.

In the “Notification sent to” column, the following values can occur:

· Originator: the Originator of the image share session

· Receiver: one individual receiver in the image share session at a time

· all: Receiver and Originator of the image share session at once

Table 1: Image share notifications
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/{apiVersion}/ImageShare/{userId}/sessions

	n/a
	SessionInvitationNotification
	Receiver
	decline
accept
	ImageShareSessionInformation

ReceiverSessionStatus
	/{sessionId}

/{sessionId}/status

	n/a
	SessionAcceptanceNotification
	Originator
	n/a
	ImageShareSessionInformation
	/{sessionId}

	Declined
	ImageShareEventNotification
	Originator
	n/a
	ImageShareSessionInformation
	/{sessionId}

	SessionCancelled
	ImageShareEventNotification
	Receiver
	n/a
	ImageShareSessionInformation
	/{sessionId}

	SessionEnded
	ImageShareEventNotification
	all
	n/a
	ImageShareSessionInformation
	/{sessionId}

	Successful
	ImageShareEventNotification
	all
	n/a
	ImageShareSessionInformation
	/{sessionId}

	Failed
	ImageShareEventNotification
	all
	n/a
	ImageShareSessionInformation
	/{sessionId}

	Aborted
	ImageShareEventNotification
	Receiver
	n/a
	ImageShareSessionInformation
	/{sessionId}

	n/a
	ImageFileNotification
	Receiver
	n/a
	ImageShareSessionInformation
	/{sessionId}

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Image Share data types is:

urn:oma:xml:rest:netapi:imageshare:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_ImageShare].
5.2.2 Structures

The subsections of this section define the data structures used in the Image Share API.
Some of the structures can be instantiated as so-called root elements.
For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.2.2.1 Type: ImageShareSessionInformation
This type defines a set of parameters of an image share session.
	Element
	Type
	Optional
	Description

	originatorAddress
	xsd:anyURI
	No
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator of this image share session

	originatorName
	xsd:string
	Yes
	Name of the Originator of this image share session.

	receiverAddress
	xsd:anyURI
	Yes
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Receiver of this image share session.

It SHALL be present in request bodies during resource creation in case of image sharing without CS voice call.
It SHALL not be present in request bodies during resource creation in case of image sharing with CS voice call.
The server can get the receiverAddress using the callObjectRef received in the request bodies during resource creation in case of image sharing with CS voice call.

	callObjectRef
	xsd:anyURI
	Yes
	Reference to the CS voice object (to which the Receiver is linked).
It SHALL be present in request bodies during resource creation in case of image sharing with CS voice call.

It SHALL not be present in request bodies during resource creation in case of image sharing without CS voice call.

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this image share session.
SHALL NOT be present when callObjectRef is used, and MAY be present when receiverAddress is used.

	status
	ReceiverStatus
	Yes
	Connection status of the Receiver. Set by the server. SHALL NOT be present in request bodies during resource creation.

	fileInformation
	FileInformation
	No
	A set of image file attributes.

	fileURL
	xsd:anyURI
	Yes
	The file repository URL from where the file can be retrieved.

If it is present in the POST operation during resource creation, the application of the Originator side needs to fetch the image file using this URL.

Otherwise, if it is not present in the POST request during resource creation, the image file content is included in the HTTP body. The HTTP body can be represented as multipart/form-data entity bodies, where the first entry of the form is the root element and the second entry of the form is the file content.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named imageShareSessionInformation of type ImageShareSessionInformation is allowed in request and/or response bodies.

Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. The specification [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.
5.2.2.2 Type: FileInformation

This type defines a set of image file attributes.
	Element
	Type
	Optional
	Description

	fileSelector
	FileSelector
	No
	File name, size, type and hash as specified in [IR79] & [RFC 5547].

	fileDescription
	xsd:string
	Yes
	Human-readable short description of the image file (corresponding to ‘i=’ line in SDP) which could be set by the Originator.

See [IR 79] & [RFC 2327].

5.2.2.3 Type: FileSelector

This type defines the basic information of a file including name, size, type and hash.
	Element
	Type
	Optional
	Description

	type
	xsd:string
	No
	The MIME type of the file, as concatenated of type, “/” and subtype (e.g. image/jpeg).

See RFC 2045.

	name
	xsd:string
	Yes
	The name of the file.

	size
	xsd: unsignedLong
	Yes
	The size of the file in octets.

	hash
	HashInformation
	Yes
	The file hash information including hash algorithm and hash value.

5.2.2.4 Type: HashInformaiton

This type defines the file hash information.
	Element
	Type
	Optional
	Description

	algorithm
	xsd:string
	Yes
	The hash algorithm used (only “sha-1” currently supported).

	value
	xsd:integer
	Yes
	The hash value of the file.

5.2.2.5 Type: SessionInvitationNotificaiton
This describes the set of parameters in an image share session invitation notification.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related image share session).
The server MUST include links as defined in Table 1 for SessionInvitationNotification.

Further, the server SHOULD include a link to the related subscription.

	originatorAddress
	xsd:anyURI
	No
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator of this image share session

	originatorName
	xsd:string
	Yes
	Name of the Originator of this image share session.

	receiverAddress

	xsd:anyURI
	No
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Receiver of this image share session

	callObjectRef
	xsd:anyURI
	Yes
	Reference to the CS voice object (to which the Receiver is linked) in case of image sharing with CS voice call.
The server can get the callObjectRef using receiverAddress in case of image sharing with CS voice call.

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this image share session.

	fileInformation
	FileInformation
	No
	A set of image file attributes.

A root element named sessionInvitationNotification of type SessionInvitationNotification is allowed in notification request bodies.

The recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=” ReceiverSessionStatus”.

Typically, this is http://{serverRoot}/{apiVersion}/imageshare/{userId}/imageshareSessions/{sessionId}/status.
The recipient can decline the request by sending a DELETE request to one the URL passed in the “href” attribute of the “link” element with rel=”ImagaeShareSessionInformation”.

Typically, this is http://{serverRoot}/{apiVersion}/imageshare/{userId}/sessions/{sessionId}
If the recipient fails to react within a time interval defined by service policies, the session invitation will time out and the session will terminate.
5.2.2.6 Type: ReceiverSessionStatus
This type represents the status of a Receiver in the image share session.
	Element
	Type
	Optional
	Description

	status
	ReceiverStatus
	No
	Status of the Receiver.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”

	fileAcceptance
	xsd:boolean
	Yes
	Accept (true) or reject (false) the image file by the Receiver.
 Default is true.

A root element named receiverSessionStatus of type ReceiverSessionStatus is allowed in request bodies.
5.2.2.7 Type: ImageShareEventNotification

This type define a set of parameters for the image share event notifications.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	eventType
	EventTypes
	No
	Type of event

	eventDescription
	xsd:string
	Yes
	Textual description of the event

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related image share session).
Depending on the value of eventType, the server MUST include links as defined in Table 1 for ImageShareEventNotification.

Further, the server SHOULD include a link to the related subscription.

A root element named imageSharetEventNotification of type ImageShareEventNotification is allowed in notification request bodies.
5.2.2.8 Type: SessionAcceptanceNotification
This type defines a set of parameters to inform the Originator that the Receiver has accepted the session invitation.

	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	receiverAddress
	xsd:anyURI
	No
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Receiver of this image share session

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this image share session.

	status
	ReceiverSessionStatus
	No
	The status of a Receiver in the image share session.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related image share session).

The server SHOULD include a link to the related subscription.

A root element named sessionAcceptanceNotification of type SessionAcceptanceNotification is allowed in notification request bodies.
5.2.2.9 Type: ImageShareSubscriptionList

List of all active image share notification subscriptions. In order to be able to receive notifications, the client needs to create a subscription first.
	Element
	Type
	Optional
	Description

	imageShareSubscription
	ImageShareNotificationSubscription
[0..unbounded]
	Yes
	Array of image share event subscriptions

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named imageShareSubscriptionList of type ImageShareSubscriptionList is allowed in response bodies.
5.2.2.10 Type: ImageShareNotificationSubscription

This type defines a set of parameters for the subscription of image share related notifications, i.e. ImageShareEventNotification, SessionAcceptanceNotification, SessionInvitationNotification,ImageFileNotificaiton and ImageDeliveryStatusNotificaiton.
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named imageshareNotificationSubscription of type ImageShareNotificationSubscription is allowed in request and/or response bodies.
5.2.2.11 Type: ImageFileNotification

This describes the notification delivering an image file URL. After the file has been received, the file URL will be sent in the ImageFileNotification to the application for retrieving the image file.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related image share session).
The server MUST include links as defined in Table 1 for ImageFileNotification.

Further, the server SHOULD include a link to the related subscription.

	fileURL
	xsd:anyURI
	No
	The file repository URL from where the file can be retrieved.

	fileRange
	FileRange
	Yes
	Signal a chunk of a file.

	
	
	
	

A root element named imageFileNotification of type ImageFileNotification is allowed in notification request bodies.

5.2.2.12 Type: FileRange

This type defines the file range information.

	Element
	Type
	Optional
	Description

	startOffset
	xsd: unsignedLong
	No
	refers to the octet position of the file where the file transfer should start.
See [RFC5547]

	stopOffset
	xsd: unsignedLong
	No
	refers to the octet position of the file where the file transfer should stop.

See [RFC5547].

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Image Share API.
5.2.3.1 Enumeration: EventTypes
This enumeration is used in notifications to describe the type of event which the notification is about.
	Enumeration
	Description

	SessionCancelled
	The Originator has cancelled the image share session during the invite phase.

	SessionEnded
	The image share session has ended.

	Declined
	The Receiver has declined the image share session invitation.

	Successful
	The image file was successfully delivered

	Failed
	The image file delivery was failed due to errors.

	Aborted
	The image file delivery was aborted by the Originator.

5.2.3.2 Enumeration: ReceiverStatus
List of the status values associated with a Receiver in an image share session.
	Enumeration
	Description

	Initial
	The Receiver is being invited to a image share session

	Connected
	The participants are active in the session

	Disconnected
	The image share session was terminated.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· ImageShareSessionInformation
· SessionInvitationNotificaiton
· ReceiverSessionStatus
· ImageShareEventNotification
· SessionAcceptanceNotification
· ImageShareSubscriptionList

· ImageShareNotificationSubscription
· ImageDeliveryStatus
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
Note that some of the following scenarios involve both an application of the Originator and an application of the Receiver, depending on the implementations, if the scenarios involving only an application of one participant (either Originator or Receiver), the following scenarios of an application of that particular participant apply.
5.3.1 Subscribe and unsubscribe to image share notifications
This figure below shows a scenario for an application subscribing to image share notifications.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:
· To subscribe to image share notifications, create a new resource under http://{serverRoot}/{apiVersion}/imageshare/{userId}/subscriptions
· To cancel subscription to image share notifications delete the resource under http://{serverRoot}/{apiVersion}/imageshare/{userId}/subscriptions/{subscriptionId}

[image: image3.emf]Application Server

1. POST ImageShareNotificaitonSubscription

Response

Delete the

subscription

Create a new

subscription

with resourceURLcontainingsubscriptionIdn

with callback URL

2. DELETE ImageShareNotificaitonSubscription

Response

Figure 2 Subscribing to and unsubscribing from image share notifications
Outline of the flows:
1. An application subscribes to image share notifications using the POST method to submit the ImageShareNotificationSubscription structure to the resource containing all subscriptions and receives the result resource URL containing the subscriptionId
2. The application stops receiving notifications using DELETE with the resource URL containing the subscriptionId
5.3.2 Image share with successful result

The figure below shows a scenario for an image share session with successful result.

The resources:

· To start an image share session, create a new resource with the ImageShareSessionInformation structure under http://{serverRoot}/{apiVersion}/imageshare/{userId}/sessions
· To accept an image share session invitation update the receiver session status resource http://{serverRoot}/{apiVersion}/image share/{userId}/sessions/{sessionId}/status
· To end an image share session delete the resource
http://{serverRoot}/{apiVersion}/imageshare/{userId}/sessions/{sessionId}

· To notify the applications about the incoming image share session invitation, POST a SessionInvitationNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the session acceptance, POST a SessionAcceptanceNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the image file URL for subsequent retrieval, POST an ImageFileNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the status of the image share session and the statu of the image file transfer , POST an ImageShareEventNotification to the applications supplied Notification URL during notification subscription.

[image: image4.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

1. POST

ImageShareSessionInformation

Response

4. POST

SessionAcceptanceNotification

Receiver accepted

Start a new image

share session

with sessionId

Application

(Receiver)

2. POST

SessionInvitationNotification

3. POST ReceiverSessionStatus

status=connected

Image share session

invitation accepted

status=connected

with fileURL or image file in

the request body

Image file transfer started

5. POST

ImageFileNotification

with fileURL

Image file transfer finished

6.POST

ImageShareEventNotification

eventType=Successful

7. POST

ImageShareEventNotification

eventType=Successful

Image share session

invitation notification

received

with sessionId

8. DELETE

ImageShareSessionInformation

eventType-SessionEnded

9. POST

ImageShareEventNotification

Response

Image file transfer

successfully completed

Image file transfer

successfully completed

Response

Response

Response

Response

Response Response

Response

End the image share

session

Image share session

termination notification

received

File URL received and

the image file can be

downloaded

with sessionId

Figure 3 Image share session with successful result
Outline of the flows:

1. An application of the Originator starts an image share session using the POST method to submit the ImageShareSessionInformation structure to the resource containing all image share sessions. Thereby the creation of a new image share session resource is triggered and the application of the Originator receives the resulting resource URL containing the sessionId.
2. An application of the Receiver receives an image share session invitation notification.

3. The application of the Receiver accepts the image share session invitation using the POST method to submit the ReceiverSessionStatus structure to the resource containing the session status. The status MUST be set to “Connected”.
4. The application of the Originator receives a notification with SessionAcceptanceNotification structure indicating the Receiver has accepted the invitation. The application of the Originator starts to transfer the image file.
5. After the image file is ready for retrieval, the server of the Receiver notifies the application of the Receiver using ImageFileNotification containing the fileURL. The application of the Receiver can start downloading the image file using the file URL received.
Note: Depending on the implementations, the notification of the file URL can be sent after the first chunk of data is received or when the complete image file has been received (i.e. after step 7).
Note: How the application retrieves the image file using the file URL is out of scope.

6. After the image file transfer is completed, the server of the Originator notifies the application of the Originator about the successful of the image file transfer using POST ImageShareEventNotification containing the status which is set to “Successful” .

7. At the mean time, the server of the Receiver notifies the application of the Receiver about the successful of the image file transfer using POST ImageShareEventNotification containging the status which is set to “Successful” .

8. The application of the Originator ends the image share session using DELETE method on the resource URL of the session with sessionId
Note: Both the application of the Originator and application of the Receiver can initiate ending the image share session.

9. The application of the Receiver receives a SessionEventNotification structure indicating the session has been ended.
Note: In case of the application of the Receiver ends the image share session, the application of the Originator receives a SessionEventNotification structure indicating the session has been ended.

5.3.3 Image share session failure

There are different causes which may lead to image share session failed, following are some options (not exclusive list):

a. The application of the Originator cancels the image share session.
b. The application of the Receiver reject or decline the image share session invitation

c. The image file transfer failed due to the underlining network problem

d. The application of the Originator aborts the image file transfer,

5.3.3.1 Cancelling an image share invitation

The figure below shows a scenario for an application of the Originator to cancel an image share session invitation.
The resources:

1. To cancel an image share session invitation delete the session resource http://{serverRoot}/{apiVersion}/image share/{userId}/sessions/{sessionId}

[image: image5.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

Application

(Receiver)

1. DELETE

ImageShareSessionInformation

Response

with sessionId

Cancel the image

share session

eventType-SessionCancelled

2. POST

ImageShareEventNotification

Response

Image share session

cancelled notification

received

Figure 4 Cancelling an image share invitation

Outline of the flows:
An application of the Originator has created an image share session resource triggering an image share invitation sent to the application of the Receiver (Refer to step 1 and step 2 in 5.3.2). Subsequently:

1. The application of the Originator can cancel an image share session invitation using the DELETE method on the resource URL of the session with sessionId and receives a response weather the request was successfully initiated.

2. An ImageShareEventNotification is sent to the application of the Receiver when the image share session has been cancelled, then the session is torn down.

Note that cancelling a session only works before the Receiver has accepted the image share invitation.

5.3.3.2 Declining an image share session invitation
The figure below shows a scenario for an application to decline an image share session invitation.

The resources:

· To decline an image share session invitation delete the session resource http://{serverRoot}/{apiVersion}/image share/{userId}/sessions/{sessionId}

[image: image6.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

Application

(Receiver)

Response

Image share session

declined notification

received

Response

1. DELETE

ImageShareSessionInformation

with sessionId

Decline the

session invitation

2.POST

ImageShareEventNotification

eventType=Declined

Figure 5 Declining an image share session invitation

Outline of the flows:
An application of the Originator has created an image share session resource triggering an image share invitation sent to the application of the Receiver (Refer to step 1 and step 2 in 5.3.2). Subsequently:

1. The application of the Receiver declines the image share session invitation using the DELETE method on the session resource including the sessionId

2. The application of the Originator receives an ImageShareEventNotification structure indicating the Receiver has declined the invitation, then the session is torn down.
Note that declining a session only works before the Receiver has accepted the image share invitation.
5.3.3.3 Image file transfer failed

The figure below shows a scenario for image file transfer failed.

The resources:

· To notify the applications about image file transfer failure, POST an ImageShareEventNotification to the applications supplied Notification URL during notification subscription.

[image: image7.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

Application

(Receiver)

Response

1.POST

ImageShareEventNotification

eventType=Failed

eventType-Failed

2. POST

ImageShareEventNotification

Response

Image file transfer failed

notification received

Image file transfer error occurs

Image file transfer failed

notification received

Figure 6 Image file transfer failed
Outline of the flows:
After an application of the Originator creates an image share session resource and the application of the Receiver accepts the image share session invitation (Refer to step 1 to step 4 in 5.3.2), the image file transfer is started, subsequently:
1. When error occurs during image file transfer, the server of the Originator notifies the application of the Originator using POST ImageShareEventNotification containing the status which is set to “Failed” .

2. At the mean time, the server of the Receiver also notifies the application of the Receiver using POST ImageShareEventNotification containing the status which is set to “Failed”

Note: When error occurs during the image file transfer, the application of the Receiver may already received the file URL and started to fetch the file, the server of the Receiver should cancel any HTTP request downloading the image file using the file URL and disable the file URL. How the server implements this is out of scope.

5.3.3.4 Image file transfer aborted

The figure below shows a scenario for image file transfer aborted.

The resources:

· To notify the application about image file transfer failure, POST an ImageShareEventNotification to the applications supplied Notification URL during notification subscription.

[image: image8.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

Application

(Receiver)

eventType-Aborted

2. POST

ImageShareEventNotification

Response

Image share session

aborted notification

received

with sessionId

1. DELETE

ImageShareSessionInformation

Response

Abort the image share

session

Figure 8 Image file transfer aborted
Outline of the flows:
After an application of the Originator creates an image share session resource and the application of the Receiver accepts the image share session invitation (Refer to step 1 to step 4 in 5.3.2), the image file transfer is started, subsequently:
1. The application of the Originator can abort the image file transfer using DELETE method on the resource URL of the session with sessionId
2. The application of the Receiver receives a SessionEventNotification structure indicating the image file transfer has been aborted and the session is torn down.
Note that aborting the image file transfer only works before the image file has been completely transferred. After that, the DELETE method leads to a normal ending of the session.
Note: When the image file transfer has been aborted, the application of the Receiver may already received the file URL and started to fetch the file, the server of the Receiver should cancel any HTTP request downloading the image file using the file URL and disable the file URL. How the server implements this is out of scope.

6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, x-www-form-urlencoded):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100) and the use of characters other than digits SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: All subscriptions to image share notifications
The resource used is:

http://{serverRoot}/{apiVersion}/imageshare/{userId}/subscriptions

This resource is used to manage subscriptions to image share notifications. Note that there is one subscription per client instance.

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	user identifier. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to Image Share, see TBD.
6.1.3 GET
This operation is used for reading the list of active image share notification subscriptions.

6.1.3.1 Example 1: Reading all active image share notification subscriptions
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/v1/imageshare/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<is:imageshareSubscriptionList xmlns:is="urn:oma:xml:rest:netapi:imaheshare:1">

 <imageshareNotificationSubscription>

<callbackReference>

 <notifyURL>http://application.example.com/notifications/ImageShareNotification</notifyURL>

 <callbackData>12345</callbackData>

</callbackReference>

<clientCorrelator>54321</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/v1/imageshare/tel%3A%2B19585550100/subscriptions/sub123</resourceURL>

 </is:imageshareNotificationSubscription>

 <resourceURL>http://example.com/exampleAPI/v1/imageshare/tel%3A%2B19585550100/subscriptions</resourceURL>

</is :imageshareSubscriptionList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,POST’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used to create a new subscription for image share notifications..
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: Creating a new subscription to image share notifications using tel URI, response with copy of created resource
(Informative)
6.1.5.1.1 Request

	POST /exampleAPI/v1/imageshare/tel%3A%2B19585550100/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>
<is: :imageshareNotificaitonSubscription xmlns:is="urn:oma:xml:rest:netapi:imageshare:1">

<callbackReference>

 <notifyURL>http://application.example.com/notifications/ImageShareNotification</notifyURL>

 <callbackData>12345</callbackData>

 <notificationFormat>JSON</notificationFormat>

</callbackReference>

<clientCorrelator>54321</clientCorrelator>

</is:imageshareNotificaitonSubscription>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/v1/tel%3A%2B19585550100/inageshare/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

 <is:imageshareNotificaitonSubscription xmlns:is="urn:oma:xml:rest:netapi:imaheshare:1">

<callbackReference>

 <notifyURL>http://application.example.com/notifications/ImageShareNotification</notifyURL>

 <callbackData>12345</callbackData>

 <notificationFormat>JSON</notificationFormat>

</callbackReference>

<clientCorrelator>54321</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/v1/imageshare//tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</is:imageshareNotificationSubscription>

6.1.5.2 Example 2: Creating a new subscription to image share notifications using ACR, response with location of created resource
(Informative)
6.1.5.2.1 Request

	POST /exampleAPI/v1/acr%3Apseudonym123/imageshare/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<is:imageshareNotificaitonSubscription xmlns:is="urn:oma:xml:rest:netapi:imaheshare:1">

<callbackReference>

 <notifyURL>http://application.example.com/notifications/ImageShareNotification</notifyURL>

 <callbackData>12345</callbackData>

 <notificationFormat>JSON</notificationFormat>

</callbackReference>

<clientCorrelator>54321</clientCorrelator>

</is:imageshareNotificationSubscription>

6.1.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/v1/imageshare/acr%3Apseudonym123/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/v1/imageshare/acr%3Apseudonym123/subscriptions/sub001</resourceURL>

</common:resourceReference>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History
	Document Identifier
	Date
	Sections
	

Description

	Draft Version:

REST_NetAPI _ImageShare-V1_0
	10 May 2011
	All
	Baseline

	
	17 Jun 2011
	5, 5.1,

Appendix E
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0026R01-CR_ImageShare_Resources

	
	1 Aug 2011
	2.1,3.2,5.1,5.2
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0131R02-CR_ImageShare_Resources_alignment_with_new_resource_model
· OMA-ARC-REST-NetAPI-2011-0132R02-CR_ImageShare_Datatypes_alignment_with_new_resource_model

	
	09 Sep 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0181R03-CR_Imageshare_DataTypes_Enhancement
· OMA-ARC-REST-NetAPI-2011-0182-CR_Imageshare_Resource_modification
· OMA-ARC-REST-NetAPI-2011-0218-CR_Imageshare_telURI_change_and_others

	
	19 Sep 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0239R01-CR_subscription_flow_specificaiton_ACR

	
	09 Oct 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0262R02-CR_ImageShare_additional_data_types
· OMA-ARC-REST-NetAPI-2011-0280R01-CR_imageshare_sequence_diagram

	
	31 Oct 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0288R02-CR_ImageShare_more_SeqenceDiagram_and_other_updates

	
	03 Nov 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0338R01-CR_ImageShare_Sequence_diagram_update
· Correct some typos in figure 3 and figure 4

	
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.IMAGESHARE Server

	Item
	Function
	Reference
	Requirement

	REST-IMAGESHARE-SUPPORT-S-001-M
	Support for the RESTful ImageShare API
	[section(s)]
	

	REST-IMAGESHARE-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-IMAGESHARE-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST-IMAGESHARE-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST. IMAGESHARE.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
<< Some APIs do support form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of url-encoding. >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of url-encoding. >>

This section defines a format for the RESTful Image Share API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for the following ImageShare REST operations which are based on POST requests:
<< List the operations for which url-encoded is supported. For those TSs where ALL the POST operations are described in the Appendix C, it is left to the editor to use either the sentence above, followed by a list operations, or alternatively use the sentence: “The encoding is defined for all [Functional Area] REST operations which are based on POST requests.” , in which case the list of operations can be omitted in this section.
Note that the parameters are all of simple types. In case a parameter is of complex type in the original XML data structure, the structure needs to be “flattened” >>
C.1 [Operation]
This operation is used for [description of operation], see section 6.z.w. . 6.z.w to be replaced by the reference to section where the equivalent method is defined in section 6 (e.g. 6.1.5).
If the resource supports creating a subscription for notifications (i.e. includes a notifyURL parameter), and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)

As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources for ImageShare
(Informative)

The following table lists all ImageShare data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

/{subscriptionId}

/subscriptions

/status

/{sessionId}

/imageshare/{userId}

//{serverRoot}/{apiVersion}

/sessions

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1381919716.vsd

_1381919736.vsd

_1381572529.vsd

_1381572603.vsd

_1381572627.vsd

_1381227643.vsd

