OMA-ORG- Internationalization_CharacterEncoding_Best_Practices-V1_0-2007122520080130-D
Page 19 V(19)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Best Practices on Recommendations for Internationalization Character Encoding

	Draft Version 1.0 – 30 Jan 2008

	Open Mobile Alliance

	OMA-ORG- Internationalization_CharacterEncoding_Best_Practices-V1_0-20080130-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
5.
Character Set and Character Encoding
9
6.
Two levels of Character Encodings
10
7.
Overview of Existing Solutions
11
7.1
Primary Character Encoding
11
7.2
Secondary Character Encoding
11
7.3
Past Experience and Recent Work
12
8.
Guidelines
13
8.1
Primary Character Encodings
13
8.1.1
Identification of the target Character Set
13
8.1.2
Choice of the Character Encoding
13
8.2
Secondary Character Encodings
14
8.2.1
ASCII Compatible Encodings
14
8.2.2
Escape Encodings
14
8.2.3
Consideration
14
8.3
Decision when both Primary and Secondary Character Encodings are used
14
9.
Example of XML
15
9.1
Primary Character Encoding in XML
15
9.2
Secondary Character Encoding in XML
15
9.3
Recommendation
16
10.
Example of ASN.1
17
10.1
Character Abstract Syntax of ASN.1
17
10.2
Character Transfer Syntax of ASN1
17
10.2.1
BER as Character Transfer Syntax
17
10.2.2
XER as Character Transfer Syntax
18
10.3
Recommendation
18
Appendix A.
Change History (Informative)
19
A.1
Approved Version History
19
A.2
Draft/Candidate Version 1.0 History
19

Tables

18Table 1 Mapping between 4-octet canonical form and UTF-8

1. Scope

This document provides the internationalization aspects of Enablers in terms of the Character Encoding for character data type and its encodings. This document provides the guideline for how to decide a Character Encoding when defining the data type for the textual information for an Enabler. This document does not require the use of a specific Character Encoding, but provides the aspects which need to be taken into consideration when deciding the Character Encoding.
2. References

	[ASCII]
	"ANSI X3.4 - 1986, Coded Character Set - 7-bit American Standard Code for Information Interchange", American National Standards Institute

	[ASN.1 Notation]
	· ASN.1 notation:

· ITU-T Rec. X.680 | ISO/IEC 8824-1

· ITU-T Rec. X.681 | ISO/IEC 8824-2

· ITU-T Rec. X.682 | ISO/IEC 8824-3

· ITU-T Rec. X.683 | ISO/IEC 8824-4

http://www.itu.int/ITU-T/studygroups/com17/languages/

	[ASN.1 encoding]
	· ASN.1 encoding rules:
· ITU-T Rec. X.690 | ISO/IEC 8825-1 (BER, CER and DER)

· ITU-T Rec. X.691 | ISO/IEC 8825-2 (PER)

· ITU-T Rec. X.693 | ISO/IEC 8825-4 (XER)

· ITU-T Rec. X.694 | ISO/IEC 8825-5 (XSD mapping)
http://www.itu.int/ITU-T/studygroups/com17/languages/
· RFC 3641 (GSER) , http://tools.ietf.org/html/rfc3641

	[HTML]
	“HTML 4.01 Specification”, W3C, http://www.w3.org/TR/html401

	[ISO/IEC 646]
	“ISO/IEC 646:1991, Information technology -- ISO 7-bit coded character set for information interchange”, International Organization for Standardization, http://www.iso.org

	[ISO/IEC 2022]
	“ISO/IEC 2022:1994, Information technology -- Character code structure and extension techniques”, International Organization for Standardization, http://www.iso.org

	[ISO/IEC 8859]
	“ISO/IEC 8859-1:1998, Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1”, International Organization for Standardization, http://www.iso.org

	[ISO/IEC 10646]
	“ISO/IEC 10646:2003, Information technology -- Universal Multiple-Octet Coded Character Set (UCS)”, International Organization for Standardization, http://www.iso.org

	[RFC2045]
	“Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, N. Freed et al., November 1996

	[RFC2047]
	“MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text” , K. Moore, November 1996

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et al., June 1999

	[RFC3490]
	“Internationalizing Domain Names in Applications (IDNA)”, P. Faltstrom et al., , March 2003

	[RFC3491]
	“Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)”, P. Hoffman et. Al, March 2003

	[RFC3492]
	“Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names in Applications (IDNA) ”, A. Costello, March 2003

	[RFC3629]
	“UTF-8, a transformation format of ISO 10646 ”, F. Yergeau et al., November 2003

	[RFC3920]
	“Extensible Messaging and Presence Protocol (XMPP): Core”, P. Saint-Andre, Ed. Jabber Software Foundation, October 2004

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax” , T. Berners-Lee et al., January 2005

	[RFC3987]
	“Internationalized Resource Identifiers (IRIs)”, M. Duerst et al., January 2005

	[RFC 4648]
	“Base-N Encodings”, S. Josefsson, October 2006

	[RFC4952]
	“Overview and Framework for Internationalized Email”

	[Unicode]
	“Unicode 5.0.0”, The Unicode Consortium, http://www.unicode.org

	
	

	[XML]
	“Extensible Markup Language (XML) 1.1 (Second Edition)”, W3C, http://www.w3.org/TR/xml11

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

This is an informative document, which is not intended to provide testable requirements to implementations.

3.2 Definitions
	Character Set
	A collection of elements used to represent textual information[Unicode]. Sometime, it is used as short form of Coded Character Set.

	Character Encoding
	A method of representing a sequence of characters in a target Character Set as a sequence of octets and also a method of converting a sequence of octets into a sequence of characters[RFC3987].

	Charset
	The name of a parameter or attribute used to identify a character encoding[RFC3987].

	Coded Character Set
	A character set in which each character is assigned a numeric code point[Unicode].

	
	

	
	

3.3
Abbreviations
	ACE
	ASCII Compatible Encoding

	ASN.1
	Abstract Syntax Notation One

	HTML
	HyperText Markup Language

	HTTP
	Hypertext Transfer Protocol

	IDN
	Internationalized Domain Name

	MIME
	Multipurpose Internet Mail Extensions

	UCS
	Universal Character Set

	URI
	Uniform Resource Identifier

	UTF
	Unicode (or UCS) Transformation Format

	XML
	Extensible Markup Language

4. Introduction

Considering that OMA is an International Standardization Organization, it is commonly understood that any OMA Enabler should take care of all necessary Internationalization aspects. The Character Encoding used in an enabler is one aspect which requires consideration on the issue of internationalization.

When an Enabler handles textual information, it is necessary to decide how to handle characters from an international perspective. For example, some languages, such as Chinese, Korean and Japanese, have larger collections of characters, with a size of more than 10,000 in total. Therefore the Character Set and Character Encoding need to be considered. This document is intended to set out guidelines for defining how the text data is handled within specifications.
Note that, in addition to the Character Encoding itself, other related issues, such as normalization and line endings, affect interoperability. Such issues are out of scope of this document.
5. Character Set and Character Encoding
A Character Set is a collection of elements used to represent textual information. A Character Set in which each character is assigned a numeric code point is called a Coded Character Set.
Character Encoding is a method of representing a sequence of characters in a target Character Set as a sequence of octets and also a method of converting a sequence of octets into a sequence of characters. The term “charset” is the name of a parameter or attribute used to identify a character encoding.
The most traditional and widely used Character Set is ASCII (American Standard Code for Information Interchange, often called US-ASCII) [ASCII] which consists of 128 elements targeted for the English alphabet. A corresponding international standard is ISO/IEC 646[ISO/IEC 646], which is not commonly used. Instead, ISO-8859-1[ISO/IEC 8859] is commonly used, one of the members of the ISO-8859 family, each of which consists of 256 elements. Both ASCII and the ISO-8859 series are Character Sets as well as Character Encodings, targeting specific subsets of all characters. Numerous difficulties arise when these subsetted Character Sets are used. For example, it is necessary to carry the Character Set identifier along with the text which is encoded. Often, this information is not included, which means a recipient or process must try to detect which Character Set is in use. An incorrect detection means the text is incorrectly decoded into different characters, resulting in data corruption.

ISO/IEC 2022[ISO/IEC 2022] is a framework to represent characters in multiple Character Sets in a single Character Encoding. ISO/IEC 2022 includes “escape sequences” which indicate the Character Set to follow. ASCII, ISO-8859-1 can be referred to as a Character Set in ISO-2022 Character Encoding.

ISO/IEC 10646 UCS[ISO/IEC 10646], and its equivalent Unicode define a Character Set which covers all characters, allowing 1,114,112 variants. The code point in UCS is often represented using "U+” followed by 4 heximal digits. Mappings from the code points in individual standard Character Set to Unicode code points are provided. Unicode also defines different types of Character Encodings, namely UTF-8,UTF-16,UTF-32, for a Character Set, UCS. There are several advantages to a single encoding for all characters. For example, all recipients and processes can correctly determine the characters in a text string.
With a Character Encoding mechanism alone, ISO/IEC 2022 or Unicode approach is the only solution for representing all characters. However, any type of Character Encodings can be chosen, if an Enabler provides a mechanism to select an appropriate Character Encoding for text information in question (See Section 7.1 for more detail).

6. Two levels of Character Encodings
When an Enabler defines Character Encoding, two levels of encoding should be taken into consideration.

The primary Character Encoding is necessary for representing characters in text information as octets. For the primary Character Encoding, the result should be the direct representation of original characters.

The secondary Character Encoding is an additional layer of encoding to be adopted in order to represent a sequence of octets, which is the result of the primary Character Encoding as a sequence of basic octets. The basic octets are chosen according to any constraints from underlying technologies. Normally, secondary encodings are used when the result of the primary Character Encoding does not meet required restrictions.

One of those constraints may be for interoperability with existing systems which only allow 7 bit encoding. Another example of those constraints is for escaping the reserved characters such as delimiters, etc.
7. Overview of Existing Solutions
7.1 Primary Character Encoding
The Primary Character Encodings that have been adopted by the existing standards can be grouped into three types.
First, are those which mandate the use of a single specific Character Encoding. Examples of this type are IDN (Internationalized Domain Name)[RFC3491], EAI (Email Address Internationalization) [RFC4952] and URI (Uniform Resource Identifier)[RFC3986]. IDN mandates the use of UTF8. The set of EAI specifications also mandates the use of UTF8. While IDN is intended to be used with a Secondary Character Encoding named Punycode, EAI permits direct use of UTF8 to avoid possible confusion and other problems (See Section 7.2 for more detail). URI mandates the use of UTF-8 for newly defined schemes. While other Character Encodings are allowed for some of the existing URI scheme, such as HTTP [RFC2616], the identification mechanism for the Character Encoding is the responsibility of the context in which the URI appears (such as MIME bodies [RFC2045]), which can create problems. (Note: Percent Encoding ACE as a secondary Character Encoding is always required for certain characters). IRI (Internationalized Resource Identifier) [RFC3987] is also defined but it need to be converted to URI when used in non-UTF8 contexts, such as HTTP.
Second, are those which provide a mechanism to specify the Character Encoding which is used by each application. Normally, it has a default Character Encoding, and ISO-8859-1[ISO/IEC 8859] is used in most cases. One of the examples of this type is MIME bodies [RFC2045] (incl. HTTP), where the Character-Encoding is indicated by the 'charset' parameter in the Content-Type Header. ISO-8859-1 is defined as a default. Another example is HTML [HTML], where the Character Encoding is indicated by a 'charset' parameter <meta> tag inside <head>. (Note that HTML is often carried within a MIME body, where the Character Encoding is specified with the ‘charset’ parameter to the Content-Type: Text/HTML header.)
The third type also allows each application to identify the chosen character encoding. The difference from the previous mechanisms is that this encoding type allows the use of multiple encodings together. One of the examples is XML [XML] with external entities, where Character Encoding is indicated by the encoding pseudo-attribute in the XML declaration at the start of a document, or in the text declaration at the start of an entity (See Section 9.1 for more detail). Another example is the descriptive field (such as “Subject” in an email) contents of MIME Headers [RFC2047] (incl. HTTP) where the encoded text specifies the “charset” (and a secondary encoding of quoted-printable or base64) as prefixes as follows:

"=?" charset "?" encoding "?" encoded-text "?=".

The encoded result of the text “this is some text” with ISO-8859-1 as the chosen Character Encoding is: “ =?iso-8859-1?q?this=20is=20some=20text?=”.

Another example for the Japanese text “ご参考” is “=?iso-2022-jp?B?GyRCJDQ7MjlNGyhC?=”, where ISO-2022-JP is indicated as the Character Encoding.

Note that in both examples, a secondary Character Encoding is also applied. In the first example, Quoted-Printable [RFC2047] is used, but in the second example, Base64 [RFC 4648] is used.
7.2 Secondary Character Encoding
Secondary Character Encodings are used to represent characters outside of the allowed repertoire or to further encode text to meet the requirements of transport or storage. It can be also grouped into three types.
First, is the type which mandates the use of a single specific character encoding.

IDN [RFC3490] adopts Punycode [RFC3492] as an ACE mechanism (other mechanisms are allowed). With Punycode encoding, “openmobilealliance.org” consisting of only ASCII characters remains unaltered, while “münchen.de” becomes “xn--mnchen-3ya.de” and “日本語.JP” becomes “xn--wgv71a119e.jp”.

URI adopts the Percent Encoding mechanism to represent characters beyond ASCII repertoire, as well as reserved characters for URIs. “Laguna Beach” becomes “Laguna%20Beach”, “Genève” becomes “Gen%c3%a8ve” and “北京” becomes “à %e5%8c%97%e4%ba%ac”. Note that domain name in URI will be encoded using Punycode before being Percent Encoded. “http://納豆.example.org/Dürst” becomes “http://xn--99zt52a.example.org/D%FCrst”, where the characters “納豆” is encoded by Punycode, while “Dürst” is encoded as “D%FCrst”.
The second encoding type is the one which provides a mechanism to specify the character encoding which is used by each application. One of the example is MIME Bodies (incl. HTTP), where Secondary Character Encoding is indicated by the Content-transfer-encoding Header. Base64 and Quoted-Printable(where 8-bit values are represented by a "=" followed by two hexadecimal digits) are defined as alternatives.
The third encoding type also allows each application to identify the chosen character encoding. The difference from the previous types is that this type allows the use of multiple encodings together.

Another example is the descriptive field contents of MIME Headers (incl. HTTP) where the “encoding” is specified within the encoded text as prefix as follows:

"=?" charset "?" encoding "?" encoded-text "?=".

This uses “B” for BASE64, and “Q” for Quoted-Printable content-transfer-encoding.
The encoded result of “this is some text” is “ =?iso-8859-1?q?this=20is=20some=20text?=”. Another example is “=?iso-2022-jp?B?GyRCJDQ7MjlNGyhC?=” for the original text “ご参考”. In the first example, Quoted-Printable is used. In the second example, BASE64 is used.

7.3 Past Experience and Recent Work
A recent area of work related to the internationalization of Character Encoding is the IETF Working Group on Email Address Internationalization (EAI), which is building a fully internationalized email environment by extensions to existing specifications.

Note that the IETF Email Address Internationalization (EAI) working group accepts that Secondary Character Encoding is problematic, not adequate, and is best avoided. RFC 4952 describes Secondary Character Encoding as part of “collections of patches and workarounds”. This work notes that a workaround-based approach is likely to result in an assortment of implementations with different sets of patches and workarounds, with consequent confusion about what is actually usable and supported. Further, EAI notes that whenever a Secondary Character Encoding is used internally, with native characters for input and display, there is always leakage of the Secondary Encodings. This leakage causes users to be confronted with confusing and incomprehensible encodings. There are often additional problems with user input and consistent display, as well as with incompatible and inconsistent application of the Secondary Encoding.

As a result of the recognized problems with Secondary Character Encodings, the EAI work specifies direct use of non-ASCII characters as the Primary Character Encoding to build a fully internationalized email environment. In this work, email addresses may be created using native characters expressed in Unicode and represented in UTF8. All email headers are likewise permitted to be UTF8 with no Secondary Character Encoding.

When creating new protocols and standards, it is usually easy to adopt UTF8 as the native Primary Character Encoding right from the start. This avoids unnecessary Secondary Encodings requiring translations, conversions, leakage, and much confusion, and leads to a more interoperable system. This is the case, for example, with XMPP (Jabber) [RFC3920], which uses UTF8 natively.

However, when extending existing systems, trade-offs are required. Extending existing systems with an optional Secondary Encoding can allow for wider immediate interoperability at the cost of potential long-term awkwardness, user confusion, and a higher base level of difficulties. For example, while email Subject headers were extended many years ago to permit non-ASCII characters by creating an optional secondary encoding, the encoded form of such headers are often shown to users in a confusing way such as “=?iso-8859-1?q?this=20is=20some=20text?=”. In theory, such secondary Character Encodings are never seen by nor entered by users, but in practice this is not the case.

Introduction of extensions that allow native UTF8 may face some interoperability issues in the short term. But, as a long term solution this approach has some advantages over the continued use of Secondary Encodings.
8. Guidelines
This section provides guidelines to follow when defining the data type for characters specific to an Enabler.

8.1 Primary Character Encodings
The Primary Character Encodings must be defined for all data types which are used as containers for textual information.

8.1.1 Identification of the target Character Set
When defining the data type which is used as a container for textual information, it is important to identify the scope of the target textual information and understand the character set to be used to represent the information. Note that it is necessary, at this stage, to identify the requirements for all possibilities, not just for individual systems.

Unless there is a good reason for not choosing it, the target Character Set should be ISO/IEC 10646 UCS, or equivalent. This allows a single universal Character Set to be used for all characters worldwide, and eliminates the need to carry the character set identification with each text container.
8.1.2 Choice of the Character Encoding
If the target Character Set identified in Section 8.1.1 can be directly mapped to a single Character Encoding, then that Character Encoding should be adopted by the Enabler. If this is not possible, the following steps should be taken.

8.1.2.1 Mandating a Single Character Encoding or Switching between Character Encodings
If the defining Enabler does not have a mechanism for conveying meta data about the content of the targeting textual information, it is necessary for a single Character Encoding, which covers the entire Character Set identified in Section 8.1.1 to be adopted by the Enabler.

If the defining Enabler does have a mechanism for conveying meta data information for the content of the targeting textual information, it is recommended to use that mechanism to convey the character encoding information.

8.1.2.2 Deciding a Default Character Encoding
When the meta data mechanism is used to convey the character encoding information, it should be possible for this meta data information to be omitted and the existence of a default assumed. The support for a default Character Encoding is considered as mandatory.

A default Character Encoding should be a Character Encoding which is typically used across a majority of systems, such as ASCII, ISO-8859-1 or UTF-8. The default Character Encoding must cover the target Character Set decided through the process in Section 12. When ISO/IEC 10646 UCS is chosen, a Character Encoding for the entire ISO/IEC 10646 UCS should be chosen. Among them, UTF-8 is recommended. UTF-8 has additional properties which make it well-suited for the default or the single mandated choice, including that all ASCII characters are encoded identically in UTF-8, and the lack of occurrences of null octets (0x00) , considering the fact that Character Encodings that allow null octets can be a cause of accidental and potentially unnoticed security vulnerabilities or data corruption, especially when C and C-like languages are used.

8.1.2.3 Consideration
It is possible to mandate the use of a single Character Encoding even when a meta data mechanism exists.
Allowing multiple Character Encodings makes it possible to optimize the deployment of each system, by storing data more compactly, or using the same Character Encoding as other systems also in use. It should be noticed, however, it also adds complexity to the enabler, and requires the capacity to carry meta information including the Character Encoding identification, with each textual container. It also introduces interoperability problems unless it is mandated that every system implement and support every Character Encoding. Hence, allowing multiple Character Encodings makes interoperability more difficult and more urgent.

A single mandated Character Encoding simplifies the system and reduces interoperability issues.

8.2 Secondary Character Encodings
An Enabler must define a secondary Character Encoding, when the underlying system has constraints on the data encodings. These constraints will either be for interoperability with legacy system or for the escape of reserved characters.
8.2.1 ASCII Compatible Encodings
Some existing systems require a 7bit encoding for interoperability with legacy systems. In those cases, an ASCII Compatible Encoding mechanism should be specified.

Base64, quoted printable and percent encoding are commonly used mechanisms.

Punycode is also used for IDN. Punycode is self proclaimed and applying Punycode multiple times produces the same result. It is optimized for domain names and thus it is suitable to adopt only when the segmentation of the application can be defined in a relatively small way.
8.2.2 Escape Encodings
Escape Encodings need to be specified to represent certain characters in textual information, if the underlying system has reserved characters.

Quoted Printable, Percent Encoding and CharacterReference in XML are examples of Escape Encodings.
8.2.3 Consideration
Per its definition, Secondary Character Encoding may produce a series of user-unfriendly characters which are meaningless without decoding. As briefly described in Section 7.2, and Section 7.3, past experience also shows the potential problems caused by Secondary Character Encodings.

Thus, Secondary Character Encoding should be used only when Primary Character Encoding cannot be directly used.

8.3 Decision when both Primary and Secondary Character Encodings are used
A decision on the primary Character Encodings should only be affected by the constraints related to the secondary Character Encodings, when the secondary Character Encodings constraints cannot be separated out.
9. Example of XML

This section describes the Primary and Secondary Character Encoding in the case of XML.

9.1 Primary Character Encoding in XML
The Primary Character Encoding is handled by the XML encoding declaration. Any type of the Character Encoding Types which are registered to IANA can be used if declared in the XML declaration or TEXT declaration.

Support for the UTF-8 and UTF-16 Character Encoding Types is mandatory for the XML processor. The support for other Character Encodings is up to the implementation.

The XML encoding declaration functions as an internal label on each entity, indicating which character encoding is in use. In order to read this internal label, the XML processor must detect what character encoding is in use, which is what the internal label indicates. Thus, auto-detection of Character Encodings is necessary, which is feasible only due to the following assumption and constraint: 1) Each implementation is assumed to support only a finite set of character encodings, and 2) the XML encoding declaration is restricted in position and content – as XML encoding declaration must appear either in XML declaration or TEXT declaration, a single XML document must be encoded using a single Character Encoding Type, unless using the External Entities.
A finite set of character encodings makes it feasible to auto-detect the Character Encodings within the limited number of trials. By restricting the use of multiple Character Encoding Types, XML processor can know when it must detect the character encoding.

Considering these facts, it is recommended to set a limit to the Character Encoding type by the specification rather than its implementation, in order to support the interoperability of the Enabler as well as to allow the better performance.
UTF-8 and UTF-16 are the possibilities, as their support by XML processor is mandatory. Among them, UTF-8, which has a compatibility with ASCII character encodings, is preferable. Also, in many cases where element names are defined using ASCII characters, the encoding results from UTF-8 is more compact than UTF-16, even for the Character Sets which require multiple bytes to represent a single character.

9.2 Secondary Character Encoding in XML
An XML document consists of intermingled character data and markup. XML has reserved characters and strings which must be escaped or must not be used depending on the context, whether it appears as character data or markup. In the case of markup, types of markups also affect the constrains
The ampersand character (&) and the left angle bracket (<) must not appear in their literal form in some contexts. Entity and character references may both be used to escape the left angle bracket, ampersand, and other delimiters as well.
A character escape allows expressing characters in general, without use of the corresponding character codes. In the case where the character encoding which does not cover the entire Character Sets necessary for the service is chosen as Primary Character Encoding for any reason, then the Secondary Character Encoding may be used.
The decision on the escape mechanism as Secondary Character Encoding does not have an impact on the choice of the Primary Character Encoding.

Although it is not related to the internationalization, as all XML processors is required to recognize entity references for the ampersand and the left angle bracket, it is recommended to use entity references & and < rather than character references & and < for the readability in order to escape “&” and “<” respectively.
Other predefined entities such as gt, quot and apos as well as any character references are not recommended to use unless a referring character cannot be encoded using the chosen character encoding, which is not the case for UTF-8, as the use of those references causes a less readability as well as increase the size of the encoded data.
9.3 Recommendation
This document recommends the use of UTF-8 as a character encoding of XML. It is strongly recommended especially when an XML data is embedded in another XML document to avoid any extra Secondary Encoding, considering the fact that only a single Character Encoding is allowed in a single XML document. Also the embedded XML data should be treated as an XML encoded data rather than the data encoded in other types such as string, which requires extra encodings to escape characters which are not allowed to appear in certain contexts corresponding to those types of data.
This document does not encourage the OMA specifications to recommend the use of unnecessary entity and character references. This document encourages the OMA specification to recommend the use of entity references to escape only the reserved characters, the ampersand (&) and the left angle bracket (<).
10. Example of ASN.1

This section describes the Primary and Secondary Character Encoding in the case of ASN.1 [ASN.1 Notation][ASN.1 encoding].

10.1 Character Abstract Syntax of ASN.1

The Character Abstract Syntax of ASN.1 corresponds to Primary Character Encoding described in this document. ASN.1’s Character Abstract Syntax is defined as any abstract syntax whose values are specified as the set of character strings of zero, one or more characters from some specified collection of characters.

In the case of the Restricted Character String Type of ASN.1, the UniversalString and the UTF8String are the only Character String Types defined that cover the entire character set, ISO/IEC 10646-1. Thus, either of these Character String Types should be chosen when there is a possibility of any arbitrary characters being used. The characters which can appear in the UniversalString type are any of the characters allowed by ISO/IEC 10646-1. UTF8String is synonymous with UniversalString at the abstract level and can be used wherever UniversalString is used (subject to rules requiring distinct tags) but has a different ASN.1 tag and is a distinct ASN.1 type.

NOTE – The encoding of UTF8String used by BER and PER is different from that of UniversalString, and for most text will be more compact.

Other Character String Types can be also chosen if the selected String Type covers the entire repertoire for characters used by target Enablers.

For example, the IA5String can be chosen if only the ASCII characters are required in a certain Enabler.
The ASN1-CHARACTER-MODULE mechanism could also be used, if it is preferable to use a limited repertoire. It should be noted, however, that the preferable subset of a repertoire may vary according to individual systems and adopting such a subset may cause unnecessary interoperability issues. Thus, limited repertoires should be used only when necessary.

10.2 Character Transfer Syntax of ASN1

The Character Transfer Syntax of ASN.1 corresponds to Secondary Character Encoding in this document. Character Transfer Syntax is defined as any transfer syntax for a character abstract syntax. ISO/IEC 8825-4 specify three families of standardized encoding rules, called Basic Encoding Rules (BER), Packed Encoding Rules (PER), and XML Encoding Rules (XER).

10.2.1 BER as Character Transfer Syntax
For the UniversalString type, the octet string shall contain the octets specified in ISO/IEC 10646-1, using the 4-octet canonical form (see 13.2 of ISO/IEC 10646-1), known as UCS-4. In the canonical form, each character within the entire coded character set shall be represented by a sequence of four octets. The most significant octet of this sequence shall be the group-octet. The least significant octet of this sequence shall be the cell-octet. Thus this sequence may be represented as:

Group-octet
Plane-octet
Row-octet
Cell-octet
For the UTF8String type, the octet string shall contain the octets specified in ISO/IEC 10646-1, Annex D or in Unicode Standard. In UTF-8, characters from the U+0000..U+10FFFF range (the UTF-16 accessible range) are encoded using sequences of 1 to 4 octets[RFC3629]. The only octet of a "sequence" of one has the higher-order bit set to 0, the remaining 7 bits being used to encode the character number. In a sequence of n octets, n>1, the initial octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bit(s) of that octet contain bits from the number of the character to be encoded. The following octet(s) all have the higher-order bit set to 1 and the following bit set to 0, leaving 6 bits in each to contain bits from the character to be encoded.

Table 1 summarizes the format of these different octet types.

Table 1 Mapping between 4-octet canonical form and UTF-8

	Range in 4-octet canonical form
	UTF-8†

	0000 0000 -- 0000 007F
	0xxxxxxx

	0000 0080 -- 0000 07FF
	110xxxxx 10xxxxxx

	0000 0800 -- 0000 FFFF
	1110xxxx 10xxxxxx 10xxxxxx

	0001 0000 -- 0010 FFFF
	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

†：”x” indicates bits available for encoding bits of the character number.
10.2.2 XER as Character Transfer Syntax
XML Encoding Rules (XER) for ASN.1 produce an XML document either in Basic XML representation or Canonical XML representation. XER mandates the use of UTF-8 to produce a string of octets.

10.3 Recommendation

The decision on Character Abstract Syntax automatically leads to the decision on the Character Transfer Syntax in the case of UTF8String and UniversalString. Thus, the Character Transfer Syntax should be taken into account when making a decision between UTF8String and UniversalString for Character Abstract Syntax.

As it is known that a BER encoding of a UTF8String for most text will be more compact than that of a UniversalString., If BER is chosen for the character transfer syntax, then it is recommended to choose the UTF8String instead of a UniversalString for the Character Abstract Syntax.

Furthermore, since the use of UTF-8 is mandated for XER encoding. If XER is chosen for the character transfer syntax, then it is further recommended to use the UTF8String as the default Type for Character Abstract Syntax.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft versions:

OMA-ORG- Internationalization_CharacterEncodings_Best_Practices-V1_0
	18 Apr 2007
	all
	initial version of BP as permanent doc

	
	14 Jun 2007
	Section 2, 3.2, 5, 7.1, 7.2,

Section 9 added
	Agreed input from:

· OMA-ARC-2007-0124-INP_ICEBP_References
· OMA-ARC-2007-0125R02-INP_ICEBP_ASN.1_Example

	
	18 Sep 2007
	Section 9 inserted

The rest renumbered
	Agreed input from:

· OMA-ARC-2007-0194R02-INP_ICEBP_XML_Example

	
	02 Oct 2007
	All
	Agreed input from

· OMA-ARC-2007-0219R01-CR_ICEBP_Clean_up

Clean up through the entire document

	Draft versions:

OMA-ORG-Internationalization_CharacterEncoding_Best_Practices-V1_0
	05 Oct 2007
	8.1.2

9.2

A
	Editorial fixes:

- Correction of implementation of above 0194R02 in 9.2

- Typo in 8.1.2

- History box fixed to show draft history

- Missing cross-references

- removed “s” from Encodings in title for consistency

	
	12 Dec 2007
	All
	Agreed input from:

· OMA-ARC-2007-0261R01-CR_ICEBP_RA_follow_up
· OMA-ARC-2007-0267-CR_ICEBP_XML_embed_mechanism

	
	30 Jan 2008
	All
	Minor Editorials:

· Sections 2 and 3 sorted alphabetically as per CONR comments

· 2008 template applied
· Added Table in Contents page 3

(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-OrgDoc-20080101-I]
(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-OrgDoc-20080101-I]

