OMA-TS-ParlayREST-AddressListManagement-V1_0-20100828D
Page 5 V(56)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful bindings for Parlay X Web Services –
Address List Management

	Draft Version 1.0 –28 Aug 2010

	Open Mobile Alliance

	OMA-TS-ParlayREST-AddressListManagement-V1_0-20100828D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
8
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
9
4.
Introduction
10
4.1
Version 1.0
10
5.
Address List Management API definition
11
5.1
Resources Summary
11
5.2
Address List Management ParlayREST API Data Structures
14
5.2.1
Type: ContactListCollection
14
5.2.2
Type: ContactList
14
5.2.3
Type: AttributeList
15
5.2.4
Type: Attribute
15
5.2.5
Type: MemberList
15
5.2.6
Type: Member
16
5.2.7
Type: ContactListReferenceCollection
16
5.2.8
Values of the Link “rel” attribute
16
5.3
Sequence Diagrams
17
5.3.1
Accessing the contact lists and members
17
5.4
Resource: Retrieval of contact lists
20
5.4.1
Request URI variables
20
5.4.2
Response Codes
20
5.4.2.1
Response Codes
20
5.4.2.2
Exception fault codes
20
5.4.3
GET
20
5.4.3.1
Example: Get all contact lists belonging to a user (Informative)
21
5.4.3.1.1
Request
21
5.4.3.1.2
Response
21
5.4.4
PUT
21
5.4.5
POST
21
5.4.6
DELETE
22
5.5
Resource: Contact list management
22
5.5.1
Request URI variables
22
5.5.2
Response Codes
22
5.5.2.1
Response Codes
22
5.5.2.2
Exception fault codes
22
5.5.3
GET
22
5.5.3.1
Example 1: Retrieve a contact list (Informative)
22
5.5.3.1.1
Request
22
5.5.3.1.2
Response
23
5.5.3.2
Example 2: Retrieve a non existing contact list (Informative)
23
5.5.3.2.1
Request
23
5.5.3.2.2
Response
23
5.5.4
PUT
23
5.5.4.1
Example: Create a contact list (Informative)
24
5.5.4.1.1
Request
24
5.5.4.1.2
Response
24
5.5.5
POST
24
5.5.6
DELETE
24
5.5.6.1
Example: Delete a contact list (Informative)
24
5.5.6.1.1
Request
24
5.5.6.1.2
Response
25
5.6
Resource: Retrieval of contact list attributes
25
5.6.1
Request URI variables
25
5.6.2
Response Codes
25
5.6.2.1
Response Codes
25
5.6.2.2
Exception fault codes
25
5.6.3
GET
25
5.6.3.1
Example: Get all attributes for a contact lists belonging to Bob (Informative)
25
5.6.3.1.1
Request
25
5.6.3.1.2
Response
26
5.6.4
PUT
26
5.6.5
POST
26
5.6.6
DELETE
26
5.7
Resource: Individual attribute for a contact list
26
5.7.1
Request URI variables
26
5.7.2
Response Codes
27
5.7.2.1
Response Codes
27
5.7.2.2
Exception fault codes
27
5.7.3
GET
27
5.7.3.1
Example 1: Retrieve an attribute value (Informative)
27
5.7.3.1.1
Request
27
5.7.3.1.2
Response
27
5.7.3.2
Example 2: Retrieve a non existing attribute (Informative)
27
5.7.3.2.1
Request
27
5.7.3.2.2
Response
28
5.7.4
PUT
28
5.7.4.1
Example: Create an attribute (Informative)
28
5.7.4.1.1
Request
28
5.7.4.1.2
Response
28
5.7.5
POST
29
5.7.6
DELETE
29
5.7.6.1
Example: Delete an attribute (Informative)
29
5.7.6.1.1
Request
29
5.7.6.1.2
Response
29
5.8
Resource: Members in a contact list
29
5.8.1
Request URI variables
29
5.8.2
Response Codes
30
5.8.2.1
Response Codes
30
5.8.2.2
Exception fault codes
30
5.8.3
GET
30
5.8.3.1
Example: Get all members for a contact lists belonging to a user (Informative)
30
5.8.3.1.1
Request
30
5.8.3.1.2
Response
30
5.8.4
PUT
30
5.8.5
POST
31
5.8.6
DELETE
31
5.9
Resource: Individual member on a contact list
31
5.9.1
Request URI variables
31
5.9.2
Response Codes
31
5.9.2.1
Response Codes
31
5.9.2.2
Exception fault codes
31
5.9.3
GET
31
5.9.3.1
Example 1: Retrieve a member (Informative)
32
5.9.3.1.1
Request
32
5.9.3.1.2
Response
32
5.9.3.2
Example 2: Retrieve a non existing member (Informative)
32
5.9.3.2.1
Request
32
5.9.3.2.2
Response
32
5.9.4
PUT
33
5.9.4.1
Example: Create an member (Informative)
33
5.9.4.1.1
Request
33
5.9.4.1.2
Response
33
5.9.5
POST
33
5.9.6
DELETE
33
5.9.6.1
Example: Delete a member (Informative)
34
5.9.6.1.1
Request
34
5.9.6.1.2
Response
34
5.10
Resource: Attributes for a member in a contact list
34
5.10.1
Request URI variables
34
5.10.2
Response Codes
34
5.10.2.1
Response Codes
34
5.10.2.2
Exception fault codes
34
5.10.3
GET
34
5.10.3.1
Example: Get all attributes of a member of a contact lists (Informative)
35
5.10.3.1.1
Request
35
5.10.3.1.2
Response
35
5.10.4
PUT
35
5.10.5
POST
35
5.10.6
DELETE
35
5.11
Resource: Individual attribute for a member in a contact list
35
5.11.1
Request URI variables
36
5.11.2
Response Codes
36
5.11.2.1
Response Codes
36
5.11.2.2
Exception fault codes
36
5.11.3
GET
36
5.11.3.1
Example 1: Retrieve a member (Informative)
36
5.11.3.1.1
Request
36
5.11.3.1.2
Response
36
5.11.3.2
Example 2: Retrieve a non existing attribute (Informative)
37
5.11.3.2.1
Request
37
5.11.3.2.2
Response
37
5.11.4
PUT
37
5.11.4.1
Example: Create an attribute (Informative)
37
5.11.4.1.1
Request
37
5.11.4.1.2
Response
38
5.11.5
POST
38
5.11.6
DELETE
38
5.11.6.1
Example: Delete an member (Informative)
38
5.11.6.1.1
Request
38
5.11.6.1.2
Response
38
5.12
Resource: Contact list references
38
5.12.1
Request URI variables
38
5.12.2
Response Codes
39
5.12.2.1
Response Codes
39
5.12.2.2
Exception fault codes
39
5.12.3
GET
39
5.12.3.1
Example: Get all attributes of a member of a contact lists (Informative)
39
5.12.3.1.1
Request
39
5.12.3.1.2
Response
39
5.12.4
PUT
39
5.12.5
POST
40
5.12.6
DELETE
40
Appendix A.
Change History (Informative)
41
A.1
Approved Version History
41
A.2
Draft/Candidate Version 1.0 History
41
Appendix B.
Static Conformance Requirements (Normative)
42
B.1
SCR for ParlayREST.ALM Server
42
B.1.1
SCR for ParlayREST.ALM. ContactLists Server
42
B.1.2
SCR for ParlayREST.ALM.IndividualContactList Server
42
B.1.3
SCR for ParlayREST.ALM.AttributesForAContactList Server
43
B.1.4
SCR for ParlayREST.ALM.IndividualAttributeForAContactList Server
43
B.1.5
SCR for ParlayREST.ALM.MemberInAContactList Server
44
B.1.6
SCR for ParlayREST.ALM.IndividualMemberInAContactList Server
44
B.1.7
SCR for ParlayREST.ALM.AttributesForAMemberInAContactList Server
44
B.1.8
SCR for ParlayREST.ALM.IndividualAttributeForAMemberInAContactList Server
45
B.1.9
SCR for ParlayREST.ALM.ContactListReferences Server
45
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations
47
Appendix D.
JSON examples (Informative)
48
D.1
Example: Get all contact lists belonging to a user (section 5.4.3.1)
48
D.2
Example 1: Retrieve a contact list (section 5.5.3.1)
49
D.3
Example 2: Retrieve a non existing contact list (section 5.5.3.2)
49
D.4
Example: Create a contact list (section 5.5.4.1)
50
D.5
Example: Get all attributes for a contact lists belonging to Bob (section 5.6.3.1)
50
D.6
Example 1: Retrieve an attribute value (section 5.7.3.1)
51
D.7
Example 2: Retrieve a non existing attribute (section 5.7.3.2)
51
D.8
Example: Create an attribute (section 5.7.4.1)
52
D.9
Example: Get all members for a contact lists belonging to a user (section 5.8.3.1)
52
D.10
Example 1: Retrieve a member (section 5.9.3.1)
53
D.11
Example 2: Retrieve a non existing member (section 5.9.3.2)
53
D.12
Example: Create an member (section 5.9.4.1)
54
D.13
Example: Get all attributes of a member of a contact lists (section 5.10.3.1)
54
D.14
Example 1: Retrieve a member (section 5.11.3.1)
55
D.15
Example 2: Retrieve a non existing attribute (section 5.11.3.2)
55
D.16
Example: Create an attribute (section 5.11.4.1)
56
D.17
Example: Get all attributes of a member of a contact lists (section 5.12.3.1)
56

Figures

11Figure 1 Resource structure defined by this specification

18Figure 2 Outline of the flows

1. Scope

This specification defines an HTTP protocol binding for an abstract API using the REST architectural style, based on an existing OMA enabler namely the Address List Management, as defined in [3GPP 29.199-13].
2. References

2.1 Normative References

	[3GPP 29.199-13]
	3GPP Technical Specification, “Open Service Access (OSA); Parlay X Web Services; Part X: Address List Management (Release 8)”, URL:http://www.3gpp.org/

	[REST_TS_Common]
	“RESTful bindings for Parlay X Web Services – Common”, Open Mobile Alliance™, OMA-TS-ParlayREST_Common-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee, R. Fielding, L. Masinter, January 2005, URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“White Paper on Guidelines for ParlayREST API specifications”, Open Mobile Alliance™, OMA-WP-Guidelines_for_ParlayREST_API_specifications, URL:http://www.openmobilealliance.org/

	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].

	[N/A]
	[N/A]

3.3
Abbreviations
	ALM
	Address List Management

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	PX
	Parlay X

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	

4. Introduction

The ParlayREST Technical Specification for Address List Management (ALM) contains the HTTP protocol binding for the Parlay X Address List Management Web Services specification, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).

4.1 Version 1.0

Version 1.0 of Address List Management ParlayREST API specification supports the following operations:
· Manage contact lists

· Manage attributes related to a contact list

· Manage members in a contact list

· Manage attributes related to a member in a contact list

· Manage nested contact lists related to a contact list
5. Address List Management API definition
This section is organized to support a comprehensive understanding of the Address List Management API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_TS_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). In addition, for each supported resource/verb combination, the table lists the Parlay X equivalent operation, where applicable. What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

The remaining subsections in section 5 contain the detailed specification for each of the resources. Each such subsection defines the resource, the request URI variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 5 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the Address List Management API.

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.

[image: image2.emf]//{serverRoot}/{apiVersion}

/{userId}

/addresslistmgt

/{memberId}

/members

/contactLists

/{contactListId}

/[ResourceRelPath]

/attributes

/contactListReferences

[ResourceRelPath]

/attributes

Relative path for light-weight resource

Heavy-weight resource

Figure 1 Resource structure defined by this specification
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods. The “PX” row indicates the Parlay X SOAP equivalent operation.

Purpose: To allow client to manage its lists of users
	Resource
	Base URL:
http://{serverRoot}/{apiVersion}/addresslistmgt
	Data Structures
	HTTP verbs

	
	
	
	GET
	POST
	PUT
	DELETE

	Contact lists
	/{userId}/contactLists
	ContactListCollection
	This operation retrieves all contact lists the user has created.
	No
	No
	No

	
	
	
	PX: getOwnersGroups
	-

	Individual contact list

	/{userId}/contactLists/{contactListId}

	ContactList
	This operation retrieves the contact list.
	No
	This operation creates or updates the entire contact list.
	This operation removes the contact list from the system including attributes and members.

	
	
	
	No PX equivalent
	-
	Partial PX equivalent: createGroup
	PX: deleteGroup

	Attributes for a contact list
	/{userId}/contactLists/{contactListId}/attributes
	AttributeList
	This operation returns all attributes for a contact list
	No
	This operation updates the entire list of attributes.
	No

	
	
	
	PX: queryGroupAttributes
	-
	PX: addGroupAttribute
	-

	Individual attribute for a contact list
	/{userId}/contactLists/{contactListId}/attributes/[ResourceRelPath]
	Attribute
	This operation returns the value of the contact list attribute
	No
	This operation creates or updates an attribute
	This operation deletes an attribute

	
	
	
	No PX equivalent
	-
	PX: addGroupAttribute
	PX: deleteGroupAttribute

	Members in a contact list

	/{userId}/contactLists/{contactListId}/members
	MemberList
	This operation retrieves the members in the contact list.
	No
	No
	No

	
	
	
	PX: queryMembers
	-

	Individual member in a contact list

	/{userId}/contactLists/{contactListId}/members/{memberId}

	Member
	This operation retrieves a user from a contact list.

(Normally only used to verify the existence of the member)
	No
	This operation creates and updates an entry in the contact list.
	This operation removes the member from the contact list.

	
	
	
	No PX equivalent
	-
	Partial PX equivalent
	PX: deleteMember

	Attributes for a member in a contact list
	/{userId}/contactLists/{contactListId}/members/{memberId}/attributes

	AttributeList
	This operation returns all attributes for a member
	No
	This operation updates the entire list of attributes.
	No

	
	
	
	PX: queryGroupMemberAttributes
	-
	PX: addGroupMemberAttribute
	-

	Individual attribute for a member in a contact list
	/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/[ResourceRelPath]
	Attribute
	This operation returns the value of the attribute for a member
	No
	This operation creates or updates an attribute for a member
	This operation removes an attribute for a member

	
	
	
	No PX equivalent
	-
	PX: addGroupMemberAttribute
	PX: deleteGroupMemberAttribute

	Contact list references
	/{userId}/contactLists/{contactListId}/ contactListReferences
	ContactListReferenceCollection
	This operation returns a list of references to other contact lists.
	No
	No
	No

	
	
	
	No PX equivalent
	-

5.2 Address List Management ParlayREST API Data Structures
The namespace for the Address List Management data types is:

urn:oma:xml:rest:addresslistmgt:1
The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace is used in the present document to refer to the data types defined in [REST_TS_Common]. The use of the names 'xsd' and ‘common’ is not semantically significant.
5.2.1 Type: ContactListCollection
	Element
	Type
	Optional
	Description

	contactList
	ContactList
[0..unbounded]
	Yes
	Contains a list of contact list identities.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named contactListCollection of type ContactListCollection is allowed in response bodies.

5.2.2 Type: ContactList
	Element
	Type
	Optional
	Description

	contactListId
	xsd:string
	Yes
	Contains the contact list identity.

The element is mandatory when used inside the ‘ContactListCollection’ type.

	memberList
	MemberList
	Yes
	Members in the contact list

	contactListReferenceCollection
	ContactListReferenceCollection
	Yes
	Contains references to other contact lists.

	attributeList
	AttributeList
	Yes
	Contains a list of attributes (e.g. display name) related to a contacts list.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named contactList of type ContactList is allowed in request and/or response bodies.

5.2.3 Type: AttributeList
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	attribute
	Attribute
[0..unbounded]
	Yes
	{name}
	Contains a list of attributes related to a contacts list or contacts.
The sub-element “name” of the type Attribute SHALL NOT be altered when this element is accessed as a light-weight resource.

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL.SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named attributeList of type AttributeList is allowed in request and/or response bodies.

Column [ResourceRelPath] includes relative resource paths for light-weight resource URLs that are used to access individual elements in the data structure. A string from this column needs to be appended to the corresponding heavy-weight resource URL in order to create light-weight resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath]..

[image: image3]
5.2.4 Type: Attribute
	Element
	Type
	Optional
	Description

	name
	xsd:string
	No
	Name of the attribute

	value
	xsd:string
	No
	Value of the attribute

A root element named attribute of type Attribute is allowed in request and/or response bodies.

5.2.5 Type: MemberList
	Element
	Type
	Optional
	Description

	member
	Member
[0..unbounded]
	Yes
	Contains a list of members related to a contacts list.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named memberList of type MemberList is allowed in response bodies.
5.2.6 Type: Member
	Element
	Type
	Optional
	Description

	memberId
	xsd:anyURI
	Yes
	Contains an identifier of a single member (e.g. tel URI).

The element is mandatory when used inside ‘MemberList’ type

	attributeList
	AttributeList
	Yes
	Contains a list of attributes (e.g. display name) related to a member.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named member of type Member is allowed in request and/or response bodies.

5.2.7 Type: ContactListReferenceCollection
	Element
	Type
	Optional
	Description

	link
	common:Link
[0..unbounded]
	Yes
	Contains references to other contact lists.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named contactListReferenceCollection of type ContactListReferenceCollection is allowed in request and/or response bodies.

5.2.8 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· ContactListCollection

· ContactList

· AttributeList

· Attribute

· MemberList

· Member

· ContactListReferenceCollection

These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
5.3.1 Accessing the contact lists and members

The figure below shows various ways to retrieve and manipulate data in contact lists. There is one application acting on behalf of Alice. The application is interested in one specific contact list, the list with id 'myFriends'. In that list there is one specific buddy, called Bob that is used in this example.

The resources:

1. To fetch all the contact lists the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists

2. To add of a contact list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}

3. To fetch all the buddies of a list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members

4. To add a specific buddy to a contact list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
5. To fetch all attributes for a contact list this resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes
6. To fetch all attributes of a specific buddy the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes
7. To fetch a single attribute of a specific buddy the following resource is used: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/[ResourceRelPath]
[image: image4.emf]Application

1.

GET

get all contact lists for Alice

Response – list of all contact lists

Server

2.

PUT

add a new contact list

Response

3.

GET

get all members in the myFriends list

Response – list of all members

4.

PUT

add Bob to the myFriends list

Response

5.

GET

get all attributes of the myFriends list

Response – the list of attributes

6.

GET

get all attributes of bob in the myFriends list

Response – the list of attributes

7.

GET

a single attribute from bob in the myFriends list

Response – the attribute

Figure 2 Outline of the flows

.

1. The application fetches all the lists for the presentity Alice by doing a GET on the following resource.
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists

The result contains all the contact lists for Alice.

2. The application adds a new contact list called 'myFriends' by doing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends

The result was successful.
3. The application fetches all the members of the 'myFriends' list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members

The response will contain all the members of the myFriends list from Alice, but will not contain the attributes of the list.

4. The application adds a new buddy called Bob to the MyFriends list doing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members/{bobUserId}

The result was successful.
5. The application fetches all attributes for the myFriends list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt /{aliceUserId}/contactLists/myFriends/attributes

The response will contain all attributes of the myFriends list.
6. The application fetches all attributes of Bob in the myFriends list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members/ {bobUserId}/attributes

The result contains all the attributes of bob in this list.
7. The application fetches the display name attribute of Bob in the myFriends list by doing a GET on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/contactLists/myFriends/members/ {bobUserId}/attributes/display-name

The result contains Bob’s display name attribute.
5.4 Resource: Retrieval of contact lists

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists
The userId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all contact lists belonging to a user.

5.4.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	User identity. Example: tel:+1555887766

5.4.2 Response Codes

5.4.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.4.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.4.3 GET
This operation is used for retrieval of all address list for a given user identity.

Note: ParlayX SOAP equivalent is getOwnersGroups

5.4.3.1 Example: Get all contact lists belonging to a user
(Informative)
Retrieve all contact lists belonging to a user, and return result in XML format.

5.4.3.1.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists HTTP/1.1
Accept: application/xml

Host: example.com:80

5.4.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:contactListCollection xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

<contactList>

 <contactListId>Bob public</contactListId>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 </member>

 </memberList>

</contactList>

<contactList>

 <contactListId>Bob private</contactListId>

 <memberList>

 <member>

 <memberId>mailto:wife@example.com</memberId>

 <attributeList>

 <attribute>

 <name>married</name>

 <value>true</value>

 </attribute>

 </attributeList>

 </member>

 </memberList>

</contactList> <resourceURL>http://example.com/1/addresslistmgt/mailto:bob@example.com/contactLists </resourceURL>

</alm:contactListCollection>

5.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.4.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
5.5 Resource: Contact list management
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}
The userId and contactListId must be percent-encoded according to [RFC3986].

This resource is used to manage an individual contact list, which include creation, update, retrieval, and delete operations for a particular contact list.

5.5.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+1555887766

	contactListId
	contact list identifier. Example: mailto:bob@example.com

5.5.2 Response Codes

5.5.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.5.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.5.3 GET

This operation is used for retrieval of a given contact list. (This operation is normally only used to verify the existence of the contact list).
Note: There is no ParlayX SOAP equivalent operation.
5.5.3.1 Example 1: Retrieve a contact list
(Informative)
5.5.3.1.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.5.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:contactList xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <contactListId>Bob public</contactListId>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 </member>

 </memberList>

</alm:contactList>

5.5.3.2 Example 2: Retrieve a non existing contact list
(Informative)
5.5.3.2.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.5.3.2.2 Response

	HTTP/1.1 404 Not Found
Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:common:1">

 <link rel="contactList"

 href="http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}" />

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid input value for message part %1</text>

 <variables>Boblist</variables>

 </serviceException>

</common:requestError>

5.5.4 PUT

This operation is used for creation or update of a contact list.

Note: Partially ParlayX SOAP equivalent is createGroup.

5.5.4.1 Example: Create a contact list
(Informative)
5.5.4.1.1 Request

	PUT ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80
<?xml version="1.0" encoding="UTF-8"?>

<alm:contactList xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <contactListId>Bob public</contactListId>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 </member>

 </memberList>

</alm:contactList>

5.5.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:contactList xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <contactListId>Bob public</contactListId>

 <memberList>

 <member>

 <memberId>mailto:alice@example.com</memberId>

 </member>

 </memberList>

</alm:contactList>

5.5.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].

5.5.6 DELETE
This operation deletes a contact list.

Note: ParlayX SOAP equivalent is deleteGroup.
5.5.6.1 Example: Delete a contact list
(Informative)
5.5.6.1.1 Request

	DELETE ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.5.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.6 Resource: Retrieval of contact list attributes

The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes
The userId and contactListId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all contact lists belonging to a user.

5.6.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+4799887766

5.6.2 Response Codes

5.6.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.6.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.6.3 GET

This operation is used for retrieval of all address list for a given user identity.

Note: ParlayX SOAP equivalent is queryGroupAttributes

5.6.3.1 Example: Get all attributes for a contact lists belonging to Bob
(Informative)
Retrieve all attributes for a contact lists belonging to Bob, and return result in XML format.

5.6.3.1.1 Request

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes HTTP/1.1
Accept: application/xml

Host: example.com:80

5.6.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:attributeList xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 <attribute>

 <name>Pet</name>

 <value>dog</value>

 </attribute>

</alm:attributeList>

5.6.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.6.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.6.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.7 Resource: Individual attribute for a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/[ResourceRelPath]
The userId, contactListId and ResourceRelPath must be percent-encoded according to [RFC3986].

This resource is used to manage attributes on individual contact list, which include creation, update, retrieval, and delete operations for the attributes

5.7.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+4799887766

	contactListId
	contact list identifier. Example: mailto:bob@example.com

	ResourceRelPath
	Name of the attribute. Example: Married

5.7.2 Response Codes

5.7.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.7.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.7.3 GET

This operation is used for retrieval of the value a given attribute on a contact list.
Note: There is no ParlayX SOAP equivalent operation.
5.7.3.1 Example 1: Retrieve an attribute value
(Informative)
5.7.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.7.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:attribute xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <name>Married</name>

 <value>true</value>
</alm:attribute>

5.7.3.2 Example 2: Retrieve a non existing attribute
(Informative)
5.7.3.2.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Alien HTTP/1.1
Accept: application/xml

Host: example.com:80

5.7.3.2.2 Response

	HTTP/1.1 404 Not Found
Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:common:1">

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid input value for message part %1</text>

 <variables>Alien</variables>

 </serviceException>

</common:requestError>

5.7.4 PUT

This operation is used for creation or update of a contact list.

Note: Partially ParlayX SOAP equivalent is addGroupAttribute.

5.7.4.1 Example: Create an attribute
(Informative)
5.7.4.1.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Content-Type: application/xml
Accept: application/xml

Host: example.com:80
<?xml version="1.0" encoding="UTF-8"?>

<alm:attribute xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <name>Married</name>

 <value>true</value>
</alm:attribute>

5.7.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:attribute xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <name>Married</name>

 <value>true</value>
</alm:attribute>

5.7.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.7.6 DELETE
This operation deletes a contact list.

Note: ParlayX SOAP equivalent is deleteGroupAttribute.
5.7.6.1 Example: Delete an attribute
(Informative)
5.7.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.7.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.8 Resource: Members in a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members
The userId and contactListId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all members of a contact list belonging to a user.

5.8.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+4799887766

	contactListId
	Identity of the contact list. Example: myList

5.8.2 Response Codes

5.8.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.8.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.8.3 GET

This operation is used for retrieval of all members of contact list for a given user identity.

Note: ParlayX SOAP equivalent is queryMembers

5.8.3.1 Example: Get all members for a contact lists belonging to a user
(Informative)
Retrieve all members of a contact lists belonging to user, and return result in XML format.

5.8.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members HTTP/1.1
Accept: application/xml

Host: example.com:80

5.8.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:memberList xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">
<member>
<memberId>mailto:alice@example.com</memberId>

 <attributeList>
 <attribute>

 <name>Married</name>

 <value>true</value>
 </attribute>
 </attributeList>
</member>
<member>
 <memberId>tel:+1555887766</memberId>

</member>

<resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members</resourceURL>
</alm:memberList>

5.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.8.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.8.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.9 Resource: Individual member on a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
The userId, contactListId and memberId must be percent-encoded according to [RFC3986].

This resource is used to manage members on individual contact list, which include creation, update, retrieval, and delete operations for the members

5.9.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+1555887766

	contactListId
	contact list identifier. Example: mailto:bob@example.com

	memberId
	identifier of the member. Example: tel:+1555889977

5.9.2 Response Codes

5.9.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.9.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.9.3 GET

This operation is used for retrieval of user from a contact list.
Note: There is no ParlayX SOAP equivalent operation.
5.9.3.1 Example 1: Retrieve a member
(Informative)
5.9.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.9.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:member xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

<memberId>tel:+1555887766</memberId>
 <attributeList>
 <attribute>

 <name>Married</name>

 <value>true</value>
 </attribute>
 </attributeList></alm:member>

Editor’s note: it is FFS how to deal with the duplication of memberId in the URL and body
5.9.3.2 Example 2: Retrieve a non existing member
(Informative)
5.9.3.2.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.9.3.2.2 Response

	HTTP/1.1 404 Not Found
Content-Type: application/xml

Content-Length: nnn
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:common:1">

 <serviceException>

 <messageId>SVC0002</messageId>

 <text> Invalid input value for message part %1</text>

 <variables>Married</variables>

 </serviceException>

</common:requestError>

5.9.4 PUT

This operation is used for creation or update of a member on a contact list.

Note: Partially ParlayX SOAP equivalent is addMember.

5.9.4.1 Example: Create an member
(Informative)
5.9.4.1.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: example.com:80
<?xml version="1.0" encoding="UTF-8"?>

<alm:member xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <memberId>tel:+4799887766</memberId>

 <attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>
 </attribute>
 </attributeList>

</alm:member>

5.9.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:member xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">

 <memberId>tel:+4799887766</memberId>

<attributeList>

 <attribute>

 <name>Married</name>

 <value>true</value>
 </attribute>
</attributeList>

</alm:member>

5.9.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.9.6 DELETE
This operation deletes a member in a contact list.

Note: ParlayX SOAP equivalent is deleteMember.
5.9.6.1 Example: Delete a member
(Informative)
5.9.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/xml

Host: example.com:80

5.9.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.10 Resource: Attributes for a member in a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes
The userId, contactListId and memberId must be percent-encoded according to [RFC3986].

This resource is used to retrieve all attributes for a member of a contact list,.

5.10.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+1555887766

	contactListId
	Identity of the contact list. Example:

	memberId
	Name of the member. Example: +1555998877

5.10.2 Response Codes

5.10.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.10.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.10.3 GET

This operation is used for retrieval of all members of contact list for a given user identity.

Note: ParlayX SOAP equivalent is queryGroupMemberAttributes

5.10.3.1 Example: Get all attributes of a member of a contact lists
(Informative)
Retrieve all attributes of a member of a contact lists belonging to user, and return result in XML format.

5.10.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes HTTP/1.1
Accept: application/xml
Host: example.com:80

5.10.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 19 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:attributeList xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">
 <attribute>

 <name>Married</name>

 <value>true</value>

 </attribute>

 <attribute>

 <name>Pet</name>

 <value>cat</value>

 </attribute>
<resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes</resourceURL>
</alm:attributeList>

5.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.10.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.10.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.11 Resource: Individual attribute for a member in a contact list
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/[ResourceRelPath]
The userId, contactListId, memberId, and ResourceRelPath must be percent-encoded according to [RFC3986].

This light-weight resource is used to manage attributes for a member in a contact list, which include creation, update, retrieval, and delete operations.

5.11.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+1555887766

	contactListId
	contact list identifier. Example: myFriends

	memberId
	Name of the member. Example: tel:+1555887777

	[ResourceRelPath]
	Light-weight relative resource path. The allowed string for this light-weight resource is {name}, as defined in the [ResourceRelPath] column in table 5.2.3. {name} indicates the name of the attribute. Example: Married

5.11.2 Response Codes

5.11.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.11.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.11.3 GET

This operation is used for retrieval of attribute values of a member of a user from a contact list.
Note: There is no ParlayX SOAP equivalent operation.
5.11.3.1 Example 1: Retrieve a member
(Informative)
5.11.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.11.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 29 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:attribute xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">
 <name>Married</name>

 <value>true</value>
</alm:attribute>

5.11.3.2 Example 2: Retrieve a non existing attribute
(Informative)
5.11.3.2.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Divorced HTTP/1.1
Accept: application/xml

Host: example.com:80

5.11.3.2.2 Response

	HTTP/1.1 404 Not Found
Content-Type: application/xml

Content-Length: nnn
Date: Thu, 29 Jun 2010 12:55:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:common:1">

 <serviceException>

 <messageId>SVC0002</messageId>

 <text>Invalid Invalid input value for message part %1</text>

 <variables>Divorced</variables>

 </serviceException>

</common:requestError>

5.11.4 PUT

This operation is used for creation or update of an attribute of a member on a contact list.

Note: Partially ParlayX SOAP equivalent is addGroupMemberAttribute.

5.11.4.1 Example: Create an attribute
(Informative)
5.11.4.1.1 Request

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Content-Type: application/xml
Accept: application/xml

Host: example.com:80
<?xml version="1.0" encoding="UTF-8"?>

<alm:attribute xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">
 <name>Married</name>

 <value>true</value>
</alm:attribute>

5.11.4.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberName}/attributes/Married
Date: Thu, 09 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:attribute xmlns:alm="urn:oma:xml:rest:addresslistmgt:1">
 <name>Married</name>

 <value>true</value>
</alm:attribute>

5.11.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: ’GET/PUT/DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.11.6 DELETE
This operation deletes a member in a contact list.

Note: ParlayX SOAP equivalent is deleteGroupMemberAttribute.
5.11.6.1 Example: Delete an member
(Informative)
5.11.6.1.1 Request

	DELETE ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Accept: application/xml

Host: example.com:80

5.11.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 09 Jun 2010 12:53:23 GMT

5.12 Resource: Contact list references
The resource used is:

http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences
The userId and contactListId must be percent-encoded according to [RFC3986].

This resource is used to retrieve list of references for all nested contact lists.

5.12.1 Request URI variables

The following request URI variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

	apiVersion
	version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

	userId
	identity of the user who created a contact lists. Example: tel:+1555887766

	contactListId
	Identity of the contact list. Example: myList

5.12.2 Response Codes

5.12.2.1 Response Codes

For HTTP response codes, see [REST_TS_Common].

5.12.2.2 Exception fault codes

For Policy Exception and Service Exception fault codes applicable to Address List Management, see [3GPP 29.199-13].
5.12.3 GET

This operation is used for retrieval of all members of contact list for a given user identity.

Note: ParlayX SOAP equivalent is queryGroupMemberAttributes

5.12.3.1 Example: Get all attributes of a member of a contact lists
(Informative)
Retrieve all attributes of a member of a contact lists belonging to user, and return result in XML format.

5.12.3.1.1 Request

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences HTTP/1.1
Accept: application/xml

Host: example.com:80

5.12.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnn
Date: Thu, 19 Jun 2010 12:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<alm:contactListReferenceCollection xmlns:alm="urn:oma:xml:rest:addresslistmgt:1" >

 <link rel="ContactList" href="http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId1}"/>

 <link rel="ContactList" href="http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId2}"/>

 <resourceURL>http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences</resourceURL>

</alm:contactListReferenceCollection>

5.12.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.12.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

5.12.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

OMA-TS-ParlayREST-AddressListManagement-V1_0
	15 Apr 2010
	Many
	TS skeleton prepared

	
	19 May 2010
	5.1
	OMA-ARC-REST-2010-0228R03-CR_Address_List_Management_resources_summary

	
	19 May 2010
	5.2
	OMA-ARC-REST-2010-0229R02-CR_Address_List_Management_data_structures

	
	19 May 2010
	5.3
	OMA-ARC-REST-2010-0230R02-CR_Address_List_Management_sequence_diagrams

	
	29 Jun 2010
	5.1, 5.2
	OMA-ARC-REST-2010-0278R04-CR_Add_list_reference_management.doc

	
	29 Jun 2010
	2.1, 4.1
	OMA-ARC-REST-2010-0291R01-CR_ALM_TS_updates_sections_2to5.doc

	
	29 Jun 2010
	2.1, 5.4
	OMA-ARC-REST-2010-0274R01-CR_ALM_example_1.doc

	
	29 Jun 2010
	5.5
	OMA-ARC-REST-2010-0275R01-CR_ALM_example_2.doc

	
	29 Jun 2010
	5.6
	OMA-ARC-REST-2010-0318R01-CR_ALM_example_3.doc

	
	7 Jul 2010
	5.1
	OMA-ARC-REST-2010-0278R04-CR_Add_list_reference_management.zip

	
	7 Jul 2010
	5.3.1
	OMA-ARC-REST-2010-0305R02-CR_ALM_TS_sequence_diagrams_updates.zip

	
	7 Jul 2010
	Add 5.7
	OMA-ARC-REST-2010-0319R02-CR_ALM_example_4.doc

	
	7 Jul 2010
	Add 5.8
	OMA-ARC-REST-2010-0320R04-CR_ALM_example_5.doc

	
	7 Jul 2010
	Add 5.9
	OMA-ARC-REST-2010-0321R03-CR_ALM_example_6.doc

	
	7 Jul 2010
	Add 5.10
	OMA-ARC-REST-2010-0323R02-CR_ALM_example_7.doc

	
	7 Jul 2010
	Add 5.11
	OMA-ARC-REST-2010-0326R03-CR_ALM_example_8.doc

	
	7 Jul 2010
	Add 5.12
	OMA-ARC-REST-2010-0327R02-CR_ALM_example_9.zip

	
	7 Jul 2010
	Add B1.x
	OMA-ARC-REST-2010-0335R01-CR_ALM_SCR_update.doc

	
	14 Jul 2010
	5.4+
	OMA-ARC-REST-2010-0355-CR_ALM_Validation_errors.doc

	
	28 Aug 2010
	Add app. D
	OMA-ARC-REST-2010-0401-CR_JSON_examples_for_ALM.doc

	
	28 Aug 2010
	Update app. B
	OMA-ARC-REST-2010-0402-CR_SCR_updates_for_ALM.doc

	
	28 Aug 2010
	Replace app. C
	OMA-ARC-REST-2010-0432R01-CR_empty_appendix_C_form_urlencoding_in_ALM.doc

	
	28 Aug 2010
	5.3.1
	OMA-ARC-REST-2010-0437-CR_ALM_TS_sequence_diagrams_more_updates.doc

	
	28 Aug 2010
	D
	OMA-ARC-REST-2010-0394-INP_Fixing_JSON_references.doc

	
	28 Aug 2010
	5.2.x
	OMA-ARC-REST-2010-0445-CR_DevCap_resourceURL_description.doc

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for ParlayREST.ALM Server

	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-SUPPORT-S-001-M
	Support for the ALM REST Enabler
	5
	

	PARLAYREST-ALM-SUPPORT-S-002-M
	Support for the XML request & response format
	5
	

	PARLAYREST-ALM-SUPPORT-S-003-M
	Support for the JSON request & response format
	5
	

	
	
	
	

B.1.1 SCR for ParlayREST.ALM. ContactLists Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM- CON-LS-S-001-M
	Support for retrieving all contact lists belonging to a user.
	5.4
	

	PARLAYREST-ALM- CON-LS-S-002-M
	This operation retrieves all contact lists the user has created - GET

	5.4.3
	

B.1.2 SCR for ParlayREST.ALM.IndividualContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-CON-LS-001-M
	Support for management (create, update, retrieve and delete) of an individual contact list.
	5.5
	

	PARLAYREST-ALM-IND-CON-LS-002-M
	This operation retrieves the contact list - GET

	5.5.3
	

	PARLAYREST-ALM-IND-CON-LS-003-M
	This operation creates or updates the entire contact list - PUT

	5.5.4
	

	PARLAYREST-ALM-IND-CON-LS-004-M
	This operation removes the contact list from the system including attributes and members - DELETE

	5.5.6
	

B.1.3 SCR for ParlayREST.ALM.AttributesForAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-ATTRIB-CON-LS-S-001-O
	Support for retrieving all attributes for a given contact list belonging to a user.
	5.6
	PARLAYREST-ALM-ATTRIB-CON-LS-S-002-O

PARLAYREST-ALM-ATTRIB-CON-LS-S-003-O

	PARLAYREST-ALM-ATTRIB-CON-LS-S-002-O
	This operation returns all attributes for a contact list - GET

	5.6.3
	

	PARLAYREST-ALM-ATTRIB-CON-LS-S-003-O
	This operation updates the entire list of attributes - PUT
	5.6.4 Editor’s note:5.6.4 must be added
	

B.1.4 SCR for ParlayREST.ALM.IndividualAttributeForAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-ATTRIB-CON-LS- MGT-001-O
	Support for management (create, update, retrieve and delete) of individual attributes for acontact list.
	5.7
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS- MGT-002-O
	This operation returns the value of the contact list attribute -GET

	5.7.3
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS- MGT-003-O
	This operation creates or updates an attribute - PUT

	5.7.4
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS- MGT-004-O
	This operation deletes an attribute - DELETE

	5.7.6
	

B.1.5 SCR for ParlayREST.ALM.MemberInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-MBR-CON-LS-S-001-O

	Supports retrieval of all members of a contact list belonging to a user
	5.8
	PARLAYREST-ALM-MBR-CON-LS-S-002-O

	PARLAYREST-ALM-MBR-CON-LS-S-002-O

	This operation retrieves the members in the contact list - GET

	5.8.3
	

B.1.6 SCR for ParlayREST.ALM.IndividualMemberInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-MBR-CON-LS-S-001-O

	Support for management (create, update, retrieve and delete) of members on individual contact list.
	5.9
	PARLAYREST-ALM-IND-MBR-CON-LS-S-002-O

PARLAYREST-ALM-IND-MBR-CON-LS-S-003-O

PARLAYREST-ALM-IND-MBR-CON-LS-S-004-O

	PARLAYREST-ALM-IND-MBR-CON-LS-S-002-O

	This operation retrieves a user from a contact list - GET

	5.9.3
	

	PARLAYREST-ALM-IND-MBR-CON-LS-S-003-O

	This operation creates and updates an entry in the contact list - PUT

	5.9.4
	

	PARLAYREST-ALM-IND-MBR-CON-LS-S-004-O

	This operation removes the member from the contact list - DELETE

	5.9.6
	

B.1.7 SCR for ParlayREST.ALM.AttributesForAMemberInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-001-O

	Supports retrieval of all attributes of a member of a contact list belonging to a user
	5.10
	PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-002-O

PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-003-O

	PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-002-O

	This operation returns all attributes for a member – GET

	5.10.3
	

	PARLAYREST-ALM-ATTRIB-MBR-CON-LS-S-003-O

	This operation updates the entire list of attributes - PUT
	5.10.4 Editor’s note:5.10.4 must be added
	

B.1.8 SCR for ParlayREST.ALM.IndividualAttributeForAMemberInAContactList Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-IND-ATTRIB-CON-LS-S-001-O

	Support for management (create, update, retrieve and delete) of member attributes on individual contact list.
	5.11
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS-S-002-O

	This operation returns the value of the attribute for a member – GET

	5.11.3
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS-S-003-O

	This operation creates or updates an attribute for a member – PUT
	5.11.4
	

	PARLAYREST-ALM-IND-ATTRIB-CON-LS-S-004-O

	This operation removes an attribute for a member - DELETE

	5.11.6
	

B.1.9 SCR for ParlayREST.ALM.ContactListReferences Server
	Item
	Function
	Reference
	Requirement

	PARLAYREST-ALM-CON-LS-REF-S-001-O

	Supports retrieval of a list of references for all nested contact lists.

	5.12
	PARLAYREST-ALM-CON-LS-REF-S-002-O

	PARLAYREST-ALM-CON-LS-REF-S-002-O

	This operation returns a list of references to other contact lists. –GET

	5.12.3
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations

C.1

	
	
	

	
	
	

	

C.1.1
C.1.1.1
	

C.1.1.2
	

In all ParlayREST specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no x-www-form-urlencoded parameters to specify.

Appendix D. JSON examples
(Informative)

D.1

	

	

D.2

	

	

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for Parlay REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using a JSON binding. The examples follow the XML to JSON serialization rules in [REST_TS_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_TS_Common].

For full details on the operations themselves please refer to the section number indicated.

Example: Get all contact lists belonging to a user (section 5.4.3.1)

Request:

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"contactListCollection": {

 "contactList": [

 {

 "contactListId": "Bob public",

 "memberList": {"member": {"memberId": "mailto:alice@example.com"}}

 },

 {

 "contactListId": "Bob private",

 "memberList": {"member": {

 "attributeList": {"attribute": {

 "name": "married",

 "value": "true"

 }},

 "memberId": "mailto:wife@example.com"

 }}

 }

],

 "resourceURL": "http://example.com/1/addresslistmgt/mailto:bob@example.com/contactLists "

}}

Example 1: Retrieve a contact list (section 5.5.3.1)

Request:

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"contactList": {

 "contactListId": "Bob public",

 "memberList": {"member": {"memberId": "mailto:alice@example.com"}}

}}

Example 2: Retrieve a non existing contact list (section 5.5.3.2)

Request:

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"requestError": {

 "link": {

 "href": "http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}",

 "rel": "contactList"

 },

 "serviceException": {

 "messageId": "SVC0002",

 "text": "Invalid input value for message part %1",

 "variables": "Boblist"

 }

}}

Example: Create a contact list (section 5.5.4.1)

Request:

	PUT ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId} HTTP/1.1
Accept: application/json

Host: example.com:80
{"contactList": {

 "contactListId": "Bob public",

 "memberList": {"member": {"memberId": "mailto:alice@example.com"}}

}}

Response:

	HTTP/1.1 201 Created
Content-Type: application/json

Location:http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}
Date: Thu, 09 Aug 2010 12:51:59 GMT

{"contactList": {

 "contactListId": "Bob public",

 "memberList": {"member": {"memberId": "mailto:alice@example.com"}}

}}

Example: Get all attributes for a contact lists belonging to Bob (section 5.6.3.1)

Request:

	GET ../ {apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"attributeList": {"attribute": [

 {

 "name": "Married",

 "value": "true"

 },

 {

 "name": "Pet",

 "value": "dog"

 }

]}}

Example 1: Retrieve an attribute value (section 5.7.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"attribute": {

 "name": "Married",

 "value": "true"

}}

Example 2: Retrieve a non existing attribute (section 5.7.3.2)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Alien HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"requestError": {"serviceException": {

 "messageId": "SVC0002",

 "text": "Invalid input value for message part %1",

 "variables": "Alien"

}}}

Example: Create an attribute (section 5.7.4.1)

Request:

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married HTTP/1.1
Content-Type: application/json

Accept: application/json

Host: example.com:80
{"attribute": {

 "name": "Married",

 "value": "true"

}}

Response:

	HTTP/1.1 201 Created
Content-Type: application/json

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/attributes/Married
Date: Thu, 09 Aug 2010 12:51:59 GMT
[{"attribute": {

 "name": "Married",

 "value": "true"

}}

Example: Get all members for a contact lists belonging to a user (section 5.8.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"memberList": {

 "member": [

 {

 "attributeList": {"attribute": {

 "name": "Married",

 "value": "true"

 }},

 "memberId": "mailto:alice@example.com"

 },

 {"memberId": "tel:+1555887766"}

],

 "resourceURL": "http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members"

}}

Example 1: Retrieve a member (section 5.9.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"member": {

 "attributeList": {"attribute": {

 "name": "Married",

 "value": "true"

 }},

 "memberId": "tel:+1555887766"

}}

Example 2: Retrieve a non existing member (section 5.9.3.2)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json

Content-Length: nnn

Date: Thu, 09 Aug 2010 12:51:59 GMT

{"requestError": {"serviceException": {

 "messageId": "SVC0002",

 "text": " Invalid input value for message part %1",

 "variables": "Married"

}}}

Example: Create an member (section 5.9.4.1)

Request:

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId} HTTP/1.1
Accept: application/json

Content-Type: application/json

Host: example.com:80
{"member": {

 "attributeList": {"attribute": {

 "name": "Married",

 "value": "true"

 }},

 "memberId": "tel:+4799887766"

}}

Response:

	HTTP/1.1 201 Created
Content-Type: application/json

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}
Date: Thu, 09 Aug 2010 12:51:59 GMT
{"member": {

 "attributeList": {"attribute": {

 "name": "Married",

 "value": "true"

 }},

 "memberId": "tel:+4799887766"

}}

Example: Get all attributes of a member of a contact lists (section 5.10.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 19 Aug 2010 12:51:59 GMT

{"attributeList": {

 "attribute": [

 {

 "name": "Married",

 "value": "true"

 },

 {

 "name": "Pet",

 "value": "cat"

 }

],

 "resourceURL": "http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes"

}}

Example 1: Retrieve a member (section 5.11.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 29 Aug 2010 12:51:59 GMT

{"attribute": {

 "name": "Married",

 "value": "true"

}}

Example 2: Retrieve a non existing attribute (section 5.11.3.2)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Divorced HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json

Content-Length: nnn

Date: Thu, 29 Aug 2010 12:55:59 GMT

{"requestError": {"serviceException": {

 "messageId": "SVC0002",

 "text": "Invalid Invalid input value for message part %1",

 "variables": "Divorced"

}}}

Example: Create an attribute (section 5.11.4.1)

Request:

	PUT ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberId}/attributes/Married HTTP/1.1
Content-Type: application/json
Accept: application/json

Host: example.com:80
{"attribute": {

 "name": "Married",

 "value": "true"

}}

Response:

	HTTP/1.1 201 Created
Content-Type: application/json

Location:http://{serverRoot}/{apiVersion}/ addresslistmgt/{userId}/contactLists/{contactListId}/members/{memberName}/attributes/Married
Date: Thu, 09 Aug 2010 12:51:59 GMT
{"attribute": {

 "name": "Married",

 "value": "true"

}}

Example: Get all attributes of a member of a contact lists (section 5.12.3.1)

Request:

	GET ../{apiVersion}/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences HTTP/1.1
Accept: application/json

Host: example.com:80

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnn

Date: Thu, 19 Aug 2010 12:51:59 GMT

{"contactListReferenceCollection": {

 "link": [

 {

 "href": "http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId1}",

 "rel": "ContactList"

 },

 {

 "href": "http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId2}",

 "rel": "ContactList"

 }

],

 "resourceURL": "http://example.com/1/addresslistmgt/{userId}/contactLists/{contactListId}/contactListReferences"

}}

Editor Note: In the current solution for light-weight resources, when retrieving attributes there might be repetition of elements that appear both as a part of resource URL and the corresponding data structure. It is for FFS to see if this repetition can be avoided.

(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

