 STYLEREF ZDID * MERGEFORMAT
Page 4 V(43)

	 [image: image1.jpg]
	

	RESTful Network API for
Capability Discovery

	Draft Version 1.0 – 16 Jul 2012

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20120716-D
<< In the flow text in this template, yellow marks are used for placeholders that need to be replaced by real-world text, and cyan marks are used for explanations that need to be deleted in the final document.
This is a special version of the Technical Specification (TS) template, intended to be used only for RESTful Network application programming interface (API) specifications.
Delete this comment.>>

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
10
4.1
Version 1.0
10
5.
Capability Discovery API definition
11
5.1
Resources Summary
11
5.2
Data Types
15
5.2.1
XML Namespaces
15
5.2.2
Structures
15
5.2.2.1
Type: OwnServiceCapabilityList
15
5.2.2.2
Type: OwnServiceCapability
15
5.2.2.3
Type: OwnServiceCapabilityGlobalStatusChange
16
5.2.2.4
Type: ContactServiceCapabilities
16
5.2.3
Enumerations
17
5.2.3.1
Enumeration: CapabilityStatus
17
5.2.4
Values of the Link “rel” attribute
17
5.3
Sequence Diagrams
17
5.3.1
Retrieving and managing all own service capabilities
17
5.3.2
Individual own service capability handling
18
5.3.3
Retrieving service capabilities for a contact
19
6.
Detailed specification of the resources
21
6.1
Resource: Own service capabilities
21
6.1.1
Request URL variables
21
6.1.2
Response Codes and Error Handling
22

GET
22
6.1.3
22

Example 1: retrieve a list with status of all own service capabilities (Informative)
22
6.1.3.1
22
6.1.3.1.1
Request
22
6.1.3.1.2
Response
22
6.1.3.2
Example 2: retrieve a list with status of all own service capabilities using a filter (Informative)
23
6.1.3.2.1
Request
23
6.1.3.2.2
Response
23
6.1.4
PUT
23
6.1.5
POST
24
6.1.5.1
Example 1: Register a new service capability (Informative)
24
6.1.5.1.1
Request
24
6.1.5.1.2
Response
24
6.1.6
DELETE
24
6.1.6.1
Example 1: Deregister all own service capabilities (Informative)
24
6.1.6.1.1
Request
24
6.1.6.1.2
Response
25
6.2
Own service capabilities global status change
25
6.2.1
Request URL variables
25
6.2.2
Response Codes and Error Handling
25
6.2.3
GET
25
6.2.4
PUT
26
6.2.5
POST
26
6.2.5.1
Example 1: Disable all own service capabilities (Informative)
26
6.2.5.1.1
Request
26
6.2.5.1.2
Response
26
6.2.6
DELETE
27
6.3
Resource: Individual own service capability
27
6.3.1
Request URL variables
27
6.3.2
Response Codes and Error Handling
27
6.3.3
GET
27
6.3.3.1
Example 1: Retrieve status of an individual own service capability (Informative)
28
6.3.3.1.1
Request
28
6.3.3.1.2
Response
28
6.3.4
PUT
28
6.3.4.1
Example 1: Enable an individual own service capability (Informative)
28
6.3.4.1.1
Request
28
6.3.4.1.2
Response
29
6.3.5
POST
29
6.3.6
DELETE
29
6.3.6.1
Example 1: Deregister an own service capability (Informative)
29
6.3.6.1.1
Request
29
6.3.6.1.2
Response
29
6.4
Resource: Service capabilities for a contact
29
6.4.1
Request URL variables
30
6.4.2
Response Codes and Error Handling
30

GET
30
6.4.3
30
6.4.3.1
Example 1: Retrieve service capabilities for a contact (Informative)
30
6.4.3.1.1
Request
30
6.4.3.1.2
Response
31
6.4.3.2
Example 2: Check whether contact has a specific service capability (Informative)
31
6.4.3.2.1
Request
31
6.4.3.2.2
Response
31
6.4.3.3
Example 3: Check whether contact is RCS user or not (Informative)
31
6.4.3.3.1
Request
31
6.4.3.3.2
Response
32
6.4.4
PUT
32
6.4.5
POST
32
6.4.6
DELETE
32
7.
Fault definitions
33
7.1
Service Exceptions
33
7.2
Policy Exceptions
33
Appendix A.
Change History (Informative)
34
A.1
Approved Version History
34
A.2
Draft/Candidate Version 1.0 History
34
Appendix B.
Static Conformance Requirements (Normative)
35
B.1
SCR for REST.CD Server
35
B.1.1
SCR for REST.FUNCAREA.FUNCTION Server
35
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
36
Appendix D.
JSON examples (Informative)
37
D.1
[Example Title] (section [section number cross reference])
37
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
38
Appendix F.
Light-weight resources for Capability Discovery (Informative)
39
Appendix G.
Authorization aspects (Normative)
40
G.1
Use with OMA Authorization Framework for Network APIs
40
G.1.1
Scope values
40
G.1.1.1
Definitions
40
G.1.1.2
Downscoping
40
G.1.1.3
Mapping with resources and methods
41
G.1.2
Use of ‘acr:Authorization’
43

Figures

12Figure 1 Resource structure defined by this specification

18Figure 2 Management of own service capabilities

19Figure 3 Management of an individual own service capability

20Figure 4 Retrieving service capabilities for a contact

Tables

40Table 1: Scope values for RESTful Capability Discovery API

42Table 2: Required scope values for: Management of own service capabilities

42Table 3: Required scope values for: Retrieving of service capabilities for a contact

1. Scope

This specification defines a RESTful API for Capability Discovery using HTTP protocol bindings.
2. References

2.1 Normative References

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, January 2010, URL: http://tools.ietf.org/html/draft-uri-acr-extension-00

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_CapabilityDiscovery]
	“XML schema for the RESTful Network API for Capability Discovery”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_capabilitydiscovery-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL: http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. If the use of Notification Channel is supported, include also the definitions below, otherwise delete them.

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. It is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

4. Introduction

The Technical Specification of the RESTful Network API for Capability Discovery contains HTTP protocol bindings for Capability Discovery, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Register/de-register own service capabilities
· Enable/disable registered own capabilities
· Retrieve service capabilities of a contact
· Discover whether a contact is an RCS user or not
In addition, this specification provides:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:Authorization” as a reserved keyword in a resource URL variable that identifies an end user
5. Capability Discovery API definition
This section is organized to support a comprehensive understanding of the Capability Discovery API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3,described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body, while JSON examples are provided in Appendix D..
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.

Appendix B provides the Static Conformance Requirements (SCR).
Appendix C provides application/x-www-form-urlencoded examples, where applicable.

Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.

Appendix F provides a list of all light-weight resources, where applicable. Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Capability Discovery.

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
[image: image2.emf]//{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}

/{capabilityId}

/ownCapabilities

/{contactId}

/contactCapabilities

/globalStatusUpdate

//{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}

/{capabilityId}/{capabilityId}

/ownCapabilities/ownCapabilities

/{contactId}/{contactId}

/contactCapabilities

/globalStatusUpdate

Figure 1 Resource structure defined by this specification
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Purpose: To allow application to manage own service capabilities
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Own service capabilities
	/{userId}/ownCapabilities

	OwnServiceCapabilityList (used for GET)
OwnServiceCapability (used for POST)
	retrieves a list with status of all own service capabilities (both enabled and disabled)
Note: Query string parameter can be used to select either enabled or disabled capabilities.
	no
	defines (registers) a new service capability
	removes (deregisters) all own service capabilities

	Own service capabilities global status change
	/{userId}/ownCapabilities/globalStatusChange
	OwnServiceCapabilityGlobal StatusChange
(used for POST request)

OwnServiceCapabilityList
(used for POST response)

	
	
	Changes the status for all own service capabilities globally (entire service capabilities to either enabled or disabled status)
	

	Individual own service capability
	/{userId}/ownCapabilities/{capabilityId}
	OwnServiceCapability
	retrieves the status for an individual own service capability
	enables/disables an individual own service capability
	no
	removes (deregisters) an individual own service capability

Purpose: To allow application to retrieve service capabilities of a contact
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service capabilities for a contact
	/{userId}/contactCapabilities/{contactId}
	ContactServiceCapabilities
	retrieves list of service capabilities defined for a specified contact (response includes only enabled capabilities)

Note: a query string parameters can be used to filter query request, e.g. to query for a specific capability, or to check whether the contact is an RCS user
	no
	no
	no

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Capability Discovery data types is:

urn:oma:xml:rest:netapi:capabilitydiscovery:1

The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_CapabilityDiscovery].
5.2.2 Structures

The subsections of this section define the data structures used in the Capability Discovery API.
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.

5.2.2.1 Type: OwnServiceCapabilityList
This type represents a list of own service capabilities
	Element
	Type
	Optional
	Description

	serviceCapability

	OwnServiceCapability [0…unbounded]
	Yes
	Array of service capabilities

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named ownServiceCapabilityList of type OwnServiceCapabilityList is allowed in request and/or response bodies.

5.2.2.2 Type: OwnServiceCapability
 This type represents an individual own service capability
	Element
	Type
	Optional
	Description

	serviceCapabilityId

	xsd:string
	No
	Service capability name or identifier (e.g. feature-tag)

	status
	CapabilityStatus
	Yes
	Describes the status of a service capability.
During registration of service capability, the application MAY specify the desired initial status of the service capability however it is up to the server policy to accept it or not. If not specified, default status will be “Disabled”.

In any case the server SHALL include the accepted capability status in the response to service capability registration.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named ownServiceCapability of type OwnServiceCapability is allowed in request and/or response bodies.
Editor Note: FFS to check whether for service capability identifiers should be used the existing feature-tags defined by GSMA RCS (and another standardization bodies) or these should be specific values defined for this API and mapped to/from RCS gateway.
5.2.2.3 Type: OwnServiceCapabilityGlobalStatusChange
 This type represents global status for all own service capabilities.
	Element
	Type
	Optional
	Description

	status
	CapabilityStatus
	No
	Specifies the new service capability status that applies to all own service capabilities.

A root element named ownServiceCapabilityGlobalStatusChange of type OwnServiceCapabilityGlobalStatusChange is allowed in request bodies.
5.2.2.4 Type: ContactServiceCapabilities
This type represents service capabilities for a contact.
	Element
	Type
	Optional
	Description

	serviceCapabilityId

	xsd:string [0…unbounded]
	Yes
	Service capability name or identifier (e.g. feature-tag). Not included in response to queries which includes a filter for whether a contact is an RCS user or not.

	rcsUser
	xsd:boolean
	Yes
	Indicates whether a contact is an RCS capable user (True) or not (False).
Not included in response to queries which include a filter for service capabilities for a contact.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named contactServiceCapabilities of type ContactServiceCapabilities is allowed in response bodies.

Editor Note: FFS to check whether instead of “rcsUser” another neutral name such “userType” can be used which will allow for future extensions if necessary. There might be the need to distinguish between different flavours of RCS/RCSe in the future. Note that this element needs to be a list rather than an single element.
5.2.3 Enumerations
The subsections of this section define the enumerations used in the Capability Discovery API.
5.2.3.1 Enumeration: CapabilityStatus
This enumeration defines possible values to describe the status of a particular service capability.
	Enumeration
	Description

	Enabled
	Indicates that a service capability is visible (discoverable) to other users.

	Disabled
	Indicates that a service capability SHALL NOT be visible to other users.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· OwnServiceCapabilityList
· OwnServiceCapability

· ContactServiceCapabilities

These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
5.3.1 Retrieving and managing all own service capabilities
This figure below shows a scenario for retrieving and managing own service capabilities.
The resources:

· To retrieve list and status of all own service capabilities (both enabled and disabled) , read resource under
http://{serverRoot}/devicecapabilities/{apiVersion}/{userId}/ownCapabilities
Note: a query string parameter can be used to filter query request and query for a specific capability status, e.g. for enabled, or disabled capabilities only.
· To define (register) a new service capability, create resource under
http://{serverRoot}/devicecapabilities/{apiVersion}/{userId}/ownCapabilities

· To enable/disable multiple (including all) own service capabilities, update resource under
http://{serverRoot}/devicecapabilities/{apiVersion}/{userId}/ownCapabilities

· To remove all own service capabilities, delete resource under
http://{serverRoot}/devicecapabilities/{apiVersion}/{userId}/ownCapabilities

[image: image3.emf]Application

Server

1. GET

Response: own service capabilities with capabilityId(both enabled & disabled)

Fetch service

capabilities

•: retrieve all own service capabilities

2. POST

Response

3. PUT

Response or error message

•: define a new service capability

Define new

service

capability

: enable/disable all own service capabilities

Remove resource

and

stop notifications

4. DELETE

Response or error message

•: delete all own service capabilities

Remove resource

i.e. all own service

capabilities

Figure 2 Management of own service capabilities
1. An application requests the list and status of all own service capabilities using GET and receives the list of service capabilities both disabled and enabled for itself.

2. An application creates (defines, registers) a new service capability for itself by using POST and receives the resulting resource URL containing the capability Id.

3. An application enables/disables all own service capabilities for itself by using PUT and receives response or error message.
4. An application deletes (deregisters) all own service capabilities by using DELETE and receives response or error message.

5.3.2 Individual own service capability handling

This figure below shows a scenario to retrieves the status and manage an individual own service capability.

The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:

· To retrieve the status for an individual own service capability, read the resource below with “{capabilityId}” identifying the targeted capability.
http://{serverRoot}/devicecapabilities/{apiVersion}/ownCapabilities/{capabilityId}
· To enable/disable an individual own service capability, update the resource below.
http://{serverRoot}/devicecapabilities/{apiVersion}/ownCapabilities/{capabilityId}

· To delete (deregister) an individual own service capability, use the resource

http://{serverRoot}/devicecapabilities/{apiVersion}/ownCapabilities/{capabilityId}

[image: image4.emf]Application

Server

1. GET

Response: status of service capability

Read status

of service

capability

•: retrieve status of individual service capability

2. PUT

Response

3. DELETE

Response

•: enable / disable an individual service capability

Change status of

Service capability

•: remove (unregister) individual service capability

Remove resource,

i.e. unregister

service capability

Figure 3 Management of an individual own service capability
1. An application retrieves an individual own service capability by using GET and receives capability Id along with the status of the capability.

2. The application enables/disables an individual own service capability using PUT and receives capability Id along with updated status of the capability.

3. The application removes (deregisters) an individual own service capability.

5.3.3 Retrieving service capabilities for a contact

This figure below shows a scenario for retrieving service capabilities defined for a contact (response includes only enabled capabilities)
The resource:

· To retrieve service capabilities for a specified contact, read the resource below with “{contacted}” identifying the targeted contact.

· Note: a query string parameters can be used to filter query request, e.g. to query for a specific capability, or whether a contact is an RCS capable user.
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/contactCapabilities/{contactId}

[image: image5.emf]Application

Server

1. GET

Response: list of enabled service capabilities

Retrieve list of

service capabilities

•: retrieve list of service capabilities

Figure 4 Retrieving service capabilities for a contact
Outline of flow:

1. An application requests service capabilities for a contact identified by “{contacted}” using GET and receives the list of service capabilities (capability Ids) enabled for a contact. To retrieve information on whether the contact has a specific service capability or whether the contact is an RCS user, the application can filter the request by using query string parameters.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML and JSON):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100) and the use of characters other than digits SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘Authorization’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: Own service capabilities
The resource used is:
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/ownCapabilities

This resource is used by a client to manage own service capabilities.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to Capability Discovery, see section 7.
6.1.3 GET
This operation is used for retrieval of a list with a status of own service capabilities.
Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	statusFilter
	xsd:string
	Yes
	Defines the level of information that shall be returned in GET response body.

If statusFilter is absent, GET response body SHALL include both enabled and disabled service capabilities.

If statusFilter=enabled, GET response body SHALL include only enabled service capabilities.

If statusFilter=disabled, GET response body SHALL include only disabled service capabilities.

6.1.3.1 Example 1: retrieve a list with status of all own service capabilities
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities HTTP/1.1
Host: example.com:80
Accept: application/xml

6.1.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:ownServiceCapabilityList xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapability>
 <serviceCapabilityId>+g3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</serviceCapabilityId>
 <status>Disabled</status>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.iari-ref%3D"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</resourceURL>

 </serviceCapability>
 <serviceCapability>
 <serviceCapabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.gsma-is"</serviceCapabilityId>
 <status>Enabled</status>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.iari-ref%3D"urn%3Aurn-7%3A3gpp-application.ims.gsma-is"</resourceURL>

 </serviceCapability>
 <serviceCapability>
 <serviceCapabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.ft"</serviceCapabilityId>
 <status>Disabled</status>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.iari-ref%3D"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.ft”</resourceURL>

 </serviceCapability>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities</resourceURL>

</cd:ownServiceCapabilityList>

6.1.3.2 Example 2: retrieve a list with status of all own service capabilities using a filter
(Informative)
6.1.3.2.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities?statusFilter=”Enabled” HTTP/1.1
Host: example.com:80
Accept: application/xml

6.1.3.2.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:ownServiceCapabilityList xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

<serviceCapability>
 <serviceCapabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.gsma-is"</serviceCapabilityId>
 <status>Enabled</status>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.iari-ref%3D"urn%3Aurn-7%3A3gpp-application.ims.gsma-is"</resourceURL>

 </serviceCapability>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities</resourceURL>

</cd:ownServiceCapabilityList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET, POST, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used to register a new service capability.
6.1.5.1 Example 1: Register a new service capability
(Informative)
6.1.5.1.1 Request

	POST /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities HTTP/1.1
Host: example.com:80
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:ownServiceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapabilityId>+g.3gpp.cs-voice</serviceCapabilityId>

</cd:ownServiceCapability>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Location: http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.cs-voice HTTP/1.1
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:ownServiceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapabilityId>+g.3gpp.cs-voice</serviceCapabilityId>

 <status>Disabled</status>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.cs-voice</resourceURL>

</cd:ownServiceCapability>

Editor’s Note: this needs to further be discussed about multiple instance of the same application, and termination of the application without deregister (e.g. by timers or reference counter). This involve serviceCapabilityId in the URL as well creation PUT vs POST. We may either support multiple instances or enforce that there will be only one instance (note RCSe doesn’t specify how to support t multiple clients)
6.1.6 DELETE

This operation is used for deregister all own service capabilities. To perform this operation, normally it is expected that all service capabilities are in status “Disabled”; if not, the server should ensure those are disabled before being deregistered .
6.1.6.1 Example 1: Deregister all own service capabilities
(Informative)
6.1.6.1.1 Request

	DELETE /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities HTTP/1.1
Host: example.com:80
Accept: application/xml

6.1.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2012 02:51:59 GMT

Editor’s Note:FFS to check what would be the response from the server if some of the capabilities could not be deregistered?

6.2 Own service capabilities global status change
The resource used is:

http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/ownCapabilities/globalStatusChange
This resource is used by a client to change the status for all own service capabilities, either to “Enabled” or “Disabled”.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.

6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Capability Discovery, see section 7.
6.2.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:POST’ field in the response as per section 14.7 of [RFC 2616].
6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:POST’ field in the response as per section 14.7 of [RFC 2616].

6.2.5 POST
The operation is used to change the status for all own service capabilities, either to “Enabled” or “Disabled”.

6.2.5.1 Example 1: Disable all own service capabilities
(Informative)
6.2.5.1.1 Request

	POST /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/globalStatusChange HTTP/1.1
Host: example.com:80
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:ownServiceCapabilitiesGlobalStatusChange xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <status>Disabled</status>

</cd:ownServiceCapabilitiesGlobaStatusChange>

6.2.5.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:ownServiceCapabilityList xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapability>
 <serviceCapabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</serviceCapabilityId>
 <status>Disabled</status>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.iari-ref%3D"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</resourceURL>

 </serviceCapability>
 <serviceCapability>
 <serviceCapabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.gsma-is"</serviceCapabilityId>
 <status>Disabled</status>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.iari-ref%3D"urn%3Aurn-7%3A3gpp-application.ims.gsma-is"</resourceURL>

 </serviceCapability>
 <serviceCapability>
 <serviceCapabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.ft"</serviceCapabilityId>
 <status>Disabled</status>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.iari-ref%3D"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.ft"</resourceURL>

 </serviceCapability>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities</resourceURL>
</cd:ownServiceCapabilityList>

Editor’s Note: FFS to check whether the response to successful operation could be 204 No Content instead.
6.2.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:POST’ field in the response as per section 14.7 of [RFC 2616].
6.3 Resource: Individual own service capability
The resource used is:
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/ownCapabilities/{capabilityId}
This resource is used to manage an individual own service capability.
6.3.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	capabilityId
	Identifier of the service capability

Example: +g.3gpp.cs-voice

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Capability Discovery, see section 7.
6.3.3 GET
This operation is used for retrieval of an individual own service capability.
6.3.3.1 Example 1: Retrieve status of an individual own service capability
(Informative)
6.3.3.1.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.cs-voice
HTTP/1.1
Host: example.com:80
Accept: application/xml

6.3.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:ownServiceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapabilityId>+g.3gpp.cs-voice</serviceCapabilityId>

 <status>Disabled</status>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.cs-voice</resourceURL>

</cd:ownServiceCapability>

6.3.4 PUT

This operation is used to update the status of an individual own service capability.
6.3.4.1 Example 1: Enable an individual own service capability
(Informative)
6.3.4.1.1 Request

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.cs-voice HTTP/1.1
Host: example.com:80
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<cd:ownServiceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapabilityId>+g.3gpp.cs-voice</serviceCapabilityId>

 <status>Enabled</status>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.cs-voice</resourceURL>

</cd:ownServiceCapability>

6.3.4.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:ownServiceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapabilityId>+g.3gpp.cs-voice</serviceCapabilityId>

 <status>Enabled</status>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.cs-voice</resourceURL>

</cd:ownServiceCapability>

6.3.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.3.6 DELETE

This operation is used for deregistration of an individual own service capability. To perform this operation, service capability must be in status “Disabled”, otherwise Service Exception code SVCxxxx will be returned
6.3.6.1 Example 1: Deregister an own service capability
(Informative)
6.3.6.1.1 Request

	DELETE /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/ownCapabilities/%2Bg.3gpp.cs-voice HTTP/1.1
Host: example.com:80
Accept: application/xml

6.3.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2012 02:51:59 GMT

6.4 Resource: Service capabilities for a contact
The resource used is:
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/contactCapabilities /{contactId}
This resource is used for discovery (query) of service capabilities for a contact.

6.4.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	contactId
	Identifier of the contact

Examples: tel:+19585550101

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Capability Discovery, see section 7.
6.4.3 GET
This operation is used for retrieval (query) of service capabilities for a contact..
Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	capabilityFilter
	xsd:string
	Yes
	Defines for which particular service capability the query is.
For capabilityFilter value, any valid capability identifier can be used(e.g. feature tag)

	contactFilter
	xsd:string
	Yes
	Defines for which type of contacts the query is.

If contactFilter=rcs, it indicates request to check whether the specified contact is an RCS user or not.

No other contactType value is supported in this version of the specification.

Note that only one filter, either capabilityFilter or contactFilter, can be specified in the request.

See section 6 for a statement on the escaping of reserved characters in URL.

6.4.3.1 Example 1: Retrieve service capabilities for a contact
(Informative)
6.4.3.1.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101
HTTP/1.1
Host: example.com:80
Accept: application/xml

6.4.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:contactServiceCapabilities xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</serviceCapabilityId>
 <serviceCapabilityId>+g.3gpp.cs-voice</serviceCapabilityId> <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101</resourceURL>

</cd:contactServiceCapabilities>

6.4.3.2 Example 2: Check whether contact has a specific service capability
(Informative)
6.4.3.2.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101?capabilityFilter=%2Bg.3gpp.cs-voice HTTP/1.1
Host: example.com:80
Accept: application/xml

6.4.3.2.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:contactServiceCapabilities xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapabilityId>+g.3gpp.cs-voice</serviceCapabilityId>
<resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101</resourceURL>

</cd:contactServiceCapabilities>

6.4.3.3 Example 3: Check whether contact is RCS user or not
(Informative)
6.4.3.3.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101?contactFilter=rcs HTTP/1.1
Host: example.com:80
Accept: application/xml

6.4.3.3.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:contactServiceCapabilities xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <rcsUser>true</rcsUser >

<resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101</resourceURL>

</cd:contactServiceCapabilities>

6.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET’ field in the response as per section 14.7 of [RFC 2616].

6.4.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET’ field in the response as per section 14.7 of [RFC 2616].
6.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET’ field in the response as per section 14.7 of [RFC 2616].
7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common].
There are no additional Service Exception codes defined for the RESTful Capability Discovery API.
7.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common].
There are no additional Policy Exception codes defined for the RESTful Capability Discovery API.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _CapabilityDiscovery-V1_0
	13 Mar 2012
	all
	Initial baseline. Incorporates input to committee:

OMA-ARC-2012-0058-INP_BaselineREST_NetAPI_CapabilityDiscoveryTS

	
	25 Jun 2012
	4, 5, 6, 7, Appendix G
	Incorporated:

OMA-ARC-REST-CapDis-2012-0001-CR_Resources and Data Structures

	
	16 Jul 2012
	2, 4, 5, 6, Appendix C
	Incorporated CRs:

OMA-ARC-REST-CapDis-2012-0003R02-CR_TS_updates_for_section_6
OMA-ARC-REST-CapDis-2012-0006R02-CR_TS_updates_for_section_5,

OMA-ARC-REST-CapDis-2012-0009R01-CR_TS_removing_form_urlencoded_blueprint

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.CD Server

	Item
	Function
	Reference
	Requirement

	REST-CD-SUPPORT-S-001-M
	Support for the RESTful Capability Discovery API
	[section(s)]
	

	REST-CD-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-CD-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST-CD-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This specification does not define any API request based on application/x-www-form-urlencoded MIME type.

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)
As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources for Capability Discovery
(Informative)

<< This appendix lists light-weight resources defined in this specification. Delete this comment>>

<<If there are no light-weight resource in the spec, the following wording is used. Delete this comment.>>

As this version of the specification does not define any light-weight resources, this Appendix is empty.
<<If there are no light-weight resource in the spec, the following wording is used. Delete this comment.>>

The following table lists all Capability Discovery data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

<<If [ResourceRelPath] strings in the above table include variables in curly brackets “{}” then the following paragraph shall be included also; otherwise it should be deleted. Delete this comment >>

Note: When appending [ResourceRelPath] string to its heavy-weight resource URL, all variables within curly brackets “{}” such as: [list of variable names from ResourceRelPath strings] have to be replaced by their real values
Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

This appendix specifies how to use the RESTful Capability Discovery API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful Capability Discovery API MAY support the authorization framework defined in [Autho4API_10].

A RESTful Capability Discovery API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.1.1 Scope values

G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful Capability Discovery API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_capabilitydiscovery.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_capabilitydiscovery_own
	Provide access to all operations defined for management of own service capabilities.
	No

	oma_rest_capabilitydiscovery_contact
	Provide access to all operations defined for checking of service capabilities for a contact.
	No

Table 1: Scope values for RESTful Capability Discovery API

G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_capabilitydiscovery.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· “oma_rest_capabilitydiscovery_own”
· “oma_rest_capabilitydiscovery_contact”
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1for the RESTful Capability Discovery API map to the REST resources and methods of this API. In these tables, the root “oma_rest_capabilitydiscovery.” of scope values is omitted for readability reasons

	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Own service capabilities
	/{userId}/ownCapabilities

	6.1
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own

	Individual own service capability
	/{userId}/ownCapabilities/{capabilityId}

	6.2
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own
	n/a
	all_{apiVersion}, or

own

Table 2: Required scope values for: Management of own service capabilities
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service capabilities for a contact
	/{userId}/contactCapabilities/{contactId}
	6.3
	all_{apiVersion}, or

contact
	n/a
	n/a
	n/a

Table 3: Required scope values for: Retrieving of service capabilities for a contact
G.1.2 Use of ‘acr:Authorization’
This section specifies the use of ‘acr:Authorization’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:Authorization’, where ‘Authorization’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:Authorization’ in a resource URL in place of the{userId} resource URL variable in the resource URL path, when the RESTful Capability Discovery API is used in combination with [Autho4API_10].
In the case the RESTful Capability Discovery API supports [Autho4API_10], the server:

· SHALL accept ‘acr:Authorization’ as a valid value for the resource URL variable {userId}.
SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:Authorization’

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20120101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20120101-I]

_1399885757.ppt

Application

Server

1. GET

Response: own service capabilities with capabilityId (both enabled & disabled)

Fetch service

capabilities

		: retrieve all own service capabilities

2. POST

Response

3. PUT

Response or error message

		: define a new service capability

Define new

service

capability

: enable/disable all own service capabilities

Remove resource

and

stop notifications

4. DELETE

Response or error message

		: delete all own service capabilities

Remove resource

i.e. all own service

capabilities

_1399892189.ppt

Application

Server

1. GET

Response: status of service capability

Read status

of service

capability

		: retrieve status of individual service capability

2. PUT

Response

3. DELETE

Response

		: enable / disable an individual service capability

Change status of

Service capability

		: remove (unregister) individual service capability

Remove resource,

i.e. unregister

service capability

_1399456741.ppt

Application

Server

1. GET

Response: list of enabled service capabilities

Retrieve list of

service capabilities

		: retrieve list of service capabilities

