[image: image8.jpg]"sOMaQa

Open Mobile Alliance

Doc# OMA-ARC-2004-0077-Restructure proposal for 0068
Submitted to OMA-ARC
23 Mar 2004
[image: image9.png]Execution
Environment
Cycle Mgmt,

Load balancing,
caching, &M
etc)

Weblseryice bindings)

OtHenk

Enabler
implementation

Enabler

Enabler

implementation ||| | implementation

Enabler
implementation

To Resources in

operators, terminals, SPs

SP Domain

Execution
Environment
(Life Cycle Mgmt,
Load balancing,
caching, &M
etc)

 Doc# OMA-ARC-2004-0068-OSE_Proposal
Submitted to OMA-ARC
21 Mar 2004

Input Contribution

	Title:
	Restructure proposal for 0068
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARCH

	Source:
	David Sanders Vodafone +44 1635-676684

mailto:david.sanders@vodafone.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

	Supporters:
	

1 Reason for Contribution

This contribution proposes a restructure to OMA-ARC-2004-0068, and the merger of OMA-ARC-2004-0069 into 0068, for the purpose of incorporating into the OSE specification.

2 Summary of Contribution

This document proposes a restructure of input contribution OMA-ARC-2004-0068, and merges contribution OMA-ARC-2004-0069 into the restructured OMA-ARC-2004-0068. The reason for this proposal is to identify the most appropriate way for the inclusion of the content of OMA-ARC-2004-0068 and 0069 into the OSE specification.

3 Detailed Proposal

This section describes the new proposed restructure of input contribution 0068. The intention of this contribution is not to change or modify the technical content of 0068, which is originally based on OMA-ARC-2003-0318, but, where necessary, to modify and clarify the text in such a way as to provide a means to incorporate the text of 0068 and to allow an extensibility of the OSE specification allowing for further contributions in to the OSE.

Where applicable the following section explains the restructuring of specific subsections. However, for clarity, the restructured text is not change marked. Only proposed changes to the text of OMA-ARC-2004-0068 is highlighted..

***********************************START OF RESTRUCTURE AND CHANGES TO 0068*****************************

Introduction

This document introduces
a flexible, extensible architecture that offers support to a diverse group of application developers and service providers. The architecture satisfies the pre-requisites of the OMA Service Environment as defined in sections 4.1, 5.1, 5.2 and 6.1
.

The purpose of the OSE is to simplify:

· The controlled exposure of resources to internal and third parties application developers in order for them to create and run compelling new services.

· The integration and management of resources.

· The evolution of OMA current silo-like conglomerate architecture to an integrated, unified and well coordinated service enablers environment.

The architecture satisfies the Requirements for the Service Environment as defined in OMA-RD_Architecture_V1_0-20031021-A.

4
The OSE aims at:

· Minimizing time to market for new services

· Enabling rapid development and deployment of innovative new applications

· Supporting reuse of OSE resources by securely exposing and managing them for development of new services or integration with other resources (reducing vertical silos)

· Opening up service creation to 3rd parties while protecting the service providers assets and enabling varied business models

· Broadening the developer pool.

· Allowing automated management of business relationships

· Developing an evolution path to an integrated and unified service enabler environment.

In general addressing the issues identified in the problem statement in the OSE specifications.

Achieving the above aims will increase the intrinsic value of resources deployed in a service provider domain by increasing their usage and potential for revenue generation and decreasing service providers’ capital investments.
The OSE Architecture
The topology view

Figure 1 presents the topological view of the service provider portion of the OSE architecture. This view focuses on identifying and positioning the different systems present in the OSE.

[image: image1]
Figure 1 – Topological view of the OSE architecture.

The different components are as described in subsequent sections of the OSE specification. The enabler implementations may encompass any OMA enabler including EPEM. Enablers and Execution environment infrastructure provide support for integration, security, charging, O&M, registry / directories, life cycle management, etc…

6.1
The OSE does not impose any enabler in the Service Provider domain (i.e. no mandatory statement is specified). This leaves complete freedom to the service provider that deploys OMA enabler implementations / OSE; including EPEM.
The functional architecture

Figure 1 illustrates a logical view of the service provider portion (see note 1) of the functionalities / mechanisms of the OSE architecture (see note 2)
NOTE 1: The Service Provide portion is described, because figure 1 does not illustrate all possible actors or components. For examples, terminals are not illustrated. The figure would however be very similar when enablers or applications are located on terminals
.
NOTE 2: Mechanisms include bindings and flows. Functionalities include all the other aspects described in the picture
.
Each of the OSE elements is detailed in the following sections. The resources in the service provider domain are effectively shielded from the application execution environment and exposed in a controlled manner through the OSE and it's Policy Management capabilities.
In OMA, the OSE Policy Management capabilities are fulfilled by EPEM. In subsequent figures, which shows mechanisms and flows in the OSE, EPEM appears as a central component. This does not imply that EPEM is an enabler that is more important than others enablers in the OSE; It does imply that implies that when looking at the protection and delegation capabilities provided by the OSE for enabler implementations, EPEM plays a central role by processing all OMA-level exchanges to and from the protected resources

In the service provider environment, implementations of the OMA enablers expose standard APIs for application use. These enabler implementations connect to the actual resources present in the service provider domain. Through this abstraction, one can add/modify the underlying resources without having to affect the application development interfaces exposed by the enabler implementations (and therefore without affecting the applications), something especially important when using multiple vendors, supporting different network technologies or relying on different providers. Such additions/modifications of resources will be more effective by further evolving the OSE to an integrated and unified environment, hence reducing the number of required APIs.

[image: image2]
Figure: 2 Overall logical view of the mechanism and functions of the OSE Architecture (service provider portion).

Figure 2 illustrates the relationship between applications and requests and resources in the service provider domain. In fact, the concepts and picture are the same even if the requesting element is an enabler situated in the same service provider domain or in a different service provider domain. All enablers in the service provider domain operate the same whether the request comes from applications or enabler, in the same domain or a different one. The specific results of authentication or authorization of the requestor might yield different constraints on what the request might achieve, but the policy evaluation and enabler execution always follow the same process.

The application execution environment represents the platform where the application is executed.

The OSE does not mandate any OMA Enabler in the SP domain, which therefore allows flexibility in how OMA Enablers are implemented and deployed.
.
NOTE: The application development environment and applications are out of scope of OMA.
6.2 Architecture Principles

The OSE architecture is based upon a number of key principles, designed to support the objectives described above. This architecture can be realized in many technologies, including but not limited to, Parlay and web services. These key principles are described in the following sections.
6.2.2 Extensibility

New enablers can be introduced by developing an enabler implementation that connects to an underlying resource in the service provider.

The enabler application development interfaces can be communicated to third party developers directly (e.g., by written documents so the applications can statically bind to the destination enabler) or registered with the discovery enabler (so the application can dynamically bind to the destination enabler).

Policies can be loaded dynamically for OSE evaluation and enforcement to protect the new enabler.

Policies associated to other resources can be updated to exploit (e.g. via delegation) the new enabler implementation as well as to allow the new enabler implementation to use other existing enabler implementations already deployed in the domain. So when a new enabler implementation is added to the OSE, it is easy to allow other enablers to use it for protection and reuse / delegation simply by adding corresponding policy assertions to their policies.

Life cycle management interfaces are expected to provide support for upgrade of enablers when new releases are installed and deployed.

6.2.3 Componentization

The applications view the service provider domain as a set of capabilities embodied as implementations of enablers.

Enabler implementations may reuse other enablers located in the same or different service provider domains.

By simplifying the re-use of enablers, OSE can eliminate vertical silo solutions and can simplify the integration of new applications and enablers into the service provider domain.

6.2.4 Single component interfaces

Through the OSE, the application development interfaces of enablers are exposed to other requestors. These interfaces are made available to developers and applications as discussed in section Error! Reference source not found..

The enabler implementations are responsible for abstracting the underlying resources by mapping between the underlying protocols and the needs of the application development interfaces.

6.2.5 Application development interfaces

The application development interfaces are the interfaces offered by the enabler implementations for the development of applications or other enabler implementations
that use them. The application development interfaces
follow the OMA specifications and they are technology specific realizations of the specified interfaces (e.g. web services, Java, .Net, CORBA, …).

6.2.6 Life cycle management

In the service provider domain, certain functions are needed to provide basic support to the enabler implementations. These functions include:

· Creation

· Deployment

· Activation & deactivation

· Management:

· Dependency management

· Upgrade

· Removal

The OSE provides the necessary infrastructure to perform these functions. Each enabler implementation may expose life cycle management interfaces as specified by OMA.

6.2.7 Evolution

The proposed OSE architecture consists of enablers and resources that have been specified and made available by a number of different standards and specification organizations and fora. OSE provides a general framework
such that the above resources including enabler implementation may be accessed in a uniform and consistent manner.

Furthermore, through the use of EPEM and the reuse of enabler implementation that can be facilitated by EPEM (delegation), the OSE architecture will benefit from a self controlling scheme of reducing silos and moving further towards integration and unifications of enablers and resources in terminals, SPs and operators domains.

6.2.8 Application and Enabler Exposure management

The OSE exposes functionality/resources to third party application and enablers in a controlled manner. The OSE provides a policy-based mechanism to protect the underlying SP resources from unauthorized requests and manages their use (e.g. through appropriate charging, logging, enforcement of user privacy or preferences, etc…). The OSE provides a consistent and centralized management mechanism if the SP requires such control.

The OSE architecture also manages the procedures applied for both hosted (in the same domain) and third party applications and enablers. This is achieved by having OSE process all requests to and from the enabler implementations and enforce the appropriate policies. The OSE processes requests whether they originate from applications or enablers either from or to the service provider
.

5
6.3 OSE Elements

The OSE architecture consists of the following main elements
:

1. The enabler implementations provide the standardized public interfaces that are used to access the resources in a form that is suitable for application development. Examples of enablers are an OMA-defined Location or Device Management interfaces.

2. Enabler interface bindings provide the specific formats (syntax) and protocols used to access enablers using particular programming languages (e.g., Java or C) or network protocols (e.g., web services).

3. EPEM controls access to a service provider’s enablers and resources from applications
or enablers).

4. Enablers present life cycle management interfaces that allow the service provider to control these enablers

5. Enabler implementations connect standard application development interfaces to the actual resources present in the service provider domain.

6.3.2 Applications

The OSE architecture places no constraints on application deployment.

This environment may reside within the service provider domain or outside the domain (in a third party domain).

There are many possible service provider-specific applications that manage and maintain important information in the service provider domain. A Partner Subscription Manager application might be responsible for the provision and maintenance of third party profiles. This application could provide a combination of interfaces suited to both human users and automated processes. An example usage of the Partner Subscription Manager application could be that a developer accesses a web site (that provides a GUI into this application) and chooses the capabilities that they need and sets up an SLA to use it.
6.3.3 Resources

The Resources are the underlying capabilities present in the service provider domain and for which an application development interface is provided via the enabler implementation. The resources, which may expose lower level standardized protocols or interfaces, are invoked by these enabler implementations.

6.3.4 Infrastructure

The service provider platform provides the functions responsible for aspects monitoring, life cycle management, system support (e.g. thread management, load balancing, caching), operation, management and administration. These may not directly be exposed to applications. Enabler implementation and resources can rely on these infrastructure capabilities (such as thread management, load balancing, fault detection, caching). The infrastructure is outside the scope of OMA.
6.3.5 Enabler implementations

Enabler implementations provide a standardized public exposure for the underlying resources, in ways that are suitable for application development. The enabler will amalgamate, abstract and/or repackage the capabilities of the resource, and present them as necessary after binding to a particular syntax.

Enabler implementations may be invoked explicitly by applications or other enabler implementations
. They may also be invoked implicitly (i.e. not the explicit target of a request) to perform a function (cf. the notion of non callable enabler).
Editor's Note: The notion of callable enabler refers to the notions of callable enabler as discussed in the past by the architecture WG; albeit this concept required further discussion and agreement as to their characteristics. The term callable enabler has been described as a way for familiarity
Enabler implementations present life cycle management interfaces that allow the service provider to rely on infrastructure capabilities to manage these components (e.g., start, stop, trace, uninstall …).

OMA defines many enablers such as location, device management, etc… In addition, additional functionalities (e.g. authentication, access control, discovery, directories, …) are expected to be provided either through enabler implementations, infrastructure features or applications (e.g. 3rd party management, transaction management, …) available in the domain.

6.3.6 OSE interfaces

Figure 5 illustrates the flow when an application accesses an enabler implementation such as location or device management. The solid lines represent request messages and the dashed lines represent response messages
.

Fig 5 - Types of interfaces in OSE

Table 1 enumerates the interfaces within the scope of OMA and its enabler implementations.

Table 5. OSE Interface description
	Interface
	Description
	Comments

	I0
	Application development interface provided by an enabler implementation
	Each enabler specification defines this interface for implementations for the development of services or applications that use them.

	I1
	I0+I1 is the enhanced interface to an enabler implementation exposed through EPEM.
	EPEM may add (see note 4) SP required parameters (I1) to the enabler interface (I0), based on service provider-defined policies (e.g. credentials or account information as imposed by security policy, …) (see note 5).

	I2
	Driver to the underlying resource that partially or completely implements the enabler's function
	Translates from possibly proprietary or legacy interface, or lower level standard interface to standardized enabler interface.

	I3
	Life cycle management interfaces exposed to the SP platform.
	 As defined in OSPE

NOTE 4: Assume separation of enabler parameters and SP policy derived parameters
NOTE 5: Appropriate design of the enabler implementations should allows separation between these parameters and the parameters core to the enabler functionality. Depending on the technology choices made to realize / implement the enablers (including EPEM), I1 may be empty. But in general these interfaces I0 and I0+I1 should be considered as different.
An enabler implements and exposes the standardized interface I0 as specified by the OMA specifications. If well designed for ruse I0 focus solely on the interface / parameters needed to carry the core enabler function.

When policies are imposed by SP for example requiring authentication, authorization or charging, the request must now add the necessary information. If I0 was well designed, I0 does not carry that information. So, additional parameters must be passed. They are defined as I1.

An enabler developer implements the enabler specification I0 which requests only the parameters in I0 that are needed to execute the defined enabler functions. SPs are then able to request additional parameters needed to properly access it as specified by policies (e.g. charging tokens, identity credentials, …). These constitute I1.

This really does not affect the application developer / portability if well designed. It is possible based on technology choices to have the application still binding to I0 and adding I1 to the request when executing the call (e.g. I0 in the body of the request versus passing I1 in the header
)
6.3.7 Interfaces towards third parties

The EPEM is the gatekeeper or protector for third party applications or enablers to gain access to the capabilities exposed by the service provider. The enabler implementations generate the semantics of messages as defined by the enabler specification; the binding elements provide the specific syntax to express these messages in the selected format such as web services, Java, .Net, etc.

6.3.8 Execution Policy and Enforcement management

5.2.1.1 General
The EPEM is the gatekeeper or protector for third party applications or enablers to gain access to the enablers and resources exposed by the service provider. The enabler implementations generate the semantics of messages as defined by the enabler specification; the binding elements provide the specific syntax to express these messages in the selected format such as web services, Java, .Net, etc.

EPEM provides a mechanism for service providers to enforce policies such as for security, access control, privacy, or charging, on any request into a service provider enabler. EPEM processes application or enabler requests to any resource. EPEM may use enablers to evaluate and enforce the policies that have been specified by the service provider and/or the target enabler. EPEM may also be used to compose enablers and resources into higher level functions.

EPEM can be requested by any other authorized (as determined by the policies associated to EPEM) element of the OSE to evaluate and enforce policies. From SLAs, policies can be derived. EPEM and every other enabler will enforce these policies on any request. The infrastructure may query the SLAs to determine the quality of service etc. associated to the SLAs and prioritize accordingly.

EPEM is a logical component of OSE. Implementations of EPEM may be as a separate, standalone component in a service provider deployment. Or EPEM implementations may be embedded within enablers. EPEM implementations may transparently intercept requests when they enter the service provider domain, or enabler implementations may explicitly invoke execution of EPEM. An EPEM implementation might even be the destination for requests which are then forwarded to the true enabler implementation.

EPEM may provide additional functionalities such as callable EPEM instead of proxied EPEM,which are beyond the scope of the present document
.
Policies may be set by the service provider who provides a resource. They may also be combined with policies derived from preferences or rules setup by end-users that may be affected by usage of the resource or from the terms (SLAs) agreed for third parties to use a resource. Service providers may also accept to enforce additional policies on behalf of other parties.

5.2.1.2 Trusted and Un-trusted Applications and Enablers

The architecture applies the same rigid procedures for both hosted (in the same domain) and third party applications and enablers. This is achieved by having EPEM process all requests to and from the enabler implementations and enforce the appropriate policies. The EPEM processes requests whether they originated from applications or enablers, from within the service provider or externally to the Service Provider. This is illustrated in figures 2 and 4.

[image: image4]
Fig 4 - Flow within the service provider domain

5.2.1.3 Controlled exposure of resources

The OSE exposes functionality/resources to third party application and enablers in a controlled manner. EPEM provides a policy-based mechanism to protect the underlying SP resources from unauthorized requests and manages their use (e.g. through appropriate charging, logging, enforcement of user privacy or preferences, etc…). EPEM provides a consistent and centralized management mechanism if the SP wants such control. Of course, zero policies can always be applied, which means that no policies are to be enforced by EPEM. If the service provider has (legacy) enabler implementations that all do authentication / authorization and just wishes to provide authentication / authorization, there is no need to do additional policy enforcement. Instances where Policies are set to zero means that EPEM is not required to be deployed in the OSE.On the other hand, if the service provider wants to add a charging or logging step, something that we would assume for the sake of argument not to be say performed by any of the enabler, the service provider can use EPEM with policies only related to charging or logging.

When the enabler implementation can also delegate / reuse authentication & authorization, then policies can cover authentication / authorization and EPEM is needed to provide enforcement.

So for any enabler implementation purchased by service providers that does not delegate to reuse functions, the service provider can identify the delegatable functions that it performs and not use related assertions in the policies that are associated to the enabler and only use EPEM for new delegatable functions that are not implemented within the enabler implementation
.

As illustrated below, requests can come from applications or enabler implementations in third party domains.

Note that throughout the document, EPEM can also protect applications that can therefore also be considered as other resources. Of course, applications themselves are outside the scope of OMA.

[image: image5]
Figure 2a - Controlled Exposure to third party applications

[image: image6]
Figure 2b - Controlled Exposure to third party enabler implementations

5.1 Management of third party engagement

As a result of an increasing number of third party service providers creating and running applications that request resource access from a service provider, there will be many more business relationships to manage. To achieve the cost reductions required, these relationships will need to be managed in a highly automated manner. This will be achieved by deriving policies from SLAs signed by third parties. Mechanisms to select SLAs and to enter into binding agreements are needed and may be provided by the infrastructure in the service provider domain (e.g. as a separate application deployed in the SP domain. Such application may facilitate the management of 3rd parties by the service provider, possibly automate it or even provide self service features to the third parties).

5.2.1.4 Using the exposed resources

[image: image7]
Figure 3 – Third Party engagement steps

Figure 3 illustrates the steps of determining the interfaces associated to a target enabler. Steps 1a / 1b describe two alternative steps at application development. Step 1c is an alternative discovery that can take place at execution. After establishment of a relationship, .a third party can discover the resources exposed by the service provider. This can be done via a discovery enabler. It is also possible that the interfaces of a resource are communicated through other exchanges between the service provider and the third party and incorporated by the application developer when developing the application.

The applications that have been created and deployed in the application execution environment, now bind with those enabler application development interfaces. EPEM processes the exchanges to control the third party’s access to the enablers. Any exchange is controlled by EPEM. However based on the resources, the requestor or the nature of the request the policy may be a zero policy.

6 Intellectual Property Rights Considerations

Not aware of any IPR

7 Recommendation

To agree with the proposed structure and additional changes and to include in the OSE specification.

� We qualify this as the service provider portion, because the picture does not illustrate all possible actors or components. For examples, terminals are not illustrated in figure 1. The picture would however be very similar when enablers or applications are located on terminals.

� Mechanisms include bindings and flows. Functionalities include all the other aspects described in the picture.

� Because the figure focuses on describing the functionalities, mechanism and flows in the OSE, EPEM appears as a central component. This does not imply in any way that EPEM is an enabler in any way more important than others enablers in the OSE. It just implies that when looking at the protection and delegation capabilities provided by the OSE for enabler implementations, EPEM plays a central role by processing all OMA-level exchanges to and from the protected resources.

� As a result, it is possible to deploy enabler implementations without EPEM as logical proxy (See section � REF _Ref66808488 \r \h ��6.2�). This corresponds to the situation where no policies are ever imposed and therefore a particular OSE can not deploy EPEM (at least in proxy mode).

� Author’s comment: cf. the notion of callable enabler. Note this is simply referring to the notions of callable enabler discussed in the past by the architecture WG; granted that these have never been well defined. We do not propose to introduce this terminology or define it. It is just as a reference to these notiosn for people who may feel comfortable with them.

.

.

� Author’s note: See OMA-REQ-2004-0094-EPEM_presentation_REQ for details and the EPEM RD.

� Zero policies means that no policies are to be enforced by EPEM. If the service provider has (legacy) enabler implementations that all do authentication / authorization and just wishes to provide authentication / authorization, there is no need to do additional policy enforcement. Policies are set to zero and EPEM is not needed to be deployed in the OSE.

On the other hand, if the service provider wants to add a charging or logging step, something that we would assume for the sake of argument not to be say performed by any of the enabler, the service provider can use EPEM with policies only related to charging or logging.

When the enabler implementation can also delegate / reuse authentication & authorization, then policies can cover authentication / authorization and EPEM is needed to provide enforcement.

So for any enabler implementation purchased by service providers that does not delegate to reuse functions, the service provider can identify the delegatable functions that it performs and not use related assertions in the policies that are associated to the enabler and only use EPEM for new delegatable functions that are not implemented within the enabler implementation.

�PAGE \# "'Page: '#'�'" ��To be incorporated into section 1 of the OSE.

�PAGE \# "'Page: '#'�'" �� This wording will be merged into the existing text of the OSE.

�PAGE \# "'Page: '#'�'" ��Section numbers and figure and table numbers need to be aligned once incorporated into the OSE

�PAGE \# "'Page: '#'�'" �� This section incorporates input contribution OMA-ARC-2004-0069, which describes the topology view of the OSE architecture.

�PAGE \# "'Page: '#'�'" ��Moved footnote 1 to main body of the document as a NOTE

�PAGE \# "'Page: '#'�'" ��Moved footnote 2 to main body of the document as a NOTE

�PAGE \# "'Page: '#'�'" ��This is a rewording of footnote 3

�PAGE \# "'Page: '#'�'" ��Deleted this sentence in order to give a more general introduction to the OSE functional architecture, i.e. remove instances of EPEM and describe in more general terms of the OSE (as per the OMA Arch RD).

�PAGE \# "'Page: '#'�'" ��Delete the specific EPEM and mandatory/optional statements from this section.

�PAGE \# "'Page: '#'�'" ��Moved the architecture principles sections towards the top of the document and made the descriptions more general.

�PAGE \# "'Page: '#'�'" ��This is new text to ensure alignment with the rest of the document

�PAGE \# "'Page: '#'�'" ��New text to align with the intention of the paragraph

�PAGE \# "'Page: '#'�'" ��Again, I have made the introduction and the principles more general. The concepts of say EPEM are explained in the OSE details section.

�PAGE \# "'Page: '#'�'" ��New subclause to hold and describe Policy management

�PAGE \# "'Page: '#'�'" �� This is generalised text copied from existing sections describing "controlled exposure of resources", "management of third parties" and "trusted and untrusted applications and Enablers"

�PAGE \# "'Page: '#'�'" ��This is a new section heading for describing each OSE Element.

�PAGE \# "'Page: '#'�'" ��This text has been moved from below figure 5.

�PAGE \# "'Page: '#'�'" ��Removed this text because EPEM controls access from all applications and Enablers, not just untrusted enablers.

�PAGE \# "'Page: '#'�'" ��Moved from bottom of the contribution towards top

�PAGE \# "'Page: '#'�'" ��Moved from bottom of the contribution towards top

�PAGE \# "'Page: '#'�'" ��Moved from bottom of the contribution towards top

�PAGE \# "'Page: '#'�'" ��Moved from bottom of the contribution towards top

�PAGE \# "'Page: '#'�'" ��Deleted the footer that described reasons for callable enabler. This has been replaced with an Editor's note, which seems more appropriate

�PAGE \# "'Page: '#'�'" ��Text moved from below figure 5 to the top of figure 5

�PAGE \# "'Page: '#'�'" ��The original footnotes have been moved into the main body of the document to form specific notes.

�PAGE \# "'Page: '#'�'" ��

�PAGE \# "'Page: '#'�'" ��Theses sections have been reordered: "controlled exposure of resources", "management of third party engagement" and "using the exposed resources" and "Trusted and untrusted applications and enablers" have been moved under section EPEM

�PAGE \# "'Page: '#'�'" ��The original footnote has been moved into the main body of the document and the text has been aligned to fit with the rest of the section.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 17)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 17)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

[image: image10.png]Exect

n

Environment
(Life Cycle Mgmt,
Load balancing,
caching, O&M,
etc)

Enabler
implementation

Enabler
implementation

Enabler
implementation

Enabler
implementation

To Resources in
operators, terminals, SPs

SP Domain

Execution
Environment
(Life Cycle Mgmt,
Load balancing,
caching, O&M,
etc)

[image: image11.png]Third Party —
Un-trusted
Domain

Request to enabler through enabler
application development interface

Appropriate request
reach target enabler

SP Domain
WEDISEIVIL Gtherbindings:
Enabler Enabler Enabler Enabler
implementation implementation | || | implementation | || | implementation
Request affects
the target
resource

To Resources in
operators, terminals, SPs

[image: image12.png]Third Party —
Un-trusted
Domain

Enabler
implementation

Request to enabler through enabler
application development interface

Appropriate request reach targe .
enabler . B SP Domain

TVil

Sigieligiefs Oty rbindings

Enabler Enabler Enabler Enabler
implementation implementation implementation implementation

To Resources in
operators, terminals, SPs

[image: image13.png]SP Domain

Request to enabler through enabler
application development interface

EPEM enforces pol
request (relying on av:
enablers)

Appropriate request reach targ

enabler SP Domain
WebISerit GERerbid]
Enabler Enabler Enabler Enabler
implementation implementation | || | implementation | || | implementation

he targe!
resource
To Resources in

operatcrs, terminals, SPs

Request affects
the target
resource

[image: image14.png]10+14

Execution
Environment
(Life Cycle Mgmt,
Load balancing,
caching, O&M,
etc)

13

Enabler

implementation

Enabler Enabler
implementation ||| | implementation

Enabler
implementation

SP Domain

Execution
Environment
(Life Cycle Mgmt,
Load balancing,
caching, O&M,
etc)

To Resources in
operators, terminals, SPs

[image: image15.png]Application | _ o o = =
Developer 4)
Do w Possible interface

- escription provided through
anotheY sammuni

t

Appli
calls enabler 1
1
1
1
1
‘ 1
N 1

Possible discdvery of Possible liscovery of

Interface by apMication Interface by application
atexecution \ developel
\ 1
\ 1
\ 1
Enforces p \ 1
\\ |
1

\
\ an :

Uses bindipg’ \ SP Domain
Weblservi S A
WEBISEH GiiErbidings i
s

Enabler Enabler Enabler D'SC%‘I'e'Y
implementation implementation implementation o CHELLT
| implementation

To Resources in

operators, terminals, SPs

