Doc# OMA-ARC-2005-0186-OSE-[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Deployment-options

Doc# OMA-ARC-2005-RRRR-OSE-Deployment-Optionsl
Change Request

Change Request

	Title:
	OSE deployment options
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC WG

	Doc to Change:
	OMA-Service_Environment-V1_0-20040907-A

	Submission Date:
	May 5th 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Paulus Karremans, Ericsson, Paulus.Karremans@ericsson.com
Michael Brenner, Lucent Technologies, mrbrenner@lucent.com

	Replaces:
	n/a

1 Reason for Change

The existing root architecture document OMA-Service_Environment-V1_0-20040907-A (OSE V1.0) shows some implementation options that make use of the PEEM enabler in a proxy mode. This CR proposes to show, in addition to the existing deployment pictures and text, the other options that we consider viable: deployment options based on PEEM in callable mode. These deployment options were also discussed at the Singapore meeting.
2 Impact on Backward Compatibility

None: fully backward compatible.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The recommendations are:

1. to agree to this CR and apply the text and picture modifications to OSE V1.0.

2. to agree to those changes for the OSE V2.0 version that is currently in draft.

3. to update the issues list to reflect the issues that are addressed by this CR.

6 Detailed Change Proposal

5.4.4 Deployment options

Policy Enforcer is a logical element of the OSE. The Policy Enforcer may be realised by the OMA PEEM enabler.

Deployment options for the Policy Enforcer functionality include:

· A standalone enabler implementation that uses other standalone enabler implementations to evaluate and enforce policies. Such an enabler implementation would be deployed as a separate component from other enabler implementations (see Figure 1, Case 3a and 3b
).

· In the deployment as depicted in Figure 1, Case 2b and 2c.Policy Enforcer functionality forms an integral part of the enabler implementation and is therefore not directly available to perform policy evaluation and enforcement for any other enabler implementations. In this case, the Policy Enforcer implementation performs its functionality and then passes execution control to the bundled enabler implementation. The Policy Enforcer implementation is not designed to pass execution control back to the implementation that invoked it, or forward to any implementation other than the one it is bundled with.

[image: image1.wmf]PEEM

Enabler

implementation

Enabler

implementation

(E

d)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3a

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non

-

intrinsic function

Enabler

implementation

1

2

Case 2c

interceptor

4

5

(E

d)

Enabler

implementation

3

PEEM

Enabler

implementation

Enabler

implementation

1

2

Case 3b

interceptor

4

5

(E

d)

Enabler

implementation

3

PEEM

Enabler

implementation

Figure 1 - Target Policy Enforcer deployments (with flows)

7 Migration from OMA silo enabler architectures towards the OSE using Policy Enforcement

1.1 Enabler implementations and deployments

NOTE to the Reader: Section 7 contains information about OMAs proposed Policy Enforcement, Evaluation and Management (PEEM) enabler. The information in these sections describes work in progress.

An enabler implementation can invoke any standardized function such as authentication, charging or Group Management, which are required to satisfy the enabler specification (i.e. the principle of delegation and reuse). Some of these function invocations may be triggered as a result of a policy decision. The enabler implementation can accomplish those policy triggered function invocations (e.g. authorization) either by:

· Implementing the function (e.g. authentication) itself (Figure 2, Case 1);

· Performing the policy evaluation and enforcement itself by invoking a separate (modular) implementation that performs the function. Figure 2, Case 2a makes use of a constrained policy evaluation and enforcement mechanism where the vendor supplying the enabler implementation determines which operations (i.e. policies) the enabler implementation can invoke (i.e. there is a built-in, non-changeable selection of policies to be evaluated and enforced). Figure 2, Case 2b illustrates a full policy evaluation and enforcement mechanism that allows the Service Provider to determine which operations (i.e. policies) the enabler implementation invokes. In this case the policy evaluation and enforcement mechanism is applied in proxy mode. Figure 1, case 2c illustrates a variant to case 2b in the sense that it illustrates that the policy evaluation and enforcement mechanism is applied in callable mode;

· Delegating the invocation to a policy evaluation and enforcement entity that will invoke a separate (modular) implementation that performs the required operation Figure 2, Case 3, where case 3a illustrates the case where the policy evaluation and enforcement mechanism is applied in proxy mode and 3b illustrates the case where the policy evaluation and enforcement mechanism is applied in callable mode.

To summarize the distinctions between these choices:

· For Figure 2, case 1, the implementation of the operations is done in the enabler implementation;

· For Figure 2, case 2a, 2b and 2c, the implementation invokes other separate components to perform the operations, which allow all enabler implementations in the deployment to use the same operation and enabler implementations and reduce the silo effect;

· For Figure 2, case 3a and 3b, the implementation invokes a separate component to perform the policy evaluation and enforcement, which itself may invoke separate components to perform the operations.

Figure 2, Cases 1 and 2a are consistent with the OSE Policy Enforcer described earlier and correspond to the current silo situation.

[image: image2.wmf]Bundled

Policy Enforcer

implementation

Enabler

implementation

(E

d)

Enabler

implementation

2

1

3

Case 2a

Bundled Policy Enforcer

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 1

PEEM

Enabler

implementation

Enabler

implementation

(E

d)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3a

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non

-

intrinsic function

Enabler

implementation

1

2

Case 2c

interceptor

4

5

(E

d)

Enabler

implementation

3

PEEM

Enabler

implementation

Enabler

implementation

1

2

Case 3b

interceptor

4

5

(E

d)

Enabler

implementation

3

PEEM

Enabler

implementation

Figure 2 - Examples of Policy Enforcer deployments (with flows)

�The "interceptor" (Figure 1, Case 2c, 3b and Figure 2, Case 2c, 3b) is a functional component that intercepts a request, generates the appropriate requests to a PEEM enabler implementation via the PEEM callable interface I0 and proceeds based on the result by letting the request reach its target, blocking the request or returning an error message. The "interceptor" function can be provided through a proprietary implementation, or through an implementation based on a future specification (The "interceptor" function has not been specified by OMA).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

_1176666427.ppt

Bundled

Policy Enforcer

implementation

Enabler

implementation

(Ed)

Enabler

implementation

2

1

3

Case 2a

Bundled Policy Enforcer

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 1

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3a

Enabler

implementation

1

2

Case 2c

interceptor

4

5

(Ed)

Enabler

implementation

3

PEEM

Enabler

implementation

Enabler

implementation

1

2

Case 3b

interceptor

4

5

(Ed)

Enabler

implementation

3

PEEM

Enabler

implementation

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non-intrinsic function

_1176666537.ppt

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3a

Enabler

implementation

1

2

Case 2c

interceptor

4

5

(Ed)

Enabler

implementation

3

PEEM

Enabler

implementation

Enabler

implementation

1

2

Case 3b

interceptor

4

5

(Ed)

Enabler

implementation

3

PEEM

Enabler

implementation

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non-intrinsic function

_1154460645.ppt

Bundled

Policy Enforcer

implementation

Enabler

implementation

(Ed)

Enabler

implementation

2

1

3

Case 2a

Bundled Policy Enforcer

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 1

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

2

1

3

Case 2b

PEEM

Enabler

implementation

Enabler

implementation

(Ed)

Enabler

implementation

1

3

2

Case 3

Delegation flow as a result

of Policy evaluation and

Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed)

Delegated non-intrinsic function

