Doc# OMA-ARC-2005-0408R01-PEEM-TS-Policy-expression-language-details.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2005-0408R01-PEEM-TS-Policy-expression-language-details.doc
Input Contribution

Input Contribution

	Title:
	PEEM-TS-Policy-expression-language-details
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-ARC

	Submission Date:
	January 27 2006

	Source:
	Michael Brenner, mrbrenner@lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att x>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att y>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att z>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

Reason for Contribution

The reason for this contribution is to propose an initial outline and content for some PEEM TS sections. The revision clarifies comments received and fixes some editorial errors.
Summary of Contribution

The contribution proposes a TS section (or separate document) focusing on the PEEM policy expression language specification. A language specification needs to address both language semantics and syntax details and a formal language syntax. The current proposal includes an outline, and initial text for the policy expression language semantics and language constructs sections of the language specification. Most existing policy expression frameworks and languages, and popular programming languages either do not offer enough to meet all PEEM requirements, or offer too much (e.g. a complexity in language constructs that is unnecessary). Because of this, the approach we take is to create an OMA specification that provides semantics and language constructs based and/or very similar to some used in multiple technology sources: [COMMONPOL], [3GPP-OSA-policy-mgmt] and any typical programming language, for simplicity using [C-language] as a reference (others, such as Java, C++ could have been also referred to)..

The proposed semantics and language constructs support all the main features identified in the PEEM AD for the PEEM policy expression language:

· Can express any combination of conditions and actions. In particular:
· It is powerful enough to specify any calculation within a condition or an action

· It can support delegation.
· Can perform pattern matching on input data
· Can specify the format of output data
· Does not preclude any policy topology.
· It provides constructs (e.g. function call) to facilitate interface transformation or generation of a new binding.

· It can express OMA existing and/or future conditions and actions

Note that this proposal satisfies the need to support known usage of policy rules in OMA, while at the same time offers all the flexibility needed to express “any combination of conditions and actions” (through the possibility of variable declarations and usage, variety of arithmetic and logical operators, function declarations and usage). Finally, the inclusion of those features will allow creating the expected relationship between the set of applicable rules to be evaluated and executed, and the input./output context – in order to support the use of input/output context in the evaluation and execution process. Regardless on whether we decide to specify the inout.output format of PEM-1 at specification time (completely or partially), or completely at policy writing time, the input/output parameters need to find a reflexion in variables used by the policy rules.
This contribution may make use of concepts found in the following references:

	[COMMONPOL]
	“A Document Format for Expressing Privacy Preferences”, H.Schulzrinne, J.Morris, H. Tschofenig, J.Cuellar, J.Polk and J.Rosenberg, , October 2005,
URL: http://www.ietf.org/internet-drafts/draft-ietf-geopriv-common-policy-06.txt

	[3GPP-OSA-policy-mgmt]
	3GPP TS 29.198-13, “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Open Service Access (OSA); Application Programming Interface (API);Part 13: Policy management Service Capability Feature (SCF) (Release 6)”,

URL: http://www.3gpp.org/ftp/Specs/html-info/29198-13.htm

	[C language]
	ISO/IEC 9899, “Programming languages – C”,

URL: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n869/n869.txt.gz

Detailed Proposal

5. Policy Expression Language definition

Editor note: The initial content provided includes a description of the detailed features (semantics, language constructs) of the policy expression language. If this approach is considered directionally correct, additional contributions need to be submitted to provide the formal syntax specification of the language. That may include a formal syntax definition in EBNF (Extended Backus-Naur Form) and/or XML schemas.

5.1 Introduction

This section is designed to provide details on the policy expression language.

Editor note: This document is written with the understanding that anyone writing rules has experience writing code using a programming language (such as Java, C++, C, etc.,), since the policy expression language supported by PEEM borrows certain constructs from these programming languages.
This section will focus on the policy expression language semantics, features and the behavior of its constructs.

5.1.1 Related Standards and Technologies

The constructs and behavior of the Policy Expression Language are based on a combination of several pre-cursors, in particular [COMMONPOL], [3GPP-OSA-policy-mgmt] and typical programming languages (e.g. C++, Java, C) – for simplicity represented here by [C-language]. The specification starts with at the basis with a subset of [COMMONPOL] which supports the notions of ruleset, rule, condition and action. Additional language constructs, operators and variables are inspired from [C language]. Finally, [3GPP-OSA-policy-mgmt] has been used as source of inspiration in thinking about how to define input and output variables in order to be able to create a relationship with the input.output/output context that may be provided via an incoming request for evaluation and execution.
5.1.2 Notation in this section

The policy expression language notation (“pseudo-C”) used in this section has been chosen mainly for ease of explanations of the semantics of the language. Any syntax explanations and comments in sections 5.2, 5.3 and 5.4 may be indicative of the final syntax of the language, but are mainly used here for better understanding of the semantics and the examples described. A formal syntax specification will be provided in separate section(s). The formal syntax will be provided in EBNF form, as XML schemas or both and it shall support the semantics details and language constructs described in the next sections. Since [COMMONPOL] is exposing an XML syntax, it is likely that the proposed extensions will also expose an XML syntax. Since these are new additions and do not exist in XML format, it is easier to initially explain the semantics and language constructs that will be added in “pseudo-C”.
The notation used below supports the two C++ style comments, namely /* and */ to delimit comments that can span multiple lines, as well as // to specify comments until the end of a line. Whitespace (newlines, spaces, tab characters) is ignored in the policy expression language (except when within a pair of double quotes), and hence only necessary to “beautify” the rules.

5.2 Rulesets and Rules

This section gives a high level overview of rules, how rules are organized into rulesets, and rulesets optionally organized into domains.

A ruleset (also referred to loosely as a policy) is a collection of rules that operate as a whole to satisfy a specific evaluation and execution request. Multiple rulesets can be optionally organized into a domain (the notion of domain may be useful for the purpose of a hierarchical organization of the rulesets, but it’s usage is optional). The concept of ruleset is critical not only to the policy expression language specification, but to all PEEM specifications:

· A ruleset may be identified when PEEM operates in callable usage pattern (the PEEM callable interface I/O profile will map into a ruleset)

· A ruleset may be identified when PEEM operates in proxy usage pattern (the ruleset will be identified using “input context” in the request for a target resource)

· the PEEM policy management may pass rulesets as input or output parameters (in operations such as create, retrieve, update, delete).

Rules have the following structure (along with some additional attributes described later in this section).

if (condition)

then

action_1;

action_2;

...

action_N;

end

A rule thus consists of a rule condition, and a set of one or more rule actions. A rule evaluation consists of checking if the rule condition is true, and if it is, executing the rule actions in sequence.

An example of a rule is as follows:

if (Operation == “GET_USER_LOCATION”)

then

AskforConsent = true;

End

This rule checks if Operation is “GET_USER_LOCATION”, and if so, assigns a value of “true” to the variable AskforConsent. The example also illustrates the notion of variables. The rule checks the value of variable Operation in its condition, and sets the value of variable AskforConsent in its action. The details on the types of variables supported by the policy expression language, as well as how the values of these variables can be set are presented later.

5.3 Policy Expression Language details

This section describes the details of the PEEM policy expression language, and provides illustrative examples of the supported language constructs. First, the overall structure of a ruleset is presented, followed by details on the various components that form a ruleset.

5.3.1 Ruleset

The high-level structure of a ruleset consists of three main sections:

1. A header section,

2. A variable declaration section, and

3. A rules definition section.

These are further described in the following sub-sections.

5.3.1.1 Header

The header section gives the high-level information about a ruleset, namely:

1) An optional domain that the ruleset is associated with.

2) the ruleset name

3) an optional caption

4) an optional description of the ruleset

The header structure is described below. Items in boldface are keywords, and hence must be written as specified, and items in italics are to be supplied by a rules. Also, note that the following need to be specified in exactly the given order.

domain: domain_name;

ruleset: ruleset_name;

caption: “some caption string”;

description: “some description string”;

The domain and ruleset name are identifiers, i.e., they must contain only letters and numbers, and must start with a letter. In particular, they cannot contain any spaces.

The domain, caption and description are optional. If not present, an empty string is assigned as

their values. An example header section thus is:

domain: Internal;

ruleset: location;

description: “Rules for user’s location”;

In this example, the domain name has been specified to be internal, the ruleset name to be location, and an associated description supplied. The caption has not been supplied, and hence is assumed to be an empty string.

5.3.1.2 Variable Declaration

The header section is followed by a variable declaration section, that identifies all the variables used in the ruleset, along with the associated types. The policy expression language is a strongly typed language, hence each variable type must be declared explicitly. The variable declaration section has the following structure:

variables:

variable_name(s): variable type;

variable_name(s): variable type;

...

variable_name(s): variable type;

input_variables: input_variable_name(s);

output_variables: output_variable_name(s);

intermediate_variables: intermediate_variable_name(s);

First, the names and types of all the variables used in the ruleset are specified. Note that multiple variables can have the same type, and (as a shorthand notation) instead of repeating each variable name with the same type, a comma-separated list of variables can be associated with that type. A variable name is an identifier (i.e., it can only be composed of letters, numbers and the underscore character, and must start with a letter or an underscore). Variable names are case-sensitive, i.e., names serviceProperties and ServiceProperties refer to two distinct

variables. The following variable types are supported:

1. Atomic types: Atomic types supported are int (integer), float (real), bool (boolean) and string.

2. Record types: A record type consists of a number of fields, each field having a name, and any type (atomic or complex, i.e., a field can itself be a record or a list). The structure of a record type is as follows:

record of {

field_name(s): field_type;

field_name(s): field_type;

...

field_name(s): field_type;

}

There must be at least one field in the record, and all field names must be distinct. In addition, all field names are identifiers themselves.

3. List types: Homogeneous lists (all list elements must be of the same type) are also supported. For a given list, the list element type can be of any type (i.e., atomic, record or a list itself). A variable is declared as being of a list type by pre-pending the following phrase to the type of the element desired:

list of

For example, a variable that is a list of integers will have the type:

list of int

and a variable that is a list of records, with each element of that list being a record having two fields a (of type integer), and b (of type float), will have the type:

list of record of {

a: int;

b: float;

}

Here are some complete examples of specifying variables along with their types:

ServiceProperties: list of record of {

ServiceID: string;

ServiceName: string;

ServiceVersion: string;

ServiceDescription: string;

ProductName: string;

ProductVersion: string;

OperationSet: string;

ServiceTypeName: string;

};

AllowedServiceID: list of string;

ClientAppID, ClientStatus: string;

OperationStatus: int;

OperationCompleted: bool;

Following the names and types of the variables, the category of variables is specified. Variables can be in one (and only one) of the three possible categories:

1. Input variables: Input variables are those whose values are required to be sent by a requestor with every evaluation and execution request. When PEEM is used in the callable usage pattern, these variables would be passed via the PEEM callable interface. When PEEM is used in the proxy usage pattern, there variables would be identifiable in the “input context” detected by PEEM in a request directed to a target resource and intercepted by PEEM. These variables are assigned the value passed in, before any rule for that decision request is evaluated (that happens at the source of the request, outside PEEM).

2. Output variables: Output variables are those whose values who may be sent back to a requester in the PEEM callable usage pattern. The requester expects output variables to be returned and knows how to process them. Output variables are assigned values as part of rule actions.

3. Intermediate variables: Intermediate variables are those which are used as part of the evaluation and execution process, but whose values are discarded after the evaluation and execution process completes. Specifying the intermediate variables is optional. Note however that if any intermediate variables are specified explicitly, then all the intermediate variables must be listed.

The same input, output or intermediate variable can be assigned values multiple times as part of the decision rendering process. Hence, the categorization of the variables is only from the perspective of the interface between a requester and PEEM.

An example of a complete variable declaration section is given below:

variables:

SimpleServiceProps, AllowedServiceID: list of string;

ClientStatus,ClientApp: string;

input_variables: SimpleServiceProps, ClientAppID;

output_variables: AllowedServiceID;

// intermediate_variables are not specified

The set of input and output variables is collectively referred to as the input/output (I/O) profile of the ruleset.

5.3.1.3 Rules Definition Section

This section lists the rules that form the ruleset. Each rule has the following structure:

rule: rule_name

usage: usage ;

if (condition)

then

action_1 ;

action_2 ;

...

action_N ;

end

A rule hence has a rule name. While this is not important for the evaluation and execution process, it may be useful both during policy management time (e.g. to allow the provisioning tools time to point out errors (if any) in a ruleset), or during run-time by PEEM to log errors (if any). A rule also has a usage (optional), which can be used to describe what the rule does. The usage is ignored during evaluation and execution.

Note that there is no semi-colon after the rule name, or after the end at the end of the rule.

Some examples of valid rules are:

rule: test_rule

usage: “if client is ClientApp_XYZ , then allow”

if (ClientAppID == “ClientApp_XYZ ”) then ClientStatus = “allow”;

end

rule: another_rule

// no usage given here

if (x > y + z)

then

a = 10; b = 20;

c = 30;

end

An example ruleset (Internal heartbeat) is listed below that illustrates the complete structure of a ruleset. For ease of presentation, we have chosen not to present the optional elements (e.g., intermediate variables, rule usage, etc.).

domain:Internal;

ruleset:heartbeat;

// Variable definitions

variables:

// As defined in Internal Operator Policy

ServiceTypeName: string;

// ServiceHearbeatInterval overrides the heartbeat interval between 2 components of a service

ServiceHeartbeatInterval, ServiceRequestsPerSecond: int;

// I/O signature

input_variables: ServiceTypeName, ServiceRequestsPerSecond;

output_variables: ServiceHeartbeatInterval;

// Rules

rule:heartbeat1

if(ServiceRequestsPerSecond >= 5)

then

// Interval here is in milliseconds

ServiceHeartbeatInterval = 10000;

end

5.3.2 Language Constructs

This section describes the types of expressions (arithmetic and boolean) available in the policy expression

language, and show how those can be used in rule conditions and actions. But first, we define some basic constructs.

5.3.2.1 Constants

As mentioned earlier, the policy expression language supports various atomic data types, namely, int, float, bool and string. Constants corresponding to these data types can be used in rules:

1. Integer constants: Integer constants consist of a sequence of digits from 0 through 9 (note that negative values will be handled via arithmetic expressions as described later in this chapter), e.g.,

254

006

2. Float constants: Float constants follow the scientific convention, i.e., a sequence of digits with a period in between (or at the ends), followed by an optional exponent (i.e., an e or E, followed by an optional + or - sign, followed by a sequence of digits), e.g.,

2.

2.0

.45

0.45

1.32e+32

.0045E-1

0.04e3

3. Boolean constants: Boolean constants can take one of the two following values:

True

false

4. String constants: String constants are enclosed in double quotes and must not be split across multiple lines. String constants can also include certain escape sequences as follows:

\n // newline character

\t // tab character

\\ // the backslash (\) character itself

\” // a double quote character as part of the string

Examples of string constants are:

“” // an empty string

“hello world”

“this has a newline \n in it”

“this has a \” double quote character in the string”

5.3.2.2 Accessing Variable Values

A rule can use the value of a variable (that has been set earlier by some other rule, or obtained via an input variable passed in a decision request from a requester) in a condition or an action, and also set a variable value (to be used by another rule, or in the case of output variables, to be sent back to the requester). Values of atomic variables can be accessed (or set) simply by using the variable name in the corresponding expression. For example, if f is a variable of type float, then:

f+4 // uses the value of f

f = 4.5; // sets the value of f

For variables of record type, if the entire record is to be used in an expression, the variable name can itself be used. If on the other hand, a field of that variable needs to be used or set, the dot operator (.) can be used to identify the corresponding field being referenced. For example, if r is a variable of type record, containing two fields a and b both of type int, then:

r // uses the value of r

r.a + 4 // uses the value of field a of r

r.b = 3; // sets the value of field b of r

For variables of list type, if the value of the entire list is to be used or set, then the variable name can be used itself. If a particular element of the list needs to be accessed or set, the index operator ([]) can be used to reference a particular element. Note that the first element of a list has index 0. If an element of a list itself is a record, then the dot operator described above can be composed with the index operator to reference a particular field of an element of a list. For example, if li is a list of ints, and lr is a list of records of the type mentioned in the previous example, then:

li[4] // uses the value of the 5th element of li

li[0] = 1; // sets the value of the 1st element of li

lr[3].b + 4 // uses the value of field b of the 4rth element of lr

lr[2].a = 4; // sets the value of field a of the 3rd element of lr

Note that for lists, if an element is being set, it is required for some element to be already present in the list at that index. Otherwise, it will result in a run-time error. To add values to a list, the list append operator (+=) needs to be used. Conversely, to delete elements from a list, the list delete operator (-=) needs to be used. These operators are described later on in this chapter.

5.3.2.3 Arithmetic Expressions

The policy expression language allows the standard operators +, -, / and * in expressions, along with the modulus (%) operator. In addition, the + and - operators can be used as unary operators as well. Parenthesis can be used to group sub-expressions as necessary. Variables (of the appropriate type) can be used in expressions as well. Finally, the language allows the rules writer to invoke certain function calls as needed. Details on the functions supported are given later.

Some examples of valid arithmetic expressions are:

-PrepaidBalance

ServiceProperties.ServiceID

-x + (y/z) % 34

5.3.2.4 Boolean expressions

The policy expression language supports standard boolean operators such as < (less than), <= (less than or equal to), == (equal to), > (greater than), >= (greater than or equal to), and != (not equal to). One additional boolean operator (in) is also supported. This operator can be used to check if an element is contained within a list. The standard logical operators && (AND), || (OR), and ! (NOT) are also supported. Also, note that a Boolean expression may contain arithmetic expressions as sub-expressions. The result of a boolean expression must evaluate to a boolean value. Examples of Boolean expressions include:

// simple equality check

SimpleServiceProps[0].ServiceName == “USER_LOCATION”

// true boolean expression

true

// in the following, SimpleServiceProps is assumed to be a list of record, with // one field of the record being ServiceID, which is a string.

// Also, BlackListedServiceID is assumed to be a list of strings.

SimpleServiceProps[0].ServiceID in BlackListedServiceID

// more complex boolean expression

(b1 || b2) && (! b3) && (x > y)

5.3.2.5 Rule conditions

A rule condition is a boolean expression. Conjunctive Normal Form (CNF) are supported;the need to support Disjunctive Normal Form (DNF) shouldalso be evaluated). This essentially implies that the boolean expressions at the high level must be ANDed together. Each subexpression that is ANDed together is called a conjunct. Internally, each conjunct may contain other boolean expressions that are ORed together. Each such sub-expression is called a disjunct. A disjunct must not contain any AND (&&) or OR (||) operators. The NOT (!) operator must be only applied to a single disjunct.

Note: If a conjunct contains more than one disjunct, the entire conjunct must be enclosed within parenthesis.

Examples of valid conditions thus include:

SimpleServiceProps[0].ServiceName == “USER_LOCATION”

true

SimpleServiceProps[0].ServiceID in BlackListedServiceID

(b1 || b2) && (! b3) && (x > y) && (b != c)

Examples of invalid conditions are:

// equality operator is == and not =

SimpleServiceProps[0].ServiceName = “USER_LOCATION”

// NOT operator applied to more than one disjunct

(! (b1 || b2))

// second conjunct (b || (c && d>4)) contains other

// conjuncts

(a < 1) && (b || (c && d>4))

// second conjunct (b == 1) || (c > 4) contains more

// than one disjunct, but is not enclosed in parenthesis

(a > 1) && (b == 1) || (c > 4)

5.3.2.6 Rule Actions

Two types of rule actions are supported:

1. Assignment: An assignment action assigns (or sets) the value of a variable. The value being set can either be a constant, or can be one of the arithmetic or Boolean operations defined earlier. Examples of assignment action include (note that records and lists can be assigned to as a whole as well):

HeartBeatInterval = 10000;

ServiceProps[i+1].ServiceTypeName = “USER_LOCATION”;

List1 = List2;

2. List Update: There are two operators available to append as well as delete elements from a list. The append operation appends a given element to the end of a list. The element being appended to must have the same type as the element type of the list. For example, an integer can be appended to the end of a list of integers, but not to the end of a list of booleans. The operator used for list append is denoted by +=. An example of a list append is:

AllowedServices += “USER_LOCATION”;

The delete operator deletes all occurrences of a given element from a list. The operation does not modify the list if the element is not present (and does not raise any run-time exception either). The operator for list delete is denoted by -=. An example of list delete operator is:

AllowedServices -= "USER_LOCATION";

5.3.3 Iterating over lists

Editor note: The semantics for this may be added in a future separate contribution, in order to not add to this current contribution’s level of complexity. In principle the intent here is to add the possibility to operate of all or a set of members of the list, when it may not be known how many members the list has – hence making it difficult to write a policy.
5.3.4 Support functions

Besides the operators and expressions presented above, a rules writer can also make use of certain support function calls in the rule conditions and/or actions. Support functions provide certain functionality that would be difficult/impossible to achieve with the basic operators. Support functions are declared in namespaces, which is a mechanism for categorizing the functions. Each namespace can contain multiple support functions. Categorizing support functions in namespaces allows less possibility of naming conflicts, since two functions in two different namespaces can have the same name. The initial namespaces supported are: String, Math, List, and Record. Using a support function in a rule condition or action involves pre-pending the function name with the namespace to which it belongs, followed by two colon marks. The following example rule illustrates the use of some support function calls:

if (List::count(L) > 5 || String::contains(str, "blue"))

then

accept = true;

end

The support functions are typed, i.e., they require arguments of a certain type, and return results of a certain type. The following conventions are used to describe the function signature:

int

type is an integer

float

type is a float

string
type is a string

bool

type is a boolean

number
either an int or a float

atomic
any one of the atomic types

record
a record of some type

list

a list of some type

any

implies any type (atomic, record or list)

[...] indicates optional argument

The support functions considered necessary are presented below (categorized according to their functionality areas).
Table 1. Rules Grammar, Support Functions Description

	Namespace
	Support Function
	Description

	Math
	int round(number n, bool up_down)
	Rounds number n to an int. If the

optional argument up_down is true,

the number is rounded up, else it is

rounded down. The default is to

round up.

	
	number max(number n_1, number

n_2, ..., number n_m)
	Returns maximum of all numbers.

The type of the result is int if all

arguments are int, float otherwise.

	
	number min(number n_1, number

n_2, ..., number n_m)
	Returns minimum of all numbers.

The type of the result is int if all

inputs are int, float otherwise.

	String
	int to_int(string s)
	Converts string s to an integer.

Throws an exception if conversion

was not possible.

	
	float to_float(string s)
	Converts string s to a float. Throws

an exception if conversion was not

possible.

	
	string to_string(number n)
	Converts number n to a string.

	
	string substring(string s, int x, int y)
	Returns substring from character

position x to character position y

(character positions start from 0).

	
	string substring(string s, int x)
	If (x > 0), it returns first x characters,

else last |x| characters, where |x| is

the absolute value of x (e.g., |-3| =

3).

	
	bool contains(string s_1, string s_2)
	Returns true if s_1 contains s_2,

false otherwise.

	
	bool match(string s, string r)
	Returns true if regular expression r

is contained in s, false otherwise. [regular expression syntax is per

Unix specification]

	
	int length(string s)
	Returns the length of string s.

	Record
	record create(any f_1, any f_2, ...,

any f_n)
	Creates a record value by

concatenating the values f_1 through

f_n specified as arguments. This

function can take arbitrary number

of arguments. At least one argument

must be supplied.

	List
	list create(any e_1, any e_2, …, any

e_n)
	Creates a list value consisting of

elements e_1, e_2, …, e_n. Note that

each element must be of the same

type. If no argument is supplied, an

empty list is created.

	
	list unique(list list_1)
	Removes duplicate elements from

list list_1, and returns the new list.

The type of the list returned is the

same as the type of list_1.

	
	int count(list list_1)
	Returns the number of elements in

list list_1.

5.3.5 External functions
External functions are needed in order to support delegation to other resources. The result of a delegated function can be included as part of rule condition or action. The external functions are typed, i.e., they require arguments of a certain type, and return results of a certain type. The following conventions are used to describe the function signature:

int

type is an integer

float

type is a float

string
type is a string

bool

type is a boolean

number
either an int or a float

atomic
any one of the atomic types

record
a record of some type

list

a list of some type

If needed, other types of arguments and return results type could be added in future.

Editor note: Additional content about how an external functions is to be declared will be provided in a future contribution, based on discussion that should take place in AD on the current contribution. The easiest way to declare them ay be like the support functions in the previous section, pre-pended by a reserved namespace “ExternalIn either case, regardless of language syntax, it is expected that the external function “name” is associated to the real resource API, and that the execution of the policy will pass to it the values of the arguments as described in the policy. External functions may be used to perform transformations on the output and modifying a binding if needed.
5.4 Validity Checking

Editor note: This section is reserved to present consideration for the behavior of PEEM with respect to the validity checks expected to be performed (syntax checking), Some of the validity checking expected may shed additional light on the language semantics. This may be submitted as a separate contribution, and may ultimately belong in an Appendix, rather than in the main portion of the TS.
5.5 Policy Expression Language formal syntax definition
5.5.1 Overview
This section describes the PEEM policy expression language grammar.
5.5.2 Policy Expression Language EBNF

Editor note: This section may provide the PEEM policy expression language in EBNF.
5.5.3 Policy Expression language XML schema

Editor note: This section may provide the PEEM policy expression language XML schema.
Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

Recommendation

The recommendation is to adopt the proposed outline as the initial outline for the specific document or section in a document addressing PEEM Policy Expression language, and agree to the initial content representing the semantics and language constructs details and the intent expressed in “pseudo-C” for a syntax to be provided later. Assuming this needs further studying, but is directionally correct as a way to extend [COMMONPOL], we recommend to include this material into an Appendix, where the development of [COMMONPOL} with extensions wil continue until completion.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 15 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

