Doc# OMA-ARC-2006-0354-PEEM_PEM-1_TS_Diameter_datatypes_for_consideration.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2006-0354-PEEM_PEM-1_TS_Diameter_datatypes_for_consideration.doc
Input Contribution

Input Contribution

	Title:
	PEEM PEM-1 TS Diameter datatypes for consideration
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	12 Oct 2006

	Source:
	Michael Brenner, Lucent Technologies

mrbrenner@lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution proposes content for PEEM PEM-1 TS.

2 Summary of Contribution

Background

ARC has agreed and documented in the PEM-1 TS that PEM-1 will support bindings to Diameter. This contribution provides an analysis of Diameter supported datatypes, which in turn will support ARC in making a decision on supported parameter data types for PEM-1, and it may also influence the decision on parameters data types that are supported by PEL..

3 Detailed Proposal

Appendix X: Analysis of use of Diameter, and data types supported in Diameter.

This is an analysis of data types supported in Diameter [RFC 3558].

X.1 Diameter AVP related background information

The Diameter protocol consists of a header followed by one or more Attribute-Value-Pairs (AVPs). An AVP includes a header and is used to encapsulate protocol-specific data (e.g., routing information) as well as authentication, authorization or accounting information. The set of AVPs included in a message is determined by a particular Diameter application. Application Identifiers are advertised during the capabilities exchange phase (see [RFC 3588], Section 5.3). For a given application, advertising support of an application implies that the sender supports all command codes, and the AVPs specified in the associated ABNFs, described in the specification. An implementation MAY add arbitrary non-mandatory AVPs to any command defined in an application, including vendor-specific AVPs.

Each Diameter application MUST have an IANA assigned Application Identifier (see [RFC 358], Section 11.3). The base protocol does not require an Application Identifier since its support is mandatory. During the capabilities exchange, Diameter nodes inform their peers of locally supported applications. Furthermore, all Diameter messages contain an Application Identifier, which is used in the message forwarding process.

For the purpose of this analysis, some fields in the Diameter header are presented. See [RFC 3588] for the complete information. The fields of interest here are:

<snip>

Command-Code: this field is 3 octets, and is used in order to communicate the command associated with the message. The 24-bit address space is managed by IANA (see [RFC 3588], Section 11.2.1).

Application-ID: this field is 4 octets and is used to identify to which application the message is applicable for. The application can be an authentication application, an accounting application or a vendor specific application. See Section 11.3 for the possible values that the application-id may use. The application-id in the header MUST be the same as what is contained in any relevant AVPs contained in the message.
<snip>

AVPs: they represent a method of encapsulating information relevant to the Diameter message. See RFC 3588 Section 4 for more information on AVPs.

<snip>

Every Command Code defined MUST include a corresponding ABNF specification, which is used to define the AVPs that MUST or MAY be present. See [RFC 3588], Section 3.2 for Command Code ABNF specification.

Diameter AVPs carry specific authentication, accounting, authorization, routing and security information as well as configuration details for the request and reply. Some AVPs MAY be listed more than once. The effect of such an AVP is specific, and is specified in each case by the AVP description.

Each AVP of type OctetString MUST be padded to align on a 32-bit boundary, while other AVP types align naturally. A number of zero-valued bytes are added to the end of the AVP Data field till a word boundary is reached. The length of the padding is not reflected in the AVP Length field.

For the purpose of this analysis, some fields in the Diameter header are presented. See [RFC 3588] for the complete information. The fields of interest here are:

AVP Code: this field, combined with the Vendor-Id field, identifies the attribute uniquely. AVP numbers 1 through 255 are reserved for backward compatibility with RADIUS, without setting the Vendor-Id field. AVP numbers 256 and above are used for Diameter, which are allocated by IANA (see [RFC 3588], Section 11.1).

AVP Flags: this field informs the receiver how each attribute must be handled. See [RFC 3588], Section 4.1 for ‘P’ bit and ‘M’ bit

<snip>

The 'V' bit, known as the Vendor-Specific bit, indicates whether the optional Vendor-ID field is present in the AVP header. When set the AVP Code belongs to the specific vendor code address space.

Unless otherwise noted, AVPs will have the following default AVP Flags field settings:

The 'M' bit MUST be set. The 'V' bit MUST NOT be set.

AVP Length: this field is three octets, and indicates the number of octets in this AVP including the AVP Code, AVP Length, AVP Flags, Vendor-ID field (if present) and the AVP data. If a message is received with an invalid attribute length, the message SHOULD be rejected.

The AVP Header contains one optional field. This field is only present if the respective bit-flag is enabled.

Vendor-ID: this field is present if the 'V' bit is set in the AVP Flags field. The optional four-octet Vendor-ID field contains the IANA assigned "SMI Network Management Private Enterprise Codes" [ASSIGNNO] value, encoded in network byte order. Any vendor wishing to implement a vendor-specific Diameter AVP MUST use their own Vendor-ID along with their privately managed AVP address space, guaranteeing that they will not collide with any other vendor's vendor-specific AVP(s), nor with future IETF applications. A vendor ID value of zero (0) corresponds to the IETF adopted AVP values, as managed by the IANA. Since the absence of the vendor ID field implies that the AVP in question is not vendor specific, implementations MUST NOT use the zero (0) vendor ID.

X.2 Diameter AVP data formats

This contains an analysis of the Diameter supported AVP data types. Diameter supports basic AVP data formats and derived AVP data formats.

The Data field of a AVP is zero or more octets and contains information specific to the Attribute. The format and length of the Data field is determined by the AVP Code and AVP Length fields. The format of the Data field MUST be one of the following base data types or a data type derived from the base data types. In the event that a new Basic AVP Data Format is needed, a new version of this RFC must be created.

Given the statement above, it is highly recommended for PEEM to avoid the need to add basic AVP data format, since this may become a lengthy and less than guaranteed to succeed path.

The basic AVP data formats are presented in the table below:

	Diameter Basic AVP Data Formats
	Description

	OctetString
	Arbitrary data of variable length.

Unless otherwise noted, the AVP Length field MUST be set to at least 8 (12 if the 'V' bit is enabled). AVP Values of this type that are not a multiple of four-octets in length is followed by the necessary padding so that the next AVP (if any) will start on a 32-bit boundary.

	Integer32
	32 bit signed value, in network byte order. The AVP Length field MUST be set to 12 (16 if the 'V' bit is enabled).

Values in the range: −2,147,483,648 to +2,147,483,647

	Integer64
	64 bit signed value, in network byte order. The AVP Length field MUST be set to 16 (20 if the 'V' bit is enabled).

−9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	Unsigned32
	32 bit unsigned value, in network byte order.

0 to +4,294,967,295

	Unsigned64
	32 bit unsigned value, in network byte order.

0 to +18,446,744,073,709,551,615

	Float32
	This represents floating point values of single precision as

described by [FLOATPOINT]. The 32-bit value is transmitted in network byte order.

	Float64
	This represents floating point values of double precision as

described by [FLOATPOINT]. The 64-bit value is transmitted in network byte order.

	Grouped
	The Data field is specified as a sequence of AVPs. Each of these AVPs follows – in the order in which they are specified – including their headers and padding. This is basically a way to represent what is called in programming languages a record or structure.

Analyzing the basic AVP data formats leads to the conclusion that all of them, with some caveats, have some equivalent in the typical programming language data types supported (see the last table). The caveats are related to the fact that some basic AVP data formats also include specific handling of the AVP length and aligning at 4 octets boundary. That is especially true for the Grouped basic AVP data format, which could be close to a “struct”, but incorporates also the AVP code, flags and length of each member within the construct. However, these issues can be addressed by the Diameter receiver/responder implementation when dealing with transfers between Diameter receiver/responder and the policy itself.

In addition to using the Basic AVP Data Formats, applications may define data formats derived from the Basic AVP Data Formats. An application that defines new AVP Derived Data Formats MUST include them in a section entitled "AVP Derived Data Formats", using the same format as the definitions in [RFC 3599]. Each new definition must be either defined or listed with a reference to the RFC that defines the format. The below AVP Derived Data Formats are commonly used by applications.

	Diameter Derived AVP Data Formats
	Description

	Address

	The Address format is derived from the OctetString AVP Base Format. It is a discriminated union, representing, for example a 32-bit (IPv4) [IPV4] or 128-bit (IPv6) [IPV6] address, most significant octet first. The first two octets of the Address AVP represents the AddressType, which contains an Address Family defined in [IANAADFAM]. The AddressType is used to discriminate the content and format of the remaining octets.

	Time
	The Time format is derived from the OctetString AVP Base Format. The string MUST contain four octets, in the same format as the first four bytes are in the NTP timestamp format

	UTF8String
	The UTF8String format is derived from the OctetString AVP Base Format. This is a human readable string represented using the ISO/IEC IS 10646-1 character set, encoded as an OctetString using the UTF-8 [UFT8] transformation format described in RFC 2279. For information encoded in 7-bit US-ASCII, the UTF-8 charset is identical to the US-ASCII charset.

UTF-8 may require multiple bytes to represent a single character / code point; thus the length of an UTF8String in octets may be different from the number of characters encoded.

Note that the AVP Length field of an UTF8String is measured in octets, not characters.

	DiameterIdentity
	The DiameterIdentity format is derived from the OctetString AVP Base Format.

DiameterIdentity value is used to uniquely identify a Diameter node for purposes of duplicate connection and routing loop detection.

	DiameterURI
	The DiameterURI MUST follow the Uniform Resource Identifiers (URI) syntax [URI] rules specified in [RFC 3588]

	Enumerated
	Enumerated is derived from the Integer32 AVP Base Format. The definition contains a list of valid values and their interpretation and is described in the Diameter application introducing the AVP.

	IPFilterRule
	The IPFilterRule format is derived from the OctetString AVP Base Format. It uses the ASCII charset. Packets may be filtered based on information described in [RFC 3588]

	QoSFilterRule
	The QosFilterRule format is derived from the OctetString AVP Base Format. It uses the ASCII charset. Packets may be marked metered based on information described in [RFC 3588]

Analyzing the derived AVP data formats leads to the conclusion that many of them are derived from OctetString, which is relatively equivalent to a programming language “string” – so this should not be an issue. Enumerated is derived from Integer32, and seems to be equivalent to the programming language “enum” data type. The [RFC 3588] conspicuously misses to state that DiameterURI is derived from OctetString, but at careful reading of the details, it proves to be the case – so that should not be an issue either. As before, similar caveats apply caveats apply, and some processing will have to take place when dealing with transfers between Diameter receiver/responder and the policy itself.

X.2 Diameter AVP data formats versus common programming languages supported data types

This section presents a comparison between common programming languages supported data types (from an analysis in a separate contribution) and the data formats supported by Diameter, in order identify the differences and draw appropriate conclusions.

	C/C++/Java “Supported” Data Types
	Diameter basic or derived AVP data formats
	Comments/conclusion

	void
	No equivalent
	Not a problem; there is no need to support void in Diameter, since void is only use as a convenience to be consistent for a function that does not return a value – so it will be data type internal to the policy only (if needed)

	int
	Integer32
	Match

	unsigned int
	Unsigned32
	Match

	signed int
	Integer32
	Match

	short int
	No equivalent
	No match. Will need to decide whether there is a need to support in PEL. Possibilities include to not support, or to support with the caveat that Diameter implementation will need to verify that an Integer32 passed instead is indeed in the range that fits into a short int.

	unsigned short int
	No equivalent
	Similar to above.

	signed short int
	No equivalent
	Same as above.

	long int
	Integer64
	Match

	unsigned long int
	Unsigned64
	Match

	signed long int
	Integer64
	Match

	float
	Float32
	Match

	double
	Float64
	Match

	long double
	Float64
	Match

	char
	Could be derived from OctetString
	Not a problem to support, needs some work. Possibilities include defining a derived AVP (an OctetString of 1) or just verifying that indeed an OctetString passed only has 1 character, before passing it to the policy.

	unsigned char
	Could be derived from OctetString
	Similar to above

	signed char
	Could be derived from OctetString
	Similar to above

	enum
	Enumerated
	Match

	array
	OctetString (for arrays of bytes only)

For others, or in general, could be derived from existing AVP formats.

	Not a problem to support, needs some work. Probably define derived AVPs (one for each possible type of member in the array – e.g. one for int, one for float, etc …) using Grouped data formats.

	function
	No equivalent
	Not a problem; there is no need to support functions in Diameter, since there is no need to pass functions as parameters.

	struct
	Could be derived from Grouped
	Not a problem to support, needs some work. Probably define derived AVPs for specific structures.

	union
	No equivalent.
	Not sure how to support, but maybe it is not needed. May need more investigation.

	string
	OctetString
	Match

	wchar_t
	Could be derived from OctetString
	Not a problem to support, needs some work. Probably define derived AVP from OctetString.

	bool
	Could be derived from Integer32.
	Not a problem to support, needs some work. Probably define derived AVP from Int32.

	See string
	OctetString
	Match

	See int
	Integer32
	Match

	See long
	Integer64
	Match

	See unsigned int
	Unsigned32
	Match

	See unsigned long
	Unsigned64
	Match

	See float
	Float32
	Match

	See double
	Float64
	Match

	See struct
	Grouped
	Not a problem to support, needs support in Diameter.

	Derived from string
	Address

	Not a problem to support in PEL via a “typedef” from string (if needed; probably consumed at Diameter protocol level).

	Derived from string
	Time
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	UTF8String
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	DiameterIdentity
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	DiameterURI
	Not a problem to support in PEL via a “typedef” from string (if needed)

	See enum
	Enumerated
	Match

	Derived from string
	IPFilterRule
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	QoSFilterRule
	Not a problem to support in PEL via a “typedef” from string (if needed)

The conclusion is that, should a subset of the basic and some complex data types analyzed for programming languages be supported in PEL, Diameter can match the parameters data types as dictated by the policy with a few exceptions (short int, unsigned short int, signed short int, function, union), but may require some work for some of the others. Of course, the more data types are supported in PEL, the more work in new AVPs to be supported in Diameter. Likewise, a PEL that supports the typical programming language data types can support all passed parameters data types from/to Diameter (in some cases the use typedef may be needed to cast some derivations of data types in PEL in order to do so – but this can be done on a need basis). In principle, any of the parameters passed via Diameter can be matched with existing basic data types and structures supported in programming languages.

A subset of the data types supported in programming languages would be in general a much preferable way to start with, rather then supporting the entire super-set of data types available in programming languages. Other types can be derived and added to PEL on a need-basis later on

A special note on the use of Vendor-ID qualifier. If the ‘F’ flag is set in the Diameter header, the Vendor-ID parameter acts as a “namespace” to allow a different interpretation for a certain AVP, then the standard interpretation as per IETF specifications (such AVPs are no longer managed by IANA, but by the organization that owns that particular Vendor-ID). How can this be taken advantage of, and how is a problem in processing Diameter parameters avoided, when each of them can be qualified with a different Vendor-ID ?

The answer relies in the notion that the policy dictates the input/output parameters data types. Several scenarios could happen:

1. ARC could decide at PEEM PEL TS time that some additional AVP codes are needed, but instead of creating them via IANA, it would create them by overlaying existing AVPs with ones qualified trough a specific Vendor-ID (for example a future to be obtained OMA Vendor-ID). In this case, such AVP codes and the Vendor-ID to be used will have to be communicated to the PEEM requesters, in order to achieve a match at policy processing time.

2. A Service Provider that deploys PEEM may decide that additional PEEM derived data types are needed, and perform the same process as above.

 This needs to also be documented in the PEL TS, possibly as a best practice if new AVP codes are added and not registered through IANA, but instead managed by OMA.

Editor’s note: Note that I only analyzed the base Diameter protocol. There could be additional derived AVP formats in other applications (e.g. 3GPP Diameter applications). However, given the conducted analysis, it appears that in all cases analyzed, the support needed in PEL maybe to use a “typedef” type of facility to derive a “new datatype” name that fits the needs and conforms to the Diameter AVP data format.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend to take this analysis in consideration when deciding on the data types to be supported by PEM-1 and PEL, and to include this analysis in an Appendix in PEM-1 TS. The conclusions should also be included in PEL TS.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 1)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

