OMA-TS-REST_NetAPI_<FuncArea>VVOIP-V1_x0-201303xxmmdd-D
Page 18 V(52)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for IP Voice and IP Video (VVOIP)

	Draft Version 1.0 – xxMar 2013

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_VVOIP-V1_0-201303xx-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
10
4.1
Version 1.0
10
5.
 IP Voice and IP Video (VVOIP) API definition
11
5.1
Resources Summary
11
5.2
Data Types
14
5.2.1
XML Namespaces
14
5.2.2
Structures
14
5.2.2.1
Type: AudioVideoSession
15
5.2.2.2
Type: AudioVideoSubscription
15
5.2.2.3
Type: AudioVideoNotification
16
5.2.3
Enumerations
17
5.2.3.1
Enumeration: AudioVideoSessionStatus
17
5.2.3.2
Enumeration: Reason
17
5.2.3.3
Enumeration: ResourceStatus
17
5.2.4
Values of the Link “rel” attribute
18
5.3
Sequence Diagrams
18
5.3.1
Invite for an AudioVideo Session
18
5.3.2
[Title of flow scenario]
19
6.
Detailed specification of the resources
22
6.1
Resource: [Description of the resource]
22
6.1.1
Request URL variables
23
6.1.1.1
Light-weight Resource relative paths
23
6.1.2
Response Codes and Error Handling
23
6.1.3
GET
24
6.1.3.1
Example 1: [Example title] (Informative)
24
6.1.3.1.1
Request
25
6.1.3.1.2
Response
25
6.1.3.2
Example 2: [Example title] (Informative)
25
6.1.3.2.1
Request
25
6.1.3.2.2
Response
26
6.1.4
PUT
26
6.1.4.1
Example 1: [Example title] (Informative)
26
6.1.4.1.1
Request
26
6.1.4.1.2
Response
26
6.1.4.2
Example 2: [Example title] (Informative)
26
6.1.4.2.1
Request
26
6.1.4.2.2
Response
26
6.1.5
POST
27
6.1.5.1
Example 1: [Example title] (Informative)
27
6.1.5.1.1
Request
27
6.1.5.1.2
Response
27
6.1.5.2
Example 2: [Example title] (Informative)
27
6.1.5.2.1
Request
27
6.1.5.2.2
Response
27
6.1.6
DELETE
27
6.1.6.1
Example 1: [Example title] (Informative)
28
6.1.6.1.1
Request
28
6.1.6.1.2
Response
28
6.1.6.2
Example 2: [Example title] (Informative)
28
6.1.6.2.1
Request
28
6.1.6.2.2
Response
28
7.
Fault definitions
29
7.1
Service Exceptions
29
7.1.1
SVC[code number]: [Text for exception header]
29
7.2
Policy Exceptions
29
7.2.1
POL[code number]: [Text for exception header]
30
7.2.1
POL1003: Refund exceeds original charge amount
30
Appendix A.
Change History (Informative)
31
A.1
Approved Version History
31
A.2
Draft/Candidate Version 1.0 History
31
Appendix B.
Static Conformance Requirements (Normative)
32
B.1
SCR for REST.FUNCAREA Server
32
B.1.1
SCR for REST.FUNCAREA.FUNCTION Server
32
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
33
C.1
[Operation]
33
C.1.1
Example (Informative)
34
C.1.1.1
Request
34
C.1.1.2
Response
34
Appendix D.
JSON examples (Informative)
35
D.1
[Example Title] (section [section number cross reference])
35
Appendix E.
[Baseline specification] operations mapping (Informative)
36
Appendix F.
Light-weight Resources (Informative)
37
Appendix G.
Authorization aspects (Normative)
38
G.1
Use with OMA Authorization Framework for Network APIs
38
G.1.1
Scope values
38
G.1.1.1
Definitions
38
G.1.1.2
Downscoping
39
G.1.1.3
Mapping with resources and methods
39
G.1.2
Use of ‘acr:Authorization’
41

Figures

13Figure 1 Resource structure defined by this specification

21Figure 2 [Caption of this flow]

22Figure 2 [Caption of this flow]

Tables

40Table 1 [Baseline specification] operations mapping

1. Scope

This specification defines a RESTful API for IP Voice and IP Video using HTTP protocol bindings.
2. References

2.1 Normative References

	
	

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IETF_ACR_draft]
	Include if the use of ACR is supported, otherwise delete this reference. “The acr URI for anonymous users”, S.Jakobsson, K.Smith, January 2010, URL: http://tools.ietf.org/html/draft-uri-acr-extension-00

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_VVOIP]
	“XML schema for the RESTful Network API forIP Voice and IP Video (VVOIP)”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_vvoip-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_URLENC]
	HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium, URL: http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1 [only needed if application/x-www-form-urlencoding (Appendix C) is supported]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. If the use of Notification Channel and/or Light-weight Resources are supported, include also the definitions below, otherwise delete those that are not applicable.

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource. Include this definition if Light-weight Resources are supported, otherwise delete it..

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure. Include this definition if Light-weight Resources are supported, otherwise delete it.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
VVOIP
	Uniform Resource Locator
Voice and Video Over IP

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	

4. Introduction

The Technical Specification of the RESTful Network API for IP Voice and IP Video contains HTTP protocol bindings for IP voice and IP video functionality, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-urlencoded)..
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

<< Include a list of supported operations >>

The following new functionality has been introduced:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:Authorization” as a reserved keyword in an ACR
5. IP Voice and IP Video (VVOIP) API definition
This section is organized to support a comprehensive understanding of the VVOIP API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body. Application/x-www-form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.
Appendix B provides the Static Conformance Requirements (SCR).
Appendix E lists the [Baseline specification] equivalent operation for each supported REST resource and method combination, where applicable. [This paragraph applies verbatim if there is a baseline specification such as Parlay X and may apply in a modified form if there is another baseline specification. For ParlayREST, substitute [Baseline specification] with “Parlay X”. Wording if there is no baseline spec is as follows:
“Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.”.]
Appendix F provides a list of all Light-weight Resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for IP Voice and IP Video (VVOIP)
The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
[image: image2.emf]/{userId}

//{serverRoot}/vvoip/{apiVersion}

/audiovideo

/mod

/{modId}

/{callId}

/subscriptions

/{subscriptionId}

Purpose: To allow client to manage AudioVideo sessions
	Resource
	URL
Base URL: http://{serverRoot}/vvoip/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	

	

	

	

	

	

	

	All AudioVideo sessions
	/{userId}/audiovideo
	AudioVideoSession
(used for POST)
	no
	no

	Create a new AudioVideo session
	no

	Individual AudioVideo session
	/{userId}/audiovideo/{callId}
	AudioVideoSession
(used for POST/GET)
	Retrieve an AudioVideo session
	no
	Accept an AudioVideo session invitation, by creating a corresponding callee object for this callId.
	Reject to an AudioVideo session invitation

	

	
	

	

	
	
	
	

	

Purpose: To allow client to modify an AudioVideo session
	Resource
	URL
Base URL: http://{serverRoot}/vvoip/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Request a modification of an AudioVideo session
	/{userId}/audiovideo/{callId}/mod
	AudioVideoSession
	no
	no
	Modify an AudioVideo session
	No

	Manage AudioVideo modification request
	/{userId}/audiovideo/{callId}/mod/{modId}
	AudioVideoSession
(used for POST/GET)
	Retrieve status about an active AudioVideo session modification
	No
	Accept a modification of an AudioVideo session
	Reject a modification of an AudioVideo session

Purpose: To allow client to manage subscriptions for notifications of new AudioVideo sessions or changes existing sessions
	Resource
	URL
Base URL:
http://{serverRoot}/vvoip/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	AudioVideo subscriptions
	/{userId}/audiovideo/subscriptions
	AudioVideoSubscription
(Used for POST)
	no
	no
	Creates a new subscription for notification for AudioVideo sessions
	no

	Individual AudiVideo subscription
	/{userId}/audiovideo/subscriptions/{subscriptionId}
	AudioVideoSubscription
(Used for GET/PUT)
	Retrieves a specified AudioVideo subscription
	Updates a specified AudioVideo subscription
	no
	Terminates a specified AudioVideo subscription

Purpose: To allow client to receive notifications about new or modified AudioVideo sessions
	Resource
	Base URL:
http://{serverRoot}/vvoip/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client resource for AudioVideo session notifications
	<specified by client in the subscription>
	AudioVideoNotification
	no
	no
	This operation notifies a client about AudioVideo session
	no

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the VVOIP data types is:

urn:oma:xml:rest:vvoip1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common] .The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_VVOIP].
5.2.2 Structures

·
·

	
	
	
	

The subsections of this section define the data structures used in the VVOIP API.
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.

5.2.2.1

	
	
	
	

	
	
	
	

	

5.2.2.2

	
	
	
	
	

	
	
	
	
	

	

5.2.2.3 Type: AudioVideoSession
This type defines a set of parameters for the AudiVideo session.
	Element
	Type
	Optional
	Description

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element SHOULD be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate Presence Source creation in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	to
	xsd:anyURI
	Yes
	Defines the callee. Mandatory when creating a new AudioVideo session.

	sdp
	xsd:string
	Yes
	Contains an SDP offer for the session.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client. The resourceURL MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named audioVideoSession of type AudioVideoSession is allowed in request and/or response bodies.

5.2.2.4 Type: AudioVideoSubscription
This type defines a set of parameters for an AudiVideo subscription.
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's notification endpoint and parameters. Contains the callback URL on which notifications will be sent to for the duration of the subscription.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element MAY be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscription creation in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it..

	duration
	xsd:int
	Yes
	Specifies the duration of the subscription in seconds. When this time has elapsed, the subscription will expire unless it has been refreshed.

The server SHALL always include the remaining duration of the subscription in the response.

A too high requested value MAY be reduced by the server according to the service policy.

If the parameter is omitted, a default value specified by the server policy will be used as the subscription life time.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client. The resourceURL MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named audioVideoSubscription of type AudioVideoSubscription is allowed in request and/or response bodies.

5.2.2.5 Type: AudioVideoNotification
This type defines a set of parameters for the AudiVideo session.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element as passed by the application in the ‘callbackReference’ element when creating a subscription to AudioVideo notifications.

See [REST_NetAPI_Common] for details.

	resourceStatus
	ResourceStatus
	No
	Indicates the state for the subscription.

	state
	AudioVideoSessionStatus
	No
	Indicates the status of the subscription for the Presentity.

	reason
	Reason
	Yes
	Only applicable when “state=Mod-terminated”

	sdp
	xsd:string
	Yes
	Contains an SDP offer for the session.

	link
	common:Link [1..unbounded]
	Yes
	Link(s) to other resources that are in relationship with the resource.
SHALL contain a reference to the modification resource (rel=”AudioVideoSession”) in case the session is modified.

SHALL contain reference to the subscription (rel=”AudioVideoSubscription”) if resourceStatus is ‘Active’.

A root element named audioVideoNotification of type AudioVideoNotification is allowed in an AudioVideo notification request.

5.2.3 Enumerations

·
·

The subsections of this section define the enumerations used in the VVOIP API.
5.2.3.1 Enumeration: AudioVideoSessionStatus
	Enumeration
	Description

	Invitation-received
	A new AudioVideo session invitation is received. The client is expected to accept, reject or ignore the invitation. When the client receives an invitation/offer for Audio and Video but only can/wants to do audio, it can reject the Video offer by setting the port to 0 and accept the Audio offer in its SDP response.

	Session-open
	The recipient party accepted the AudioVideo session and both parties provided and agreed on the SDP. The client connects the media according to the provided IP address and port. The SDP in the event might indicate that a media is rejected by setting the port to 0.

	Session-terminated
	The other party rejected the invitation, the invitation is cancelled or the session is terminated. The client terminates the media flow and associated sessions.

	Session-modified
	The SDP for the session is updated. The updated SDP is included in the notification. The client is required to apply the updated SDP. It cannot accept or reject the updated SDP.

	Mod-Received
	The sender has requested to modify the AudioVideo session

	Mod-Terminated
	The process of modifying the resource is terminated. Please refer to the Reason type for more details about the reason for termination.

	

5.2.3.2 Enumeration: Reason
	Enumeration
	Description

	success
	The modification was accepted by both local and remote client and media can be used.

	not_acceptable
	The modification was rejected by the remote client.

	expired
	The modification request did not receive a response in a timely manner.

	cancelled
	The modification request was cancelled by the local client.

	rejected
	The modification request was rejected by the remote client.

	failed
	The modification request failed due to other problem.

5.2.3.3 Enumeration: ResourceStatus

Enumeration of possible status of a subscription

	Enumeration
	Description

	Active
	Indicates that the subscription is active.

	TerminatedTimeout
	Indicates that the subscription has been terminated. The subscription was not refreshed in time before it expired.

	TerminatedOther
	Indicates that the subscription has been terminated of an unknown reason.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· One

· Two

<< Include a bullet list with possible “rel” string values >>
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
If the flows include notifications to the client that could be delivered either by POST or through the use of Notification Channel then include this paragraph, otherwise delete it.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.3.1 Invite for an AudioVideo Session
This figure below shows a scenario for audio and/or video sessions of Application 1 on terminal 1 of Alice. Application 1 is a multi-terminal application and can establish and receive invitations from each of the terminals the application is running on. The sequence shows the following steps:

- Send an AudioVideo session invitation by application 1 on terminal 1 on behalf of Alice (step 1 - 2)

- Receive an AudioVideo session invitation by application 2 on terminal 1 on behalf of Bob (step 3 - 4)

The notification URL (included in callbackReference) passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and the use of that Notification Channel by the client.

The resources:

- To send invitation for an AudioVideo session, create resource under:
http://{serverRoot}/vvoip/{apiVersion}/{userId}/audiovideo
- The notification of the invitation is done on the notification URL provided by the application 2.
[image: image7.emf]Application 1 Server

Create a new call

session

Application 2

1. POST Send AudioVideo session invitation

2. Response with created session

resource incl. callId

3. POST Notification about a new

AudioVideo invitation

4. Successful response

5.3.2 [Title of flow scenario]
This figure below shows a scenario for [description of scenario].
 If the flow includes a subscription for notifications step, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. If there are more scenarios for subscriptions for notifications, in order to avoid repetition this paragraph can be placed one level above (under 5.3) instead.The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:

· To [description of operation], [create/read/update/delete] resource under [resource URL]
· To [description of operation], [create/read/update/delete] resource under [resource URL]
<< Include a flow diagram, and add a figure caption
Use solid lines for requests

Use dotted lines for responses

Use numbers if you want to reference in the text

If multiple servers are involved, name them (e.g. Foo Server, Bar Server), otherwise do not name the server
An editable PPT versions of the figure is provided below, as editing the embedded figure is problematic

[image: image8.wmf]example-flow.zip

>>

<< Example 1: Signalling flow which includes neither a subscription for notifications nor notifications to the application. Delete this comment.>>

[image: image9.emf]3. Remove a callparticipant(including

resourceURLwithparticipantId) fromthesession

Application Server

1. POST CallSessionInformation

Response withcreatedcallsession

resourceincl. callSessionId

2. POST CallParticipantInformationto

resourceURLofnewcallsession

Response withinformationabout addedcall

Participantincl. resourceURLwithparticipantId

Create a newcall

session

Add participantto

session

4. GET participantlistforcallSessionId

Response withinformationabout each

participantincl. theirstatus

Fetch participants

5. Terminatethecallsession

Response orerrormessage

Terminatecall

session

Request removal

ofparticipant

Response whetherremovalwas successful

Delete participant

fromsession

Figure 2 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]
3. [High-level description of 1 or more steps in the flow diagram]
<< Example 2: Signalling flow which includes a subscription for notifications and notifications to the application. The notifications to the application can be delivered either by POST or through the use of Notification Channel, which is indicated by “POST or NOTIFY”. Delete this comment. >>

[image: image10.emf]2. POST or NOTIFY

Call Event Notification

Application

Application

Server

Server

1. POST Call Notification Subscription

Response with created resource

Response

3. DELETE Call Notification Subscription

Response

Later, the

application

cancels the

subscription

At some time

later, a call event

occurs to trigger

the notification

2. POST or NOTIFY

Call Event Notification

Application

Application

Server

Server

1. POST Call Notification Subscription

Response with created resource

Response

3. DELETE Call Notification Subscription

Response

Later, the

application

cancels the

subscription

At some time

later, a call event

occurs to trigger

the notification

Figure 3 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]. If the step relates to a notification to the application either with POST or NOTIFY, after the high-level description of the action with POST include/adapt the following sentence; otherwise, if POST is supported only, delet it. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel].
3. [High-level description of 1 or more steps in the flow diagram]
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, application/x-www-form-urlencoded):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘authorization’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: [Description of the resource]
<< Description of the resource in the title heading should match the description of the resource from the first column of the purpose table in section 5.1 >>

The resource used is:
[resource URL]

[without Light-weight Resources usually http://{serverRoot}/funcarea/{apiVersion}/...]
[with Light-weight Resources usually http://{serverRoot}/funcarea/{apiVersion}/.../[ResourceRelPath]]
This resource is used for [descriptive explanation of the resource].
If the resource is on the server side and supports creating a subscription for notifications, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
Alternatively, if the resource is a notification resource to which the server provides notifications based on a previously created subscription, and if the use of Notification Channel is supported, include/adapt this paragraph and the following Note, otherwise delete them. This resource is a callback URL provided by the client for notification about FOO. The RESTful [Functional Area] API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.x.y. 6.x.y to be replaced by the reference to the section that describes the actual POST method on THIS resource (e.g. in this case 6.1.5)
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	[ResourceRelPath]
	Relative resource path for a Light-weight Resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable see [section number entitled “Light-weight relative resource paths” applicable for the current resource]. [This row is only present in case the resource has Light-weight child resources]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

See section 6 for a statement on the escaping of reserved characters in URL variables.
<< Light-weight Resource relative paths. This subsection is only applicable if the resource allows accessing individual sub-trees in the data structure using the Light-weight Resource mechanism (i.e. [ResourceRelPath is part of the resourceURL]>>
6.1.1.1 Light-weight Resource relative paths

The following table describes the types of Light-weight Resources that can be accessed by using this resource, applicable methods, and links to data structures that contain values (strings) for those relative resource paths.

	Light-weight Resource type
	Method supported
	Description

	[Description of the type]

	[list of HTTP methods, POST not allowed]
	[Description and reference to the allowed values]

	<< Example - DELETE This and the following Row >>

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.2.4 for possible values for the Light-weight relative resource path.

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to [Functional Area], see section 7.
6.1.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

When using query parameters the following conventions apply: >>

· Query parameters are appended to the resource URL starting with a question mark “?” character and then followed by query parameter name – value pairs.

· Multiple query parameter name-value pairs are separated by an ampersand "&" character. Example: ?par1=par1Val&par2=par2Val&..

· Multiple values for the same query parameters are specified as a list of name-value pairs using the same name, separated by an ampersand “&” character. Example: ?par1=par1Val1&par1=par1Val2&...

6.1.3.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

<< Prior to Candidate approval, a TS with XML examples MUST be submitted to the OMA XML validation service for validation of the examples: http://www.openmobilealliance.org/xml/. It is RECOMMENDED to do the same prior to or as part of CONR.
The examples must use real-world values. See document OMA-ARC-REST-2010-0675R01

The following conventions apply:

· {serverRoot} http://example.com/exampleAPI also to be updated in the tables where {serverRoot} is defined in section 6.x.

· {version} In our case this is v1 matching the TS version.

· {userId} E-mail names: mailto:alice@example.com mailto:bob@example.com or phone numbers: tel:+1-555-555-0100 to tel:+1-555-555-0199. In fact, only 555-0100 through 555-0199 are now specifically reserved for fictional use, with the other numbers having been released for actual assignment.

· {deviceAddress}, {senderAddress} Typically a phone number

· {equipmentId} Typically a manufacturer type name or serial number

· {memberListId} Typically a group name, “friend”, “list123”

· {contactId} Typically a person’s name, “bob”

· {memberId} Typically a phone number or e-mail address or SIP URI

· {subscriptionId} Typically a number or a sequence of digits and letters, “sub123”

· {messageId} Typically a number or a sequence of digits and letters, “msg123”

· {interactionId} Typically a number or a sequence of digits and letters, “int123”

· {registrationId} Typically a number or a sequence of digits and letters, “reg123”

· {requestId} Typically a number or a sequence of digits and letters, “req123”

· {ruleId} Typically a number or a sequence of digits and letters, “rule123”>>

6.1.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.3.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.1.4.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].
If the resource is on the server side and it supports creating a subscription for notifications, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.5.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/POST]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.1.6.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

7. Fault definitions

7.1 Service Exceptions

<< This section provides details about Service Exception type of faults specific for that particular API. Some APIs do have specific Service Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Service Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful [Functional Area] API.
<< If API has specific Service Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s).
Service Exception codes consists of a prefix “SVC” followed by 4 digit code number.
The original Service Exception codes from the baseline product (if any) are included unchanged.
For a new Service Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment >>
For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful [Functional Area] API.
7.1.1 SVC[code number]: [Text for exception header]
	Name
	Description

	MessageID
	SVC[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <Variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”]

	HTTP status code(s)
	[HTTP status code(s) where that particular Service Exception code can be used with]

7.2 Policy Exceptions

<< This section provides details about Policy Exception type of faults specific for that particular API. Some APIs do have specific Policy Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Policy Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful [Functional Area] API.
<< If API has specific Policy Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s).
Policy Exception code consists of a prefix “POL” followed by 4 digit code number.
The original Policy Exception codes from the baseline product (if any) are included unchanged.
For a new Policy Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful [Functional Area] API.
7.2.1 POL[code number]: [Text for exception header]
	Name
	Description

	MessageID
	POL[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”]

	HTTP status code(s)
	[HTTP status code(s) where that particular Policy Exception code can be used with]

 << Example - DELETE this row and the following table. >>
7.2.2 POL1003: Refund exceeds original charge amount
	Name
	Description

	MessageID
	POL1003

	Text
	The refund amount exceeds the original amount charged %1

	Variables
	%1 – the original amount charged

	HTTP status code(s)
	403 Forbidden

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _VVOIP-V1_0
	March 2013
	ALL
	 First version.

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.FUNCAREA Server

	Item
	Function
	Reference
	Requirement

	REST-FUNCAREA-SUPPORT-S-001-M
	Support for the RESTful [FuncArea] API
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-004-O
	Support for the application/x-www-form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

<< If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations. Delete this comment and the following table.>>
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
<< Some APIs do support application/x-www-form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of application/x-www-formurlencoded >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for application/x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no application/x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of application/x-www-form-urlencoded.>>

This section defines a format for the RESTful [FuncArea] API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for the following [FuncArea] REST operations which are based on POST requests:
<< List the operations for which url-encoded is supported. For those TSs where ALL the POST operations are described in the Appendix C, it is left to the editor to use either the sentence above, followed by a list operations, or alternatively use the sentence: “The encoding is defined for all [Functional Area] REST operations which are based on POST requests.” , in which case the list of operations can be omitted in this section.
Note that the parameters are all of simple types. In case a parameter is of complex type in the original XML data structure, the structure needs to be “flattened” >>
C.1 [Operation]
This operation is used for [description of operation], see section 6.z.w. . 6.z.w to be replaced by the reference to section where the equivalent method is defined in section 6 (e.g. 6.1.5).
If the resource supports creating a subscription for notifications (i.e. includes a notifyURL parameter), and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. [Baseline specification] operations mapping
(Informative)
<< This appendix is only needed for specifications which define REST bindings for an existing interface / API, such as Parlay X.
For ParlayREST specifications, substitute [Baseline specification] with “Parlay X”. For other baselines, reword accordingly.
In case there is no baseline, the headline is “Operations mapping to a pre-existing baseline specification
(Informative)”

Delete this comment.>>

<<If there is no baseline, use the following wording. Delete this comment. >>

As this specification does not have a baseline specification, this appendix is empty.
<<If there is a baseline, use the following wording. Delete this comment. >>
The table below illustrates the mapping between REST resources/methods defined in this specification and [Baseline specification] [[BASELINE_REF]] equivalent operations.

	REST Resource
	REST
Method
	REST
Section reference
	[Baseline specification] equivalent operation

	[Resource description from first column in one of the tables in section 5.1]
	[GET/PUT/POST/DELETE]
	[section cross-reference]
	[Operation name from
Baseline specification]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

Table 1 [Baseline specification] operations mapping
Appendix F. Light-weight Resources
(Informative)

<< This appendix lists Light-weight Resources defined in this specification. Delete this comment>>

<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this comment.>>

As this version of the specification does not define any Light-weight Resources, this appendix is empty.
<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this comment.>>

The following table lists all [FuncArea] data structure elements that can be accessed individually as Light-weight Resources.
For each Light-weight Resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of Light-weight Resources (and references to data structures)
	Element/attribute
that can be accessed as Light-weight Resource
	Root element name for the Light-weight Resource
	Root element type for the Light-weight Resource
	[ResourceRelPath] string that needs to be appended to the corresponding Heavy-weight Resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this Row and the following table>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

<<If [ResourceRelPath] strings in the above table include variables in curly brackets “{}” then the following paragraph shall be included also; otherwise it should be deleted. Delete this comment >>

Note: When appending [ResourceRelPath] string to its Heavy-weight Resource URL, all variables within curly brackets “{}” such as: [list of variable names from ResourceRelPath strings] have to be replaced by their real values.
Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty. Delete this comment. >>

<< If there are no Authorization aspects specified for the specs, the following wording is used. Delete this comment. >>
None specified in this version of the specification.

<< If there are Authorization aspects specified for the specs, the following wording is used. Delete this comment. >>
This appendix specifies how to use the RESTful Messaging API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful [FuncArea] API MAY support the authorization framework defined in [Autho4API_10].

A RESTful [FuncArea] API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.1.1 Scope values
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful [FuncArea] API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	[Scope value]
	[Scope value description]
	[No/Yes]

	[Scope value]
	[Scope value description]
	[No/Yes]

	<< Example - DELETE this and next two Rows>>

	oma_rest_messaging.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_messaging.in_regist
	Provide access to all defined operations on inbound messages using registration
	No

Table 2: Scope values for RESTful [FuncArea] API
G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_funcarea.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· [list of scope values]
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful [FuncArea] API map to the REST resources and methods of this API. In these tables, the root “oma_rest_funcarea.” of scope values is omitted for readability reasons.
<< Note: this part of the TS uses a landscape layout, started and terminated by a section break. Delete this comment. >>
	Resource
	URL
Base URL:

http://{serverRoot}/Functional Area/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	[Description of the resource]
	[URL for the resource]
	[Section refrerence]
	[supported scope value(s)]
	[supported scope value(s)]
	[supported scope value(s)]
	[supported scope value(s)]

	<< Example below - DELETE this and the following Row>>

	Inbound messages for a given registration
	/inbound/registrations/{registrationId}/messages
	6.1
	all_{apiVersion}
or

in_regist
	n/a
	n/a
	n/a

Table 3: Required scope values for: [text describing function(s) associated with that particular scope values]

G.1.2 Use of ‘acr:Authorization’

<< Some APIs do have user identifiers in resource URL that could be a subject for ‘acr:Authirization’, some don’t have. Pick the right text block. Delete this comment. >>

<<If there are no user identifiers candidate for ‘acr:Authorization’, the following wording is used. Delete this comment. >>

As this version of the specification does not define any parameter that could be a candidate for ‘acr:Authorization’, this appendix is empty

<< The text below is a blueprint of Appendix G.1.2 if there are user identifiers candidate for ‘acr:Authorization’. Delete this comment. >>
This section specifies the use of ‘acr:Authorization’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:Authorization’, where ‘Authorization’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:Authorization’ in a resource URL in place of a {senderAddress} replace/adapt “senderAddress” with a variable name of end user identifier which is a candidate for acr:Authorization. If multiple identifiers are candidate they shall be separated by comma. when the the RESTful [FuncArea] API is used in combination with [Autho4API_10].
In the case the RESTful [FuncArea] API supports [Autho4API_10], the server:

· SHALL accept ‘acr:Authorization’ as a valid value for the resource URL variable {senderAddress} replace/adapt “senderAddress” with a name of end user identifier which is a candidate for acr:Authorization. If multiple identifiers are candidate they shall be separated by comma.
· SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:Authorization’.
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20130101-I]
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20130101-I]

_1423299740/example-structure.zip

example-structure.ppt

/callSessions

//{serverRoot}/thirdPartyCall/{apiVersion}

/{callSessionId}

/participants

/{participantId}

/terminate

_1423545309/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

_1382412028/example-structure-with-LW.zip

example-structure-with-LW.ppt

/callSessions

//{serverRoot}/thirdPartyCall/{apiVersion}

/{callSessionId}

/participants

/{participantId}

/terminate

/[ResourceRelPath]

Heavy-weight resource

Relative path to light-weight resource

Legend

