Doc# OMA-ARC-Autho4API-2012-0026R05-CR_CONR_B048_B052_B063_Native_App.doc
Change Request

Doc# OMA-ARC-Autho4API-2012-0026R05-CR_CONR_B048_B052_B063_Native_App.doc
Change Request

Change Request

	Title:
	To address comments B048, B052 and B063
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC-SEC

	Doc to Change:
	OMA-ER-Autho4API-V1_0-20120221-D

	Submission Date:
	22/02/2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Zhiyuan Hu, Alcatel-Lucent, zhiyuan.hu@alcatel-sbell.com.cn

Jérôme Marcon, Alcatel-Lucent, jerome.marcon@alcatel-lucent.com
Di Liu, China Unicom, liudi233@chinaunicom.cn

	Replaces:
	n/a

1 Reason for Change

This CR resolves comments B048, B052 and B063:
	ID
	Open Date
	Type
	Section
	Description
	Status

	B048
	2011.12.22
	 T
	7.4.1.2
	Source: Ericsson

Form: OMA-CONR-2011-0142

Comment: There’s an editor’s note describing the potential security implications of URL registry in the OS. It should be noted that exactly the same attacks that apply to URL registry in the OS also apply to (binary) SMS.

Proposed Change: Make sure to mention the above when describing the pros and cons of the secondary channels.
	Status: OPEN.

CR by Alcatel-Lucent expected.

	B052
	2011.12.22
	T
	7.4.1.2
	Source: Telefonica SA

Form: OMA-CONR-2011- 0150
Comment: Remaining Editor’s Note on pros and cons of each solution.
Proposed Change: Remove Editor’s Note as the analysis has already been included for those cases that have been specified
	Status: OPEN. CR from Alcatel-Lucent expected.

	B063
	2011.12.21
	T
	7.4.1.2, 7.4.1.3, 7.4.1.4
	Source: Alcatel-Lucent
Form: OMA-CONR-2011-0139

Comment: Structure of these sections is very confusing.
Proposed Change: Make 7.4.1.3 Section contain all text about HTTP redirection captures and make 7.4.1.4 section contain all text about Secondary channel. Section 7.4.1.2 would not go into details and would reference those two. CR needed.
	Status: OPEN.

<provide response>

The attached document “Diff Sections 7.4.1.2-7.4.2.2.doc” contains a Microsoft Word diff of the sections 7.4.1.2-7.4.1.3 (Authorization Code flow) and 7.4.2.2-7.4.2.3 (Implicit Grant flow), showing that these two groups of 6 pages each share about 70% of duplicated text. This raises several issues:

· Text duplication is prone to errors: some changes done in some sections have not been reported in the other sections

· Server implementors (who need to implement both flows anyway) will have a hard time figuring out how much flow processing differs from each other. And client implementors implementing both flows as well (which is likely to occur).
· Some mechanism descriptions are lacking of details – and providing these details will increase the quantity of duplicated text even more

Other issues solved:

· For the clarity of section naming, sections 7.4.1 to 7.4.4 are suffixed by “… flow” and section 7.4.5 “Extensions” is renamed to “Other flows”.
The CR also corrects bugs:

· Browser display with Resource Owner interaction needs to be signaled as a secondary channel. Otherwise the Service Provider will never take the risk to display the authorization code, or even worse the Access Token.

· Redirection Endpoint was only defined for static Authorization Server addresses
· Error handling was not specified

· Not requiring all time to register each secondary channel seemed a security flaw.

The CR also corrects wording issues:

· User instead of Resource Owner
· What is registered is a Redirection Endpoint (or Redirection URI), not a “redirect_uri” parameter. What is sent in the request is a “redirect_uri” parameter composed of Redirection Endpoint optionally appended by additional query parameters (if accepted by the server).

· When using the secondary channel, the response is not strictly an Authorization Response (or an Access Token Response) as the response is not containing the redirect_uri. A better (besides generic) term is “response to Authorization Request”.

· Local Web server mechanism is not strictly a “HTTP redirection capture” technique, since the browser really follows the redirection. So the main categories of native apps mechanisms have been renamed “Response delivery over HTTP redirection” and “Response delivery over secondary channel”. Each strategy has been renamed so to be shorther and more in line with each other.

R03:
· Was made to change the CR filename

R04

· Was made to embed the missing attachment

R05

· Section numbers of SCR tables fixed
· Native app strategy clarified with implications better organized using sub-bullet

2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To ARC-SEC to agree on the proposed changes.
6 Detailed Change Proposal

Change 1: To reorganize sections 7.4. Note to the editor: the section 7.4.6 is entirely new, but for traceibility reasons only the changes with former Authorization Code sections are shown
7.4 Obtaining Authorization

7.4.1 Authorization Code flow
7.4.1.2 Implementation based on OAuth 2.0

This section describes the process by which the Autho4API Client obtains authorization from the Resource Owner to access to the Resources, using the Authorization Code grant type, described in section 4.1 of [draft-ietf-oauth-v2].

The indications described in section 4.1 of [draft-ietf-oauth-v2] SHALL be followed by the different actors involved in the flow: Autho4API Client, Resource Owner’s User Agent and Autho4API Authorization Server.

7.4.1.2.1 Detailed protocol flow (Informative)

The flow shown in figure 3 of section 4.1 of [draft-ietf-oauth-v2] maps to the following flow, using OMA Autho4API Entities and interfaces:

[image: image1.emf]Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

1. Redirection to Authorization Endpoint:

GET https://Autho4APIAuthServer.example/authorize/?

response_type=code&client_id=s6BhdRkqt3&state=xyz&redirect_uri=

https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

2. User Authentication and Authorization

3. Redirection to Autho4API Client with Authorization Code

302 Found

Location: https://Autho4APIClient.example.com/cb?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

4. Access Token Request

POST https://Autho4APIAuthServer.example/token

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

5. Acces Token (with optional refresh token)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

"example_parameter":"example_value"

}

1. Redirection to Autho4API

Authorization Server endpoint

Resource

Owner

2. User Authentic

ation

and Auth

orization

Autho4API

Client

Redirect-uri

3. Redirection to Autho4API Client

GET https://Autho4APIClient.example.com/cb?

code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

Figure 3: Obtaining Authorization using the Authorization Code grant type: Detailed Protocol Flow
1. Autho4API Client redirects the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint. This step maps with step (A) in section 4.1 of [draft-ietf-oauth-v2]. The step is detailed in section 4.1.1 of [draft-ietf-oauth-v2]. How the Autho4API Client redirects the Resource Owner User Agent is out of scope of this specification, as it is done through Ext-1 interface.

2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step maps with step (B) in section 4.1 of [draft-ietf-oauth-v2]. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server answers to the request in step 1 redirecting the Resource Owner’s User Agent to the redirection URI provided in step 1; the Resource Owner’s User Agent sends the corresponding HTTP GET request to the URI indicated in the Location header of received HTTP 302 response. This step maps with step (C) in section 4.1 of [draft-ietf-oauth-v2]. The step is detailed in section 4.1.2 of [draft-ietf-oauth-v2]. How the Resource Owner’s User Agent executes the redirection to Autho4API Client is out of scope of this specification, as it is done through Ext-1 interface.

4. The Autho4API Client sends an Access Token request to the Autho4API Authorization Server. This step maps with step (D) in section 4.1 of [draft-ietf-oauth-v2]. The step is detailed in section 4.1.3 of [draft-ietf-oauth-v2].

5. The Autho4API Authorization Server answers to the Autho4API Client, providing the Access Token and optionally the Refresh Token. This step maps with step (E) in section 4.1 of [draft-ietf-oauth-v2]. The step is detailed in section 4.1.4 of [draft-ietf-oauth-v2].

7.4.1.3 Support in Native Applications (Informative)
Client-side installed Applications (like native code Applications), although in general not able to receive incoming HTTP requests (including the HTTP redirection carrying the response to Authorization Request) can nevertheless support the Authorization Code flow using strategies specified in section 7.4.6, and further detailed in this section.

·
·
·
·
·
·
·
·
·

·
·

·
·

7.4.1.4

1.
2.
3.
a.
b.
4.
5.
6.
7.
a.
b.
c.
d.

7.4.1.4.1

1.

2.
3.

1.

2.
7.4.1.4.2 Detailed protocol flow (Informative)

When a secondary channel is used, the general flow shown in Figure 3 is modified as follows:

[image: image2.emf]1. The Autho4API Client directs the Resource Owner’s

User-Agent to the Autho4API Authorization Server endpoint

GET https://Autho4APIAuthServer.example/authorize/?

response_type=code&client_id=s6BhdRkqt3&redirect_uri=

http%3A%2F%2FexampleServiceProviderAuthServer.com%2F

autho4apiSecondaryChannel%2Fsms_text

3. Sends Authorization Code through the secondary channel

(may not be sent directly but through intermediate entities)

Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

2. User Authentication and Authorization

4. Access Token Request

POST https://Autho4APIAuthServer.example/token

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=http%3A%2F%2FexampleServiceProviderAuthServer.com

/autho4apiSecondaryChannel%2Fsms_text

5. Acces Token (with optional refresh token)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

"example_parameter":"example_value"

}

1. The Autho4API Client directs the Resource Owner’s

User-Agent to the Autho4API Authorization Server endpoint

Resource

Owner

2. User

 Authentication

and Authorization

Figure 4: Obtaining Authorization using the Authorization Code grant type and a secondary channel: Detailed Protocol Flow
1. Autho4API Client directs the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint,with the redirect_uri parameter set to http://exampleServiceProviderAuthServer.com/autho4apiSecondaryChannel/sms_text as specified in section 7.4.6 to request the Authorization Response to be delivered over textual SMS. For the rest of parameters, description in step 1 of Figure 3 is followed.

2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step is the same as step 2 of Figure 3. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server sends the Authorization Response through the secondary channel. How this step 2 is performed is out of scope of Autho4API and can involve other entities such as SMSCs, etc.

4. The Autho4API Client sends an Access Token request to the Autho4API Authorization Server. This step is the same as step 4 of Figure 3.

5. The Autho4API Authorization Server answers to the Autho4API Client, providing the Access Token and optionally the Refresh Token. This step is the same as step 5 of Figure 3.

7.4.1.4.3 Security Considerations
Depending on the environment (device, operating system) and depending if the Authorization Response is delivered to the same device where the Autho4API Client is running, secondary channel may not be considered secure.

Note: Whether a secondary channel can be considered secure is out of scope of this specification, as a secondary channel can be secure or not depending on the environment

If the secondary channel is not considered secure and the Autho4API Client is confidential according to section 2.1 of [draft-ietf-oauth-v2], the secondary channel MAY be used anyway, as the capture of the Authorization Response is not enough for the obtaining of an Access Token. Nevertheless, in order to enhance transport security, the Autho4API Client SHOULD use the encryption mechanism defined in section 7.4.6, so the Authorization Response is delivered encrypted, thus making the channel secure.
If the secondary channel is not considered secure and the Autho4API Client is public according to section 2.1 of [draft-ietf-oauth-v2], the Autho4API Client SHALL use the encryption mechanism defined in section 7.4.6, so the Authorization Response is delivered encrypted, thus making the channel secure.
For the scenarios where the secondary channel implies that the Authorization Code is taken by the Autho4API Client without the Resource Owner participation, it is highly recommended that the Autho4API Client uses the ‘state’ parameter defined in section 4.1 of [draft-ietf-oauth-v2], to allow the Autho4API Client matching the Authorization Request with the Authorization Response sent through the secondary channel and prevent cross-site forgery attacks.
7.4.2 Implicit Grant flow
7.4.2.2 Implementation based on OAuth 2.0
This section describes the process by which the Autho4API Client obtains authorization from the Resource Owner to access to the Resources, using the Implicit Grant type, described in section 4.2 of [draft-ietf-oauth-v2].

The indications described in section 4.2 of [draft-ietf-oauth-v2] SHALL be followed by the different actors involved in the flow: Autho4API Client, Resource Owner’s User Agent, and Autho4API Authorization Server.

7.4.2.2.1 Detailed protocol flow (Informative)
The flow shown in figure 4 in section 4.2 of [draft-ietf-oauth-v2] maps to the following flow, using OMA Autho4API Entities and interfaces:

[image: image3.emf]Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

1. Redirection to Authorization Endpoint:

GET https://Autho4APIAuthServer.example/authorize/?

response_type=token&client_id=s6BhdRkqt3&state=xyz&redirect_uri=

https%3A%2F%2FAutho4APIClient%2Eexample%2Ecom%2Fcb

2. User Authentication and Authorization

3. Redirection to Autho4API Client with Access Token in fragment

302 Found

Location: https://Autho4APIClient.example.com/cb#

access_token=2YotnFZFEjr1zCsicMWpAA

&state=xyz&token_type=example&expires_in=3600

1. Redirection to Autho4API

Authorization Server endpoint

Resource

Owner

2. User Authentic

ation

and Auth

orization

Autho4API

Client

Redirect-uri

3. Redirection to Autho4API Client,

without URI Fragment

GET https://Autho4APIClient.example.com/cb

4. Returns webpage with embedded script

5. Executes Script

5. Provides Access Token

Figure 5: Obtaining Authorization using the Implicit grant type: Detailed Protocol Flow
1. Autho4API Client redirects the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint. This step maps with step (A) in section 4.2 of [draft-ietf-oauth-v2], The step is detailed in section 4.2.1 of [draft-ietf-oauth-v2]. How the Autho4API Client redirects the Resource Owner User Agent is out of scope of this specification, as it is done through Ext-1 interface.
2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step maps with step (B) in section 4.2 of [draft-ietf-oauth-v2]. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server answers to the request in step 1 redirecting the Resource Owner’s User Agent to the redirection URI provided in step 1; The Access Token is provided in the URI as an URI fragment. The Resource Owner’s User Agent sends the corresponding HTTP GET request to the URI indicated in the Location header of received HTTP 302 response, without including the URI Fragment. This step maps with steps (C) and (D) in section 4.2 of [draft-ietf-oauth-v2]. The step is detailed in section 4.2.2 of [draft-ietf-oauth-v2]. How the Resource Owner’s User Agent executes the redirection to Autho4API Client is out of scope of this specification, as it is done through Ext-1 interface.
4. The Autho4API Client returns a web page (typically an HTML document with an embedded script) capable of accessing the full redirection URI including the fragment retained by the Resource Owner’s User-Agent, and extracting the Access Token (and other parameters) contained in the fragment.This step maps with step (E) in section 4.2 of [draft-ietf-oauth-v2]. Details of this step are out of scope of this specification, as the step is done through Ext-1 interface.
5. The Resource Owner’s User Agent executes the script provided by the web-hosted Autho4API Client resource locally, which extracts the Access Token and passes it to the Autho4API Client. This step maps with steps (F) and (G) in section 4.2 of [draft-ietf-oauth-v2]. Details of this step are out of scope of this specification, as the step is done through Ext-1 interface.

7.4.2.3 Support in Native Applications (Informative)
Client-side installed Applications (like native code Applications), although in general not able to receive incoming HTTP requests (including the HTTP redirection carrying the response to Authorization Request) can nevertheless support the Implicit Grant flow using strategies specified in section 7.4.6, and further detailed in this section.

·
·
7.4.2.4

·
·
·
·
·
·
·
·
·
7.4.2.5

·
·

·
·

1.
2.
3.
a.
b.
4.
5.
6.
7.
a.
b.
c.
d.

7.4.2.5.1

1.

2.
3.

1.

2.
3.
7.4.2.5.2 Detailed protocol flow (Informative)

For the strategies using a secondary channel for response delivery, the general flow shown in Figure 5 is modified as follows:

[image: image4.emf]Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

1. The Autho4API Client directs the Resource Owner’s

User-Agent to the Autho4API Authorization Server endpoint

GET https://Autho4APIAuthServer.example/authorize/?

response_type=token&client_id=s6BhdRkqt3&state=xyz

&redirect_uri=http%3A%2F%2FexampleServiceProviderAuthServer.com%2F

autho4apiSecondaryChannel%2Fpush_over_sms

2. User Authentication and Authorization

1. The Autho4API Client directs the Resource Owner’s

User-Agent to the Autho4API Authorization Server endpoint

Resource

Owner

2. User Au

thentication

an

d Authorization

3. Sends Access Token through the secondary channel

(may not be sent directly but through intermediate entities)

Figure 6: Obtaining Authorization using the Implicit grant type and a secondary channel: Detailed Protocol Flow
1. Autho4API Client directs the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint with the redirect_uri parameter set to http://exampleServiceProviderAuthServer.com/autho4apiSecondaryChannel/push_over_sms as specified in section 7.4.6 to request the Authorization Response to be delivered over Connectionless Push over SMS. For the rest of parameters, description in step 1 of Figure 5 is followed.

2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step is the same as step 2 of Figure 5. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server sends the Access Token Response through the secondary channel. How this step 2 is performed is out of scope of Autho4API and can involve other entities such as SMSCs, etc.

7.4.2.5.3 Security Considerations

Depending on the environment (device, operating system) and depending if the Authorization Response is delivered to the same device where the Autho4API Client is running, secondary channel may not be considered secure.
Note: Whether a secondary channel can be considered secure is out of scope of this specification, as a secondary channel can be secure or not depending on the environment.

If the secondary channel is not considered secure, the Autho4API Client SHALL use the encryption mechanism defined in section 7.4.6, so the Access Token Response is delivered encrypted, thus making the channel secure.
7.4.3 Resource Owner Password Credentials flow
The Autho4API Client and Authorization Server MAY support the Resource Owner Password Credentials flow, as defined in section 4.3 of [draft-ietf-oauth-v2]. The mechanism(s) by which the Autho4API Client can obtain the resource owner’s credentials are out of the scope of this specification.
7.4.4 Client Credentials flow
The Autho4API Client and Authorization Server MAY support the Client Credentials flow, as defined in section 4.4 of [draft-ietf-oauth-v2]. The mechanism(s) by which the Autho4API Client can obtain its client credentials (or other supported means of authentication) are out of the scope of this specification.
7.4.5 Other flows
The Autho4API enabler MAY support other IETF-defined OAuth 2.0 flows, via the use of extension grant types as defined in section 4.5 of [draft-ietf-oauth-v2].
Support in Native Applications
[draft-ietf-oauth-v2] defines some flows (Authorization Code flow, Implicit Grant flow) for which the protocol response subsequent to Resource Owner’s authentication and authorization steps is delivered over an HTTP redirection to a client’s public HTTP URL.

However client-side installed Applications (like native code Applications) are in general not able to receive incoming HTTP requests (including those resulting from HTTP redirections) and thus not able to receive this protocol response to Authorization Request.

This section specifies some strategies enabling Native Applications to nonetheless support such HTTP-redirect based flows. These strategies (which some are outlined in section 9 of [draft-ietf-oauth-v2]) fall into two categories:

· Response delivered over an HTTP redirection combined with a device-side mechanism, further detailed in section 7.4.6.1.

· Response delivered over a secondary channel (i.e.: an alternative channel to HTTP redirection), further detailed in section 7.4.6.2.

Note that the strategies described in this section commonly raise the following new challenges:

· Routing problems: a response could be routed to the incorrect instance of an Application (installed multiple times in the device)

· Delivery delay: a response could take too much time to be delivered to the Application
· Response confidentiality: a malware Application could intercept or eavesdrop the response delivered to the good Application

· Routing conflicts: A malware Application could register the same destination address as the good Application
· Poor user experience: for the strategies requiring a Resource Owner interaction to pass the response to the client
7.4.6.1
Response delivery over HTTP redirection (Informative)

This section details methods by which the response to Authorization Request is delivered by the Autho4API Authorization Server to the device over a regular HTTP redirection and then – via some additional mechanism - routed in the device to the Application. The following options are possible:

· Embedding a user agent Autho4API Client. In this approach, the Autho4API Client is able to capture HTTP redirections by embedding the user agent itself. As explained in [draft-ietf-oauth-v2] though:
· The use of embedded user agents may imply security challenges due to the fact that the Resource Owner authenticates in an unidentified window without the visual protections provided by most external user agents, thus reducing the Resource Owner’s protection towards certain types of attacks (e.g. clickjacking, phising).
· Running a local Web server. In this approach, the Autho4API Client invokes an external user agent later on redirected to a local Web server running as an external generic component or embedded in the Autho4API Client, and the Autho4API Client is then able to interact with this local Web server to obtain the response. This mechanism raises several issues:

· In case of local Web server external to the Application, a malware Application could also interact with the local Web server to intercept the processed response.

· In case multiple Applications using this mechanism are installed in the device, and since their redirection URIs share the same domain (i.e. localhost), avoiding redirection URI value conflicts (through assignment of specific port or path or query parameters) requires special care and coordination.
· WAC Webview Device API: using this Device API defined in [WAC2.1], the Application executing in a web runtime environment can launch – through the control of the web runtime - a limited browser to the authorization endpoint, and later on receive the response to Authorization Request captured by the web runtime from the HTTP-redirected limited browser. This capture mechanism:

· can be considered reasonably secure because first the channels for request and response are the same (user agent browsing context controlled by the web runtime), and second the response can only be returned to the instance of the Application which has initiated the flow.
· is limited though to the native Applications executing in a web runtime environment (e.g. widgets).

· Redirection URI with OS-registered URI components: in this approach, the Redirection URI pre-registered with the service provider contains components (scheme, and eventually other components like authority and path) registered with the operating system, typically at Application installation time. Whenever the native browser is opening a URL matching these components, it handles the URL to the Application. This mechanism commonly available on operating systems has a few downsides:

· The mechanism is OS-specific.

· It raises a routing problem when several instances of the same Application (sharing the same Redirection URI) reside in the device.
· It raises the security issue that a malware Application can register the same URI components, and thus intercept the redirection payload.
7.4.6.2
Response delivery over a secondary channel

This section details methods by which the response to Authorization Request is delivered by the Autho4API Authorization Server to the Autho4API Client over a secondary channel (i.e. not the channel of HTTP redirection).
7.4.6.2.1
Delivery methods
· Response display with Resource Owner interaction. The response is displayed in the Resource Owner’s User Agent (i.e.: in the browser) and the Resource Owner is instructed to copy the response back to the Autho4API Client. This implies that:
· The Resource Owner is willing to perform this interaction. The user experience is indeed poor especially when the response is long and/or contain special characters (e.g. Access Token).
· Response delivery to user agent with automatic client retrieval. The response is delivered to the Resource Owner’s User Agent in such a way that the Autho4API Client can retrieve it by means out of scope of this specification, but which can be similar to e.g.: the response is copied to the clipboard and the Autho4APIClient is able to read the clipboard, or the response is displayed in the window title of Resource Owner’s user agent and the Autho4API Client is able to read this title, etc. This implies that:

· Both client and server agree on which mechanism will be used to allow this retrieval

· Response delivery over textual SMS with Resource Owner interaction. The response is delivered as the payload of a textual SMS, and the Resource Owner is able to read this response and provide it to the Autho4API Client. This implies that:

· The Resource Owner is willing to perform this interaction. The user experience is indeed poor especially when the response is long and/or contain special characters (e.g. Access Token).
· The Autho4API Authorization Server or the entity that actually sends the SMS is able to know the Resource Owner’s MSISDN (using methods out of scope of this specification).

· Response delivery using OMA Connectionless Push over SMS [OMAPUSH]. The response is delivered to the OMA Push client in the device, and then the OMA Push Agent routes the response to the Autho4API Client through Push application addressing. This implies that:

· the Resource Owner’s device where the response is pushed has to be the device where the Application and Autho4API Client are running.
· the OMA Push Agent accepts dynamic Application-ID registrations by newly installed Applications, and moreover supports Application-IDs in absolute URI format containing a query component.
· the Autho4API Authorization Server or the entity that actually sends the Connectionless Push over SMS is able to know the Resource Owner’s MSISDN (using methods out of scope of this specification).

These methods are not exclusive for Native Autho4API Clients, but MAY be used also by other types of Clients (public or confidential according to [draft-ietf-oauth-v2].

7.4.6.2.2
Pre-registered Redirection URI
7.4.6

Autho4API Clients intending to request the use of one or more secondary channels for the delivery of response to Authorization Request SHALL register one Redirection Endpoint (scheme, authority and path) per secondary channel intended for use, where the Redirection URI has the following form:

http://{authorizationServer}/autho4apiSecondaryChannel/{channel}

The following table specifies the value of the URI variables:

	Name
	Description

	authorizationServer
	The authority part [RFC3986] of Authorization Server’s Authorization Endpoint URL. This part SHALL be optional to provide at registration time for the environments where the Autho4API Client dynamically discovers the authorization endpoint (using some mechanism not defined in this specification).

	channel
	signals the specific type of secondary channel to be used and SHALL take one of the following values:

· ‘sms_text’, to request response delivery over a textual SMS

· ‘push_over_sms’, to request response delivery using OMA Connectionless Push over SMS

· ‘browser_title’, to request response delivery to user agent with automatic client retrieval using an out of scope method (e.g. by setting browser window title to the response value).
· ‘browser_display’, to request response display in browser page for further interaction with Resource Owner
·

When one of these secondary channels is OMA Connectionless Push over SMS, Autho4API Clients SHALL besides register the ‘app-id-base’ part of Push Application-ID, specified in next section.
Autho4API Clients SHALL NOT register any other URI query parameters defined for the “redirect_uri” parameter, as they are either instance-dependent (e.g. “inst”) or Authorization Request-dependent (e.g. “encryption”)

·
·
·
·
·

7.4.6.2.3
Authorization Request “redirect_uri” parameter
An Autho4API Client willing to be delivered the response to Authorization Request over a secondary channel SHALL construct the “redirect_uri” parameter of Authorization Request as follows:

1. Select the Redirection URI pre-registered by the Autho4API Client for the use of this secondary channel

2. If not known at the time of registration, set the authority component of this URI scheme to the authority component of Authorization Server’s authorization endpoint

3. If required by this specific channel, append to this URI a query component made of the URI query parameters defined in table below:

	Name
	Type/value
	Optional
	Description

	app-id-base
	Absolute URI as defined in [RFC3986]
	Yes
	This parameter can just be included in case the channel is set to ‘push_over_sms’.

It corresponds to the part of the Application-ID [OMAPUSH] (used to route the Connectionless Push over SMS to the Autho4API Client) that is known at the client registration time.

The Autho4API Authorization Server will use the ‘app-id-base’ as the Application-ID of the Connectionless Push over SMS if the ‘inst’ parameter is not conveyed in the Authorization Request.

If the ‘inst’ parameter is conveyed in the Authorization Request the Autho4API Authorization Server will compose the Application-ID by appending the ‘inst’ query parameter to the value of the ‘app-id-base’ parameter.

Example:

app-id-base=http://example_app_id.com

inst=qwertyasdf

Resulting Application-ID:

http://example_app_id.com?inst=qwertyasdf

	inst
	String
	Yes
	This parameter can just be included in case the channel is set to ‘push_over_sms’ and the ‘app-id-base’ query parameter is included.

This parameter corresponds to a part of the Application-ID [OMAPUSH] that is specific to an instance of an installed Application and therefore cannot be known at client registration time.

The use of this parameter is useful in those client platforms where an installed Application can dynamically register a Push Application-ID to the OMA Push Agent

	encryption
	String
	Yes
	The inclusion of this parameter indicates the request to encrypt the response delivered over secondary channel. The value of this parameter indicates the algorithm that the Autho4API Authorization Server is requested to use to encrypt the Authorization Response with the symmetric key.

The encryption algorithm will be Advanced Encryption Standard (AES) described in [AES], with a key size of 128, 192 or 256 bits and with the confidentiality mode of operation Cipher Block Chaining (CBC) described in [AESMode].

The ABNF definition of ‘encryption’ parameter is:

encryption = “AES_” (“128”|”192”|”256”) “_CBC”

	encryption_key
	String
	Yes
	This parameter SHALL be present if the ‘encryption’ parameter is included.

The value of this parameter indicates the symmetric key to use for response encryption
The encryption key is randomly generated by the Autho4API Client and distinct for each Authorization Request.

The ABNF definition of ‘encryption_key’ parameter is:

encryption_key = 32 (HEX) | 48 (HEX) | 64(HEX)

	encryption_IV
	String
	Yes
	This parameter SHALL be present if the ‘encryption’ parameter is included.

The value of this parameter indicates the initialization vector needed to encrypt the response according to the CBC confidentiality mode.

The initialization vector is generated by the Autho4API Client individually for each Authorization Request.

The ABNF definition of ‘encryption_IV’ parameter is:

encryption_IV = 32 (HEX)

Sample values of ‘redirect_uri’ parameter:

http://exampleServiceProviderAuthServer.com/autho4apiSecondaryChannel/sms_text
http://exampleServiceProviderAuthServer.com/autho4apiSecondaryChannel/push_over_sms?app-id=http%3A%2F%2Fexample_app_id.com&encryption=AES_128_CBC&encryption_key=63cab7040953d051cd60e0e7ba70e18c&encryption_IV=6353e08c0960e104cd70b751bacad0e7
http://exampleServiceProviderAuthServer.com/autho4apiSecondaryChannel/push_over_sms?app-id=http%3A%2F%2Fexample_app_id.com&inst=qwertyasdf
http://exampleServiceProviderAuthServer.com/autho4apiSecondaryChannel/browser_title

7.4.6.2.4
Request for response delivery over secondary channel
An Autho4API Client willing to receive the response to Authorization Request over a secondary channel SHALL make sure beforehand that:

1. It has registered a redirection endpoint with the Autho4API Authorization Server specifying the potential use of this channel

2. It has registered its full Application-ID (including ‘inst’ part if applicable) with the OMA Push Agent, in case of response delivery using OMA Connectionless Push over SMS
3.
The Autho4API Client SHALL then construct each Authorization Request as follows:

4. The “redirect_uri” parameter SHALL be included, with a value structured as defined in section 7.4.6.2.3. In addition:

4. The Autho4API Client MAY require response encryption over secondary channel, using the encryption-related URI-query parameters specified in previous section. It is an implementation decision whether to mandate the Autho4API Client to request response encryption, depending on the Autho4API Client nature and the used secondary channel.
5. Regarding the “state” parameter defined in [draft-ietf-oauth-v2]:
5. It SHOULD NOT be included in the cases of “Response display with Resource Owner interaction” and “Response delivery over textual SMS with Resource Owner interaction”
6. It SHOULD be included in the cases of “Response delivery to user agent with automatic client retrieval” and “Response delivery using OMA Connectionless Push over SMS”
6. Other server-specific authorization endpoint extensions (not defined in this specification) MAY be included
6.
Other information required for the proper response delivery over indicated channel MAY be included

A response (whether in plain text or encrypted) requested to be delivered over SMS (OMA Connectionless Push over SMS or a textual SMS), SHOULD ideally fit within one single SMS for transport reliability reasons, and SHOULD NOT exceed the size of a 4-segment concatenated SMS, as this is the minimal size which an OMA Push Agent is required to assembly. To guarantee this, the Autho4API Authorization Server can instruct the Autho4API Client to use a state parameter not longer than a given length, by means out of scope of this specification.
7.4.6.2.5
Request processing and error handling

This section details Autho4API Authorization Server’s error handling when the Autho4API Client requests the use of secondary channel using the related structure of Redirection Endpoint (at client registration time) or “redirect_uri” parameter (Authorization Request).

An Autho4API Authorization Server not supporting the secondary channel functionality:

· Upon client registration, and if the Redirection Endpoint authority component matches the authority component of Authorization Server authorization endpoint, SHALL reject the registration of this Redirection Endpoint

· Upon Authorization Request sent by a registered client, and given that “redirect_uri” parameter does not match any registered Redirection Endpoint, SHALL raise a “mismatching Redirection URI” error

· Upon Authorization Request sent by an unregistered client (if supported), and if the “redirect_uri” authority component matches the authority component of authorization endpoint, SHALL raise an “invalid Redirection URI” error

An Autho4API Authorization Server supporting the secondary channel functionality:

· Upon Authorization Request sent by a registered client,

· and if “redirect_uri” parameter is well-formed but Authorization Server does not support the requested secondary channel, it SHALL raise an “invalid Redirection URI” error

· otherwise if “redirect_uri” parameter does not match any registered Redirection Endpoint, it SHALL raise a “mismatching Redirection URI” error

In any case, an Autho4API Authorization Server raising a “mismatching Redirection URI” or “invalid Redirection URI” error SHALL follow the error handling defined in section 3.1.2.4 of [draft-ietf-oauth-v2].
7.4.6.2.1

a.
b.
c.
d.

7.4.6.2.6
Response encoding
This section specifies how the Autho4API Authorization Server SHALL construct the response to be sent to Autho4API Client, which varies depending on the secondary channel to use and on the protocol flow.

For the cases of ”Response display with Resource Owner interaction” and “Response delivery over textual SMS with Resource Owner interaction” the response SHALL be constructed as follows:

1.
Encode the value of ‘code’ (Authorization Code flow) or ‘access_token’ (Implicit Grant flow) parameter using the "application/x-www-form-urlencoded" encoding type defined in [HTML_4.01]

Example:
vc1234
Example:
AAACa8r8lZA4ABAAp0vw1sSG
2.
If encryption requested in the Authorization Request, encrypt the previous string and encode the resulting data as Base64, otherwise leave the response in plain text

3.
Include the resulting string in the text of the browsed page or textual SMS together with optional textual information instructing the Resource Owner about what to do with the response.

For the case of ‘Response delivery to user agent with automatic client retrieval’, the response SHALL be constructed as follows:

1. Establish the list of parameters (key/value pairs) to be included in the response, which includes the applicable OAuth 2.0 parameters defined in sections 4.1.2 (Authorization Code flow) or 4.2.2 (Implicit Grant flow) of [draft-ietf-oauth-v2] with the considerations included in this section, and which may include other server-specific parameters (not defined in this specification).

Example:
code=vc1234&state=xyz
Example:
code=1vc456
Example:
access_token=AAACa8r8lZA4ABAAp0vw1sSG&token_type=Bearer&expires_in=3600&state=xyz

2. Encode the resulting form data set using the "application/x-www-form-urlencoded" encoding type defined in [HTML_4.01].

3. If encryption requested in the Authorization Request, encrypt the response and encode the resulting data as Base64, otherwise leave the response in plain text
For the case of ‘Response delivery using OMA Connectionless Push over SMS’, the response SHALL be constructed as follows:

1. Establish the list of parameters (key/value pairs) to be included in the response, which includes the applicable OAuth 2.0 parameters defined in section 4.1.2 (Authorization Code flow) or 4.2.2 (Implicit Grant flow) of [draft-ietf-oauth-v2] with the considerations included in this section, and which may include other server-specific parameters (not defined in this specification).

Example:
code=vc1234&state=xyz
Example:
code=1vc456

2. Encode the resulting form data set using the "application/x-www-form-urlencoded" encoding type defined in [HTML_4.01].

3. If encryption requested in the Authorization Request, encrypt the response and encode the resulting data with the signaled content-type “application/octet-stream” [RFC2045][RFC2046], otherwise leave the response as plain text with the signaled content-type “text/plain”
Change 2: To update ‘TBD’ section numbers in SCR tables
A.1 SCR for Autho4API Client

	Item
	Function
	Reference
	Requirement

	Autho4API-CLI-C-001-M
	Support for client registration
	7.1
	Autho4API-CLI-C-002-O OR

Autho4API-CLI-C-003-O

	Autho4API-CLI-C-002-O
	Support for public client type
	7.1.1
	

	Autho4API-CLI-C-003-O
	Support for confidential client type
	7.1.1
	Autho4API-CLI-C-020-O

	Autho4API-CLI-C-004-M
	Support for OAuth 2.0 Authorization Grant
	7.2.2.1
	Autho4API-CLI-C-005-O OR

Autho4API-CLI-C-006-O OR

Autho4API-CLI-C-007-O OR

Autho4API-CLI-C-008-O

	Autho4API-CLI-C-005-O
	Support for Authorization Code flow
	7.4.1
	Autho4API-CLI-C-010-O OR

Autho4API-CLI-C-012-O OR

Autho4API-CLI-C-013-O

	Autho4API-CLI-C-006-O
	Support for Implicit Grant flow
	7.4.2
	Autho4API-CLI-C-019-O OR

Autho4API-CLI-C-021-O OR

Autho4API-CLI-C-022-O

	Autho4API-CLI-C-007-O
	Support for Resource Owner Password flow
	7.4.3
	

	Autho4API-CLI-C-008-O
	Support for Client Credentials flow
	7.4.4
	

	Autho4API-CLI-C-009-O
	Support for Authorization Request: OAuth 2.0 User Experience extension
	7.2.1.2
	

	Autho4API-CLI-C-010-O
	Support for HTTP redirection to a public client HTTP URL for the delivery of response to Authorization Request (Authorization Code flow)
	7.4.1.1
	

	Autho4API-CLI-C-011-O
	Support for HTTP redirection to a public client HTTP URL: confidentiality protection using TLS (Authorization Code flow)
	7.2.1
	

	Autho4API-CLI-C-012-O
	Support for HTTP redirection to a private client URI, for the delivery of response to Authorization Request (Authorization Code flow)
	7.4.6.1
	

	Autho4API-CLI-C-013-O
	Support for secondary channel for the delivery of response to Authorization Request (Authorization Code flow)
	7.4.1.3, 7.4.6.2
	Autho4API-CLI-C-015-O OR

Autho4API-CLI-C-016-O OR

Autho4API-CLI-C-017-O OR

Autho4API-CLI-C-018

	Autho4API-CLI-C-014-O
	Support for secondary channel: confidentiality protection using response encryption (Authorization Code flow)
	7.4.1.3

7.4.6.2.2
	

	Autho4API-CLI-C-015-O
	Support for secondary channel: response display with Resource Owner interaction (Authorization Code flow)
	7.4.1.3

7.4.62.1
	

	Autho4API-CLI-C-016-O
	Support for secondary channel: response delivery over textual SMS with Resource Owner interaction (Authorization Code flow)
	7.4.1.3

7.4.6.2.1
	

	Autho4API-CLI-C-017-O
	Support for secondary channel: response delivery to user agent with automatic client retrieval (Authorization Code flow)
	7.4.1.3

7.4.6.2.1
	

	Autho4API-CLI-C-018-O
	Support for secondary channel: OMA Connectionless Push over SMS (Authorization Code flow)
	7.4.1.3

7.4.6.2.1
	

	Autho4API-CLI-C-019-O
	Support for HTTP redirection to a public client HTTP URL for the delivery of response to Authorization Request (Implicit Grant flow)
	7.4.2.1
	

	Autho4API-CLI-C-020-O
	Support for HTTP redirection to a public client HTTP URL: confidentiality protection using TLS (Implicit Grant flow)
	7.4.6.2.2
	

	Autho4API-CLI-C-021-O
	Support for HTTP redirection to a private client URI, for the delivery of response to Authorization Request (Implicit Grant flow)
	7.4.6.1
	

	Autho4API-CLI-C-022-O
	Support for secondary channel for the delivery of response to Authorization Request (Implicit Grant flow)
	7.4.2.4, 7.4.6
	Autho4API-CLI-C-024-O OR

Autho4API-CLI-C-025-O OR

Autho4API-CLI-C-026-O OR

Autho4API-CLI-C-027

	Autho4API-CLI-C-023-O
	Support for secondary channel: confidentiality protection using response encryption (Implicit Grant flow)
	7.4.2.4, 7.4.6
	

	Autho4API-CLI-C-024-O
	Support for secondary channel: response display with Resource Owner interaction (Implicit Grant flow)
	7.4.2.4, 7.4.6.2.1
	

	Autho4API-CLI-C-025-O
	Support for secondary channel: response delivery over textual SMS with Resource Owner interaction (Implicit Grant flow)
	7.4.2.4, 7.4.6.2.1
	

	Autho4API-CLI-C-026-O
	Support for secondary channel: response delivery to user agent with automatic client retrieval (Implicit Grant flow)
	7.4.2.4, 7.4.6.2.1
	

	Autho4API-CLI-C-027-O
	Support for secondary channel: OMA Connectionless Push over SMS (Implicit Grant flow)
	7.4.2.4, 7.4.6.2.1
	

	Autho4API-CLI-C-028-O
	Support for Access Token Request: confidentiality protection using TLS
	7.2.2
	

	Autho4API-CLI-C-029-O
	Support for Access Token Request: Client authentication with Autho4API Authorization Server
	7.1.2
	

	Autho4API-CLI-C-030-O
	Client authentication using HTTP Basic and client password
	7.1.2
	

	Autho4API-CLI-C-031-O
	Support for the resolution of resource location from an issued Access Token
	7.8.2.2.2
	

	Autho4API-CLI-C-032-M
	Support for Bearer Access Token
	7.7.3
	

	Autho4API-CLI-C-033-O
	Support for Bearer Token sending in protected resource request: Authorization Request header sending method
	7.7.3
	

	Autho4API-CLI-C-034-O
	Support for Bearer Token sending in protected resource request: other sending method
	7.7.3
	

	Autho4API-CLI-C-035-O
	Support for Bearer Token sending in protected resource request: confidentiality protection using TLS
	7.7.3
	

	Autho4API-CLI-C-036-O
	Support for one-time Access Token
	7.7.1.1
	

	Autho4API-CLI-C-037-O
	Support for Refresh Token
	7.6
	

	Autho4API-CLI-C-038-O
	Support for Access Token and Refresh Token revocation
	7.2.3
	

A.2 SCR for Autho4API Authorization Server

	Item
	Function
	Reference
	Requirement

	Autho4API-AUTH-S-001-M
	Support for client registration
	
	Autho4API-AUTH-S-002-O OR

Autho4API-AUTH-S-003-O

	Autho4API-AUTH-S-002-M
	Support for public client type
	7.1.1
	

	Autho4API-AUTH-S-003-M
	Support for confidential client type
	7.1.1
	Autho4API-AUTH-S-020-O

	Autho4API-AUTH-S-004-M
	Support for OAuth 2.0 Authorization Grant
	7.2.2.1
	

	Autho4API-AUTH-S-005-M
	Support for Authorization Code flow
	7.4.1
	Autho4API-AUTH-S-011

	Autho4API-AUTH-S-006-M
	Support for Implicit Grant flow
	7.4.2
	Autho4API-AUTH-S-020

	Autho4API-AUTH-S-007-O
	Support for Resource Owner Password flow
	7.4.3
	

	Autho4API-AUTH-S-008-O
	Support for Client Credentials flow
	7.4.4
	

	Autho4API-AUTH-S-009-O
	Support for Authorization Request: OAuth 2.0 User Experience extension
	7.2.1.2
	

	Autho4API-AUTH-S-010-M
	Support for Authorization Request: confidentiality protection using TLS
	7.2.1
	

	Autho4API-AUTH-S-011-O
	Support for HTTP redirection to a public client HTTP URL for the delivery of response to Authorization Request (Authorization Code flow)
	7.2.1, 7.4.1.1
	

	Autho4API-AUTH-S-012-O
	Support for HTTP redirection to a private client URI, for the delivery of response to Authorization Request (Authorization Code flow)
	7.4.6.2
	

	Autho4API-AUTH-S-013-O
	Support for secondary channel for the delivery of response to Authorization Request (Authorization Code flow)
	7.4.1.3, 7.4.6.2
	Autho4API-AUTH-S-016-O OR Autho4API-AUTH-S-017-O OR Autho4API-AUTH-S-018-O OR

Autho4API-AUTH-S-019-O

	Autho4API-AUTH-S-014-M
	Support for detecting the request to use the secondary channel, based on ‘redirect_uri’ parameter value (Authorization Code flow)
	7.4.6.2.5
	

	Autho4API-AUTH-S-015-O
	Support for secondary channel: confidentiality protection using response encryption (Authorization Code flow)
	7.4.1.3, 7.4.6
	

	Autho4API-AUTH-S-016-O
	Support for secondary channel: browser display with Resource Owner interaction (Authorization Code flow)
	7.4.1.3, 7.4.6
	

	Autho4API-AUTH-S-017-O
	Support for secondary channel: textual SMS with Resource Owner interaction (Authorization Code flow)
	7.4.1.3, 7.4.6
	

	Autho4API-AUTH-S-018-O
	Support for secondary channel: browser title (Authorization Code flow)
	7.4.1.3, 7.4.6.2
	

	Autho4API-AUTH-S-019-O
	Support for secondary channel: response delivery using OMA Connectonless Push over SMS (Authorization Code flow)
	7.4.1.3, 7.4.6.2
	

	Autho4API-AUTH-S-020-O
	Support for HTTP redirection to a public client HTTP URL for the delivery of response to Authorization Request (Implicit Grant flow)
	7.4.2.1
	

	Autho4API-AUTH-S-021-O
	Support for HTTP redirection to a private client URI, for the delivery of response to Authorization Request (Implicit Grant flow)
	7.4.6.1
	

	Autho4API-AUTH-S-022-O
	Support for secondary channel for the delivery of response to Authorization Request (Implicit Grant flow)
	7.4.2.4, 7.4.6
	Autho4API-AUTH-S-025-O OR Autho4API-AUTH-S-026-O OR Autho4API-AUTH-S-027-O OR Autho4API-AUTH-S-028-O

	Autho4API-AUTH-S-023-M
	Support for detecting the request to use the secondary channel, based on ‘redirect_uri’ parameter value (Implicit Grant flow)
	7.4.6.2.5
	

	Autho4API-AUTH-S-024-O
	Support for secondary channel: confidentiality protection using response encryption (Implicit Grant flow)
	7.4.2.4, 7.4.6
	

	Autho4API-AUTH-S-025-O
	Support for secondary channel: response display with Resource Owner interaction (Implicit Grant flow)
	7.4.2.4, 7.4.6.2
	

	Autho4API-AUTH-S-026-O
	Support for secondary channel: response delivery over textual SMS with Resource Owner interaction (Implicit Grant flow)
	7.4.2.4, 7.4.6.2
	

	Autho4API-AUTH-S-027-O
	Support for secondary channel: browser title (Implicit Grant flow)
	7.4.2.4, 7.4.6.2
	

	Autho4API-AUTH-S-028-O
	Support for secondary channel: OMA Push over SMS (Implicit Grant flow)
	7.4.2.4, 7.4.6
	

	Autho4API-AUTH-S-029-M
	Support for Access Token Request: confidentiality protection using TLS
	7.2.2
	

	Autho4API-AUTH-S-030-O
	Support for Access Token Request: Client authentication with Autho4API Authorization Server
	7.1.2
	

	Autho4API-AUTH-S-031-O
	Client authentication using HTTP Basic and client password
	7.1.2
	

	Autho4API-AUTH-S-032-O
	Support for the resolution of resource location from an issued Access Token
	7.8.2.2.2
	

	Autho4API-AUTH-S-033-M
	Support for Bearer Access Token
	7.7.3
	

	Autho4API-AUTH-S-034-O
	Support for Refresh Token
	7.6
	

	Autho4API-AUTH-S-035-O
	Support for Access Token and Refresh Token revocation
	7.2.3
	

	Autho4API-AUTH-S-036-O
	Support for acting as a (Shared) Authorization Server
	7.8.2.2

C1
	

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 32)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 29 (of 32)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

_1387276943.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1389452269.vsd
1. The Autho4API Client directs the Resource Owner’s
User-Agent to the Autho4API Authorization Server endpoint
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3&redirect_uri=
http%3A%2F%2FexampleServiceProviderAuthServer.com%2F
autho4apiSecondaryChannel%2Fsms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1390034760.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

_1378132180.vsd

