Doc# OMA-ARC-Autho4API-2012-0035-CR_CONR_B075_B079_B083_Secondary_Channel_Implicit_Flow.doc[image: image2.jpg]
Change Request

Doc# OMA-ARC-Autho4API-2012-0035-CR_CONR_B075_B079_B083_Secondary_Channel_Implicit_Flow.doc
Change Request

Change Request

	Title:
	Resolution of B075, B079 and B083 (Secondary Channel for Implicit Flow)
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARC/SEC

	Doc to Change:
	OMA-ER-Autho4API-V1_0-20120127-D

	Submission Date:
	02 Feb. 2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Eduardo Fullea, Telefonica SA, efc@tid.es
Diego Gonzalez, Telefonica SA, diegog@tid.es

	Replaces:
	n/a

1 Reason for Change

This CR addresses the following Auth4API 1.0 Consistency Review comments:

	ID
	Open Date
	Type
	Section
	Description
	Status

	B075
	2011.12.22
	T
	7.4.2
	Source: Telefonica SA

Form: OMA-CONR-2011- 0150
Comment: Use of Secondary Channel for Implicit Grant not specified.

Proposed Change: Specify the Use of Secondary Channel for Implicit Grant
	Status:
CLOSED. Secondary Channel for Implicit Grant included

	B079
	2011.12.21
	T
	7.4.2.2
	Source: Alcatel-Lucent
Form: OMA-CONR-2011-0139

Comment: “The same strategies” is a too fuzzy statement. For instance secondary channel was decided to only apply to Authorization Code flow, whereas some HTTP redirection capture techniques are in general usable for the Implicit Grant flow.
Proposed Change: CR needed
	Status:
CLOSED.

	B083
	2011.12.21
	T
	7.4.6
	Source: Alcatel-Lucent
Form: OMA-CONR-2011-0139

Comment: This section incorrectly appears at the same level as a Flow section.
Proposed Change: Move this section under the section dedicated to the secondary channel (see other comment B063).
	Status:
CLOSED. Section 7.4.6 is common to Auth Code and Implicit Grant flows, so the level is right

2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that ARC/SEC discusses and approves the proposed changes and close the related CONR comments.
6 Detailed Change Proposal

5.2.1.1 Support in Native Applications

Client Side installed applications (like native code Applications) are usually not ready to receive incoming requests (via redirections). For this reason, these Applications implementing the Autho4API Client are not ready to receive the Access Token after user authorization and authentication step (i.e.: step 3 in Figure 5 is not possible). This implies that the Implicit Grant flow needs some special considerations for Native applications, as described in section 9 of [draft-ietf-oauth-v2].

Many alternative strategies are possible to support the Implicit grant type for these Applications, implying different actions in involved actors. These possible strategies (the ones outlined in section 9 of [draft-ietf-oauth-v2], and others) can be ordered into two blocks:
· Using an HTTP redirection capture mechanism: which is detailed in section 7.4.2.3
· Using a secondary channel (i.e.: an alternative channel to HTTP redirection): which is detailed in section 7.4.2.4
5.2.1.2 Use of HTTP Redirection capture mechanisms

With using an HTTP redirection capture mechanism, as the application is not able to receive the HTTP redirection, an alternative mechanism is used so the redirection is captured by other means. The following options are possible:

· Embedding a browser or a local Web Server in Autho4API Client. With these approaches, the Autho4API Client will actually be able to receive HTTP redirections, but has also to embed the browser or a local Web Server. It must be noted that, as explained in [draft-ietf-oauth-v2], the use of embedded browsers may imply security challenges due to the fact that the Resource Owner authenticates in an unidentified window without the visual protections found in most external user-agents, thus reducing the Resource Owner’s protection towards certain types of attacks (e.g. clickjacking, phising).

· WAC Webview Device API: using this Device API defined in [WAC2.1], the application executing in a web runtime environment can launch – through the control of the web runtime - a limited browser to the authorization endpoint, and later on receive the Access Token Response captured by the web runtime from the HTTP-redirected limited browser. This capture mechanism can be considered reasonably secure because first the channels for request and response are the same (user agent browsing context controlled by the web runtime), and second the response can only be returned to the instance of the application which has initiated the flow. This mechanism though is limited to the native applications executing in a web runtime environment (e.g. widgets).

· Redirection URI with OS-registered URI components: in this approach, the Redirection URI pre-registered with the service provider contains components (scheme, and eventually other components like authority and path) registered with the operating system, typically at application installation time. Whenever the native browser is opening a URL matching these components, it handles the URL to the application. This mechanism commonly available on operating systems has a few downsides:

· The mechanism is OS-specific.

· It raises a routing problem when several instances of the same application (sharing the same Redirection URI) reside in the device.
· It raises the security issue that a malware application can register the same URI components, and thus intercept the redirection payload.
5.2.1.3 Use of a secondary channel

This section specifies a mechanism using a secondary channel (i.e.: not HTTP redirection) as the way to send the Access Token Response to the Autho4API Client.

With this strategy, as the application is not able to receive the HTTP redirection, an alternative channel is used, so the Access Token is not given to the Application by an HTTP redirection. The following options are possible:

· Manual Copy-paste of the Access Token by the User. The Access Token will be shown in the Resource Owner’s User Agent (i.e.: in the browser) and the User will be requested to copy the Access Token and give it to the Autho4API Client. This option is discouraged as the User Experience may be poor because the Access Tokens are usually not user-friendly because are too long
· Automatic retrieval of the Access Token by the Autho4API Client from the Resource Owner’s User Agent. The Access Token Response will be conveyed to the Resource Owner’s User Agent so that the Autho4API Client can retrieve it from the Resource Owner’s User Agent (e.g.: in the title of the page displayed in the browser).

Note: Further details on this mechanism, in terms on how the Autho4API Client retrieves the Access Token from the Resource Owner’s User Agent are out of scope of this specification.

· Sending the Access Token to the Resource Owner by textual SMS . The Access Token will be provided to the Autho4API Client by the Resource Owner. The Autho4API Authorization Server or the entity that actually sends the SMS must be able to know the MSISDN of the User, but this is out of scope of this specification. This option is discouraged as the User Experience may be poor because the Access Tokens are usually not user-friendly because are too long.
· Sending the Access Token to the Resource Owner’s device by a silent Connectionless Push over SMS [OMAPUSH].The Access Token Response will be taken by the Autho4API Client by means out of scope of this specification. This implies that the Resource Owner’s device where the Access Token Response is pushed has to be the same device that the device where the Application with the Autho4API Client is running. The Autho4API Authorization Server or the entity that actually sends the Connectionless Push over SMS must be able to know the MSISDN of the User, but this is out of scope of this specification.

These options are not exclusive for Native Autho4API Clients, but MAY be used also by other sort of Clients (other Public or Confidential clients according to [draft-ietf-oauth-v2].
To support this feature:

1. Autho4API Client SHALL indicate during the client registration process the potential use of one or more secondary channel(s) for the reception of the Access Token Response by registering the Redirection URI(s) as specified in section 7.4.6

2. Autho4API Client SHALL signal the willingness to receive the Access Token Code through the secondary channel.

3. Autho4API Client SHALL signal the concrete channel through which the Access Token wants to be received.
a. If the signaled secondary channel implies that the Access Token is delivered to the Resource Owner and the Resource Owner gives it to the Autho4APIClient, the Autho4APIClient SHOULD NOT include the ‘state’ parameter defined in section 4.1 of [draft-ietf-oauth-v2]. This occurs for the secondary channel cases ‘Manual Copy-paste of the Access Token by the User’ and for ‘Sending the Access Token to the Resource Owner by textual SMS’. If the ‘state’ parameter is included, it will be discarded by the Autho4API Authorization Server.

b. If the signaled secondary channel implies that the Access Token is taken by the Autho4API Client without the Resource Owner participation, the Autho4APIClient SHOULD include the ‘state’ parameter defined in section 4.1 of [draft-ietf-oauth-v2], just as specified in that specification. This occurs for the secondary channel cases ‘Automatic retrieval of the Access Token by the Autho4API Client from the Resource Owner’s User Agent’ and ‘Sending the Access Token to the Resource Owner’s device by a silent Connectionless Push over SMS’.
4. Autho4API Client MAY signal the requirement to receive the Access Token Response encrypted. In this case, the Autho4API Client SHALL inform the Autho4API Authorization Server of a symmetric encryption algorithm to be used and provide the corresponding encryption parameters (symmetric encryption key and initialization vector). It is an implementation decision whether to mandate the Autho4API Client to request the encryption of the Access Token Response, depending on the Autho4API Client nature and the used secondary channel.
5. When the secondary channel is a silent Connectionless Push over SMS or a textual SMS, it is recommended that the total length of the Access Token Response (either plain or encrypted) does not exceed the size of an SMS, to minimize the SMSs to be sent to the handset. Nevertheless the size of the Access Token Response SHALL fit into 4 concatenated SMS segments as OMA Push clients are required to support this number of segments as a minimum. To guarantee this, the Autho4API Authorization Server can instruct the API Client to use a state parameter not longer than a given length, by means out of scope of this specification.
6. Autho4API Client MAY signal any further information needed for the delivery of the Access Token through the indicated channel.

7. Autho4API Authorization Server SHALL process the signaling from Autho4API Client and, instead of regular OAuth flow, will perform the needed actions to send Access Token through the indicated channel. The following considerations apply:

a. If the signaled secondary channel implies that the Access Token Response is taken by the Autho4API Client without the Resource Owner participation, the error scenarios described in section 4.2.2.1 of [draft-ietf-oauth-v2] apply and the Authorization Error Response SHALL be sent through the secondary channel, when applicable.

b. If requested in step 4, the Access Token Response SHALL be sent encrypted using the indicated symmetric encryption algorithm and encryption parameters.

c. If the signaled secondary channel implies that the Access Token Response is delivered to the Resource Owner and the Resource Owner gives it to the Autho4APIClient, the information shown in the browser or included in the SMS SHALL be the Access Token. Other textual information MAY be included providing guidance to the Resource Owner about what to do with the Access Token, and/or other details of the granted authorization (scope. expiry, etc).

d. If the signaled secondary channel implies that the Access Token Response is taken by the Autho4API Client without the Resource Owner participation, the information shown in the Resource Owner’s User Agent or included in the silent SMS SHALL be the full Access Token Response. Section 7.4.2.4.1 specifies the encoding for this information.

Further details on how the Access Token Response is sent are out of scope of this specification
To perform steps 2, 3, 4 and 6, the Autho4API Client will encode the ‘redirect_uri’ parameter as specified in section 7.4.6.
5.2.1.3.1 Encoding of Access Token Response

For the secondary channel case cases ‘Manual Copy-paste of the Access Token by the User’ and for ‘Sending the Access Token to the Resource Owner by textual SMS’ the response payload conveyed to the Autho4API Client SHALL be constructed as follows:
1.
Encode the value of the ‘access_token’ parameter using the "application/x-www-form-urlencoded" encoding type defined in [HTML_4.01]
Example:
AAACa8r8lZA4ABAAp0vw1sSG

2.
If encryption requested in the Authorization Request, encrypt the previous string and encode the resulting data as Base64, otherwise include the Access Token Response as plain text
3.
Include the resulting string in the text of the browsed page or textual SMS together with other textual information that may be included to provide guidance to the Resource Owner about what to do with the Access Token.
For the secondary channel case ‘Automatic retrieval of the Access Token by the Autho4API Client from the Resource Owner’s User Agent’, the response payload conveyed to the Autho4API Client SHALL be constructed as follows:

1. Establish the list of parameters (key/value pairs) to be included in the response, which includes the applicable OAuth 2.0 parameters defined in section 4.2.2 of [draft-ietf-oauth-v2] with the considerations included in this section (7.4.2.4. “Use of a secondary channel”), and which may include other server-specific parameters (not defined in this specification).
Example:
access_token=AAACa8r8lZA4ABAAp0vw1sSG&token_type=Bearer&expires_in=3600&state=xyz

2. Encode the resulting form data set using the "application/x-www-form-urlencoded" encoding type defined in [HTML_4.01].
3. If encryption requested in the Authorization Request, encrypt the Access Token Response an encode the resulting data as Base64, otherwise include the Access Token Response as plain text
For the secondary channel case ‘Sending the Access Token to the Resource Owner’s device by a silent Connectionless Push over SMS’, the response payload sent to the Autho4API Client SHALL be constructed as follows:

1. Establish the list of parameters (key/value pairs) to be included in the response, which includes the applicable OAuth 2.0 parameters defined in section 4.2.2 of [draft-ietf-oauth-v2] with the considerations included in this section (7.4.2.4. “Use of a secondary channel”), and which may include other server-specific parameters (not defined in this specification).

Example:
access_token=AAACa8r8lZA4ABAAp0vw1sSG&token_type=Bearer&expires_in=3600&state=xyz
2. Encode the resulting form data set using the "application/x-www-form-urlencoded" encoding type defined in [HTML_4.01].

3. If encryption requested in the Authorization Request, encrypt the Access Token Response an encode the resulting data as content-type application/octet-stream [RFC2045][RFC2046], otherwise include the Access Token Response as plain text using content-type text/plain
5.2.1.3.2 Detailed protocol flow (Informative)

When a secondary channel is used, the general flow shown in Figure 3 is modified as follows:

[image: image1.emf]Autho4API

Client

Autho4API

Authorization Server

Resource Owner’s

User-Agent

1. The Autho4API Client directs the Resource Owner’s

User-Agent to the Autho4API Authorization Server endpoint

GET https://Autho4APIAuthServer.example/authorize/?

response_type=token&client_id=s6BhdRkqt3&state=xyz

&redirect_uri=http%3A%2F%2FexampleServiceProviderAuthServer.com%2F

autho4apiSecondaryChannel%2Fpush_over_sms

2. User Authentication and Authorization

1. The Autho4API Client directs the Resource Owner’s

User-Agent to the Autho4API Authorization Server endpoint

Resource

Owner

2. User Au

thentication

an

d Authorization

3. Sends Access Token through the secondary channel

(may not be sent directly but through intermediate entities)

Figure 4: Obtaining Authorization using the Implicit grant type and a secondary channel: Detailed Protocol Flow
1. Autho4API Client directs the Resource Owner’s User Agent to the Autho4API Authorization Server Endpoint with the redirect_uri parameter set to http://exampleServiceProviderAuthServer.com/autho4apiSecondaryChannel/push_over_sms as specified in section 7.4.6 to request the Authorization Response to be delivered over Connectionless Push over SMS. For the rest of parameters, description in step 1 of Figure 5 is followed.

2. The Resource Owner is authenticated and grants to the Autho4API Client the access to the Resources. This step is the same as step 2 of Figure 5. How this step 2 is performed is out of scope of Autho4API.

3. The Autho4API Authorization Server sends the Access Token Response through the secondary channel. How this step 2 is performed is out of scope of Autho4API and can involve other entities such as SMSCs, etc.

5.2.1.3.3 Security Considerations

Depending on the environment (device, operating system) and depending if the Authorization Response is delivered to the same device where the Autho4API Client is running, secondary channel may not be considered secure.
Note: Whether a secondary channel can be considered secure is out of scope of this specification, as a secondary channel can be secure or not depending on the environment.

If the secondary channel is not considered secure, the Autho4API Client SHALL use the encryption mechanism defined in section 7.4.6, so the Access Token Response is delivered encrypted, thus making the channel secure.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

_1390034760.vsd
1. Redirection to Authorization Endpoint,
including oma_sec_channel parameter
and NOT including redirect_uri parameter
GET https://Autho4APIAuthServer.example/authorize/?
response_type=code&client_id=s6BhdRkqt3
&state=xyz&oma_sec_channel=sms_text

3. Sends Authorization Code through the secondary channel
(may not be sent directly but through intermediate entities)

