Doc# OMA-MCC-2005-0196-Clarifications-on-the-usage-of-PE-and-PEEM-by-other-enablers.doc[image: image1.jpg]
Input Contribution

Doc# OMA-MCC-2005-0196-Clarifications-on-the-usage-of-PE-and-PEEM-by-other-enablers .doc
Input Contribution

Input Contribution

	Title:
	Clarifications on the usage of PE and PEEM by other enablers
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA MCC WG

	Submission Date:
	23 August 2005

	Source:
	Michael Brenner, Lucent Technologies, mrbrenner@lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution proposes clarifies the usage of the OSE architectural element Policy Enforcer (PE) and Policy Evaluation, Enforcement and Management (PEEM) enabler by other enablers. It is introduced as a result of the submission of contribution 180.

2 Summary of Contribution

Contribution 180 is a very timely and welcome attempt to explore Charging characteristics in the context of its interactions with some other OSE components (e.g. other enablers). Since contribution 180 has been submitted while the WG is still working on the AD, it is subsumed here that the intent was to consider certain interactions with other entities during the completion of the AD. The problem of course is, that while interactions with the OSE Policy Enforcer (PE) and/or PEEM enabler are presented, we only have available OSE V1.0, and the PEEM RD as approved documents. At the same time, OSE V2.0 and PEEM AD work are in progress, and that implies that additional details may only be forthcoming later from ARC WG to clarify how PE and/or PEEM interact with other enablers.

This contribution is attempting to clarify some aspects of PE and PEEM, in the hope that this may help the MCC to focus on the relationship between the charging enabler and those elements, even before all the details of those elements are documented/agreed/approved to by ARC WG. Of course, this is a company view, and not the ARC WG view. To obtain the latter, there are processes in place that MCC can follow if desired. Please see detailed proposal in the next section.

,

3 Detailed Proposal
PE and PEEM clarifications

First, there is a distinction between the OSE Policy Enforcer and a PEEM enabler implementation.

What is PE ?

The Policy Enforcer (PE) is a logical function which intercepts any request/response for a resource (e.g. enabler) in a domain where PE is deployed, if the domain owner provided policies to be applied on such a request. The target resource doesn’t know and doesn’t have to know that the request was or not intercepted by PE. Upon interception, PE will identify the applicable policies, will evaluate them and will execute them (most of time with help from other enablers to which it delegates some functions). If the evaluation, or if the execution fails, the request will be blocked from continuing; otherwise, the request will be forwarded to the target resource. The domain owner is usually the one that provides the policies, based on the knowledge of the resources deployed in the domain, and based on the specific domain policies that they want enforced to allow access to a specific target resource. Given the nature of its function, PE cannot be invoked directly (it does not expose a callable interface).

What is the “P parameter set” (from the OSE “I0+P” interface exposed to applications) ?

Since enablers may be specialized and may count on other enablers to provide through re-use certain other functions (e.g. authentication, authorization, etc), the interfaces such enablers expose may not include parameters that the domain owner needs to also collect in order to satisfy their domain policies. This “delta” is captured in the OSE as the “P parameter set”. Those additional needed parameters will be requested by the domain owner, in addition to the ones dictated by the enabler’s exposed I0 interface, from applications making requests to the target enabler. As a result, the interface exposed to applications in OSE, for access to enablers, is “I0+P”. When a request from an application is intercepted by PE, any applicable policies are identified, then processed for evaluation and execution. In this process, the additional P parameters are “consumed”, and then the request forwarded to the target resource is based on its exposed interface (e.g. I0 for enablers).

How is PE realized/implemented ?

PE can be realized/implemented in various ways – and the OSE does NOT prescribe a particular implementation. The important thing is that it should be capable of transparently intercepting any request/response, and act upon domain policies, before continuing to forward the request to the target. In particular, when PEEM enabler will be available, a PEEM implementation deployed in the proxy model will be able to provide the PE function described (see next for PEEM explanation).

What is PEEM ?

PEEM is an enabler that handles policy enforcement – that is, evaluation, or evaluation and execution of policies. It also handles management of policies. PEEM has to deployment models:

· The proxy model

· This pattern is similar in functionality with the description of the PE. In this pattern, policies will usually include policy rules involving both evaluation and execution.

· The callable model

· This pattern is similar to most enablers. PEEM will expose a callable I0 interface, through which a requestor (e.g. application, enabler, other) can issue a request to PEEM. This happens ALWAYS after the request from the application arrived at the target resource (e.g. enabler), normally as a result of some of the enabler processing arriving at a conjuncture where an external decision may be needed (think of it as being at a crossroad, where the answer of what to do next is somebody else’s responsibility – so hence the need to ask). For example, at some point during the processing of an application request, the target enabler needs to ensure that the requestor has appropriate permissions for that particular step – and maybe the enabler does not have such data, or the logic to compare such data with the incoming data. The knowledge and the logic may be encoded in a policy, and PEEM can identify one or more such existing policies, and enforce them. There are 2 distinct possibilities for such a request to PEEM, encoded in the request:

· Request for policy evaluation only. In this case, the target resource (e/g/ enabler) passes to PEEM any relevant input parameters and asks from PEEM only to evaluate any policy applicable policies. The evaluation consists of a comparison of pre-provisioned data against the input data provided (and other context information, for example time-of-day, etc). PEEM would ONLY render a decision. The details about the information returned to the requestor have yet to be worked out in the PEEM specification – but the expectation is that PEEM would return TRUE or FALSE depending on the result of the evaluation, or it could also return additional clarifying information as a recommendation to the requestor for what to do next. The execution of the rendered decision lies with the requestor.

· Request for policy evaluation and execution, In this case, after going through the evaluation process as described before, PEEM continues with the execution of the rendered decision itself. In that sense, it will execute the actions required by the policy, when the conditions were evaluated to be TRUE. After executing all the actions required, it would return control to the requestor. The details about the information returned to the requestor have yet to be worked out in the PEEM specification.
To summarize, PEEM can implement the PE function, when deployed in the proxy model. PE is a logical function, but even as an implemented solution, PE cannot support all the PEEM functions (e.g. PE function does not include a callable interface, and PE does not include policy management).

Also note that given the differences between evaluation-only and evaluation and execution, it is possible that policies written for evaluation only may differ from policies written for evaluation and execution.

What are the implications for Charging enabler ?
1. Any policies that need to be implemented on a request to Charging, before it reaches a Charging enabler implementation are somebody else’s responsibility. Charging enabler should consider what functions are not critical for charging and verify that such functions are or will be provided by other enabler (e.g. authentication, authorization, etc). Once such other enablers have been identified, Charging enabler should rely on the facts that functionality offered by those enablers, on the ability of PE to intercept requests and delegate such functions to those other enablers, and on the ability and desire of the deployer (domain owner) to write appropriate policies that would make such delegation possible and correctly processed. In short, Charging may want to identify those issues, present them as topics for consideration to other enablers developers (in particular PEEM), but not focus on providing support in their interface.

2. Any direct request for evaluation OR evaluation and execution during processing of a Charging request by a Charging enabler implementation is the responsibility of the Charging enabler. In other words, a Charging enabler implementation needs to be able to figure out through its design at what points of its processing the evaluation (or evaluation and execution) of an externally provisioned policy may be needed or become useful, and in those situations, it needs to make use of the PEEM callable interface to pass along such request and any applicable input parameters needed in the evaluation.

3. Many different scenarios can be envisioned, and contribution 180 did a good job of emphasizing a sizable subset. But ultimately, the best way is to look at Charging as a resource, and if that a requestor makes a request to it. Certain policies may be applied or not on the request before it reaches the Charging enabler, but their processing is NOT under the charging enabler control. In fact the Charging enabler may not even know that any such policies were enforced. On the other hand, the Charging enabler needs to know about policies that it may explicitly request to be evaluated or evaluated and executed.

As you can see, PEEM will offer a lot of flexibility to suit various situations. Each specific situation may require a specific set of policies, which may change frequently over time. Regardless of the use of proxy or callable model (by the way, the two can also co-exist), the enablers themselves will not have to change because of that – since both the data (policies) and the logic (PEEM) have been taking out of the other enablers themselves.

We hope to have clarified the differences between PE and PEEM, between proxy model and callable model, and between evaluation-only and evaluation and execution.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The recommendation is for MCC to consider this contribution if/when faced with architecture and/or specification choices that have have to do with the relationship between Charging enabler and the OSE Policy Enforcer and/or PEEM enabler. This contribution should be noted.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

