OMA-WP-PEEM Policy Expression Language future evolution-20071123-D
Page 7 V(16)

	[image: image1.jpg]
	

	White Paper on
PEEM Policy Expression Language future evolution

	Draft – 23 Nov 2007

	Open Mobile Alliance

	OMA-WP-PEEM Policy Expression Language future evolution-20071123-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Introduction
7
5.
Policy Expression Language - Constructs and Semantics
8
5.1
Ruleset
8
5.1.1
Rule
9
5.1.2
Variables
9
5.1.3
Constants
10
5.1.4
Parameterized Constants
11
5.1.5
Operators
12
5.2
PEL data types for rule sets
13
6.
Future Policy Language Considerations
14
Appendix A.
Change History (Informative)
15
Appendix B.
<Additional Information>
16
B.1
App Headers
16
B.1.1
More Headers
16

Figures

Error! No table of figures entries found.
Tables

Error! No table of figures entries found.
1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

TBD
2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”,{ Version x.y,} Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
Check the version of the Dictionary you are using and update the reference below. Delete the [OMADICT] entry if the dictionary is not used. In general, use the latest available version unless seeking alignment with an existing set of specifications.

DELETE THIS COMMENT

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	[RFC 4745]
	“Common Policy: A Document Format for Expressing Privacy Preferences, H.Schulzrinne et al, IETF RFC 4745, February 2007, URL: http://www.rfc-editor.org/rfc/rfc4745.txt

	
	

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

3. Terminology and Conventions

3.1 Conventions

This is an informative document, which is not intended to provide testable requirements to implementations.

<< If needed, describe or declare any additional conventions used. DELETE THIS COMMENT >>

3.2 Definitions

<< Add definitions in new rows of the following table as needed. The following examples show how dictionary references should be made as well as locally defined terms. This table should be maintained in sorted alphabetic order based on the labels of the terms.

Examples:

Entity
Use definition #1 from [OMADICT]

Interactive Service
Use definition from [OMADICT]

Local Term
The definition description would be presented directly

DELETE THIS COMMENT>>

	
	

	
	

	<< Add/Remove definition rows to this table as needed - DELETE This Row >>

3.3
Abbreviations

<< Add abbreviations as needed to the following table. No special notation should be made regarding terms copied from the Dictionary. This table should be maintained in alphabetic order.

DELETE THIS COMMENT >>

	OMA
	Open Mobile Alliance

	
	

	
	

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

4. Introduction

This white paper discusses the future needs of the PEEM rule based policy language constructs, assisting enablers based on OAM PEEM to extend the PEEM enabler in a common fashion and as well is a base for future PEEM versions regarding the rule based policy language extensions, based on Commonpol as defined in RFC4745 [RFC4745].
5. Policy Expression Language - Constructs and Semantics
<<Sections for the descriptive informative text. Fill in as needed. The following validates the styles used for the headers. DELETE THIS COMMENT >>

A policy expression language must satisfy the following requirements:

· Is composed of CONDITION and ACTION as part of a rule.

· Support policy, rule and ruleset

· Support variables (types and scope)

· Support constants

· Support parameterized constants

· Support operators
· Support function call

This section describes constructs/semantics that need to be supported by a Policy Expression Language (PEL).
5.1 Ruleset

A ruleset (also referred to loosely as a policy) is a collection of rules that operate as a whole to satisfy a specific policy evaluation (or evaluation and enforcement). The ruleset is the subset of the policy rules that are applicable in a particular instance (i.e. will become candidates for the evaluation and enforcement process for a particular request). An algorithm that describes how the rules in a ruleset are to be combined is associated with the ruleset construct. The need for such a construct in the language is the result of the necessity to logically identify and separate a set of rules targeted for a specific purpose, from different set of rules targeted at different purposes.
No particular algorithm is listed here as a criteria.
Editors Note: The particular algorithm to describe how rules in a ruleset can be combined should be addressed here or as an Appendix in this White Paper (PEL ruleset framework options).
A ruleset is characterized by the following:

1. a name

a. the name serves as a means to manage a ruleset, separately from other rulesets. The name is assigned when a ruleset is created, and is used when the ruleset is viewed, modified, or deleted. A ruleset name may also be passed by a requester, to specify a policy that will be used in the evaluation.

2. an optional set of variables. Variables will be described as a language construct in a separate section.

a. the variables shall have global validity across all the rules in the ruleset. They include:

i. variables that may be assigned values as a result of input variables passed through an evaluation request (input variables)

ii. variables that may be assigned values as a result of the evaluation (output variables)

iii. variables that are used to store intermediate results, that may be used in the rules evaluation process across the entire ruleset, and then get discarded at the end of the policy evaluation(intermediate, or internal, variables)

3. a set of rules

a. a ruleset may include one or more rules

b. the rules within a ruleset may be optionally prioritized

4. other optional features

a. the construct may benefit of other features, such as a description and an optional domain that the ruleset is associated with. The domain concept may be useful during provisioning, if a service provider wants to group together in a “domain” multiple rulesets that are addressing a similar topic, but used in different circumstances.

In conclusion, the ruleset construct is a container for a set of rules, and variables on which the set of rules operate.

Variables are typed, and will be described in a separate section.
5.1.1 Rule

A rule consists of a rule condition, and a set of one or more rule actions. A rule evaluation consists of checking if the rule condition is true, and if it is, executing the rule actions in sequence.

A rule is characterized by the following:

1. a rule name, which may be used both during policy management time (e.g. to allow the provisioning tools to point out errors (if any) in a ruleset). The rule name has no role during the evaluation process, other than to help in identifying potential errors through logging).

2. a condition

3. one or more actions

4. an optional usage description. The usage is ignored during the evaluation process.

A rule is part of a ruleset, a higher level construct.

5.1.1.1 Condition

A condition is a Boolean expression (formed using variables, constants, mathematical operators and logical operators, and function calls) that evaluates to a Boolean value of TRUE or FALSE. Variables, constants, mathematical operators and logical operators and function calls are language constructs that will be described in separate sections.

A condition is part of the rule construct. Every rule contains a condition.

5.1.1.2 Action

An action is an operation that shall be executed if the condition of a rule evaluates to TRUE. Typical actions include:

· assigning a value to a variable

· calling a function

· doing nothing (null action)

An action is part of the rule construct. Every rule contains an action (a null action at the minimum), but may contain multiple actions.

5.1.2 Variables

The policy expression language supports the basic data types int, float, bool, string, and the complex data types array and struct.
The scope of the variables is valid for the entire policy (e.g. in the case of a PEL ruleset-based option, variables are declared as part of the ruleset header, and they are in-scope for the entire ruleset; at the end of processing all rules in the ruleset, the validity of the variables expires, hence their value is not preserved across subsequent invocations). There is no real need or advantage to limit the scope of a variable to a specific rule (or more restrictively to a specific condition or action) since the effect can be realized by using a variable only in that specific rule).

Variables declared in a policy fall into 3 categories:

1. Input variables. Input variables are those whose values are required to be sent by a requestor with every policy processing request. When PEEM is used in the callable usage pattern, these variables would be passed via the PEM-1 interface. When PEEM is used in the proxy usage pattern, these variables would be identifiable in the “input context” detected by PEEM in a request directed to a target resource and intercepted by PEEM. In either case, input variables are assigned the values passed in, before any rule of an applicable policy is being processed.

Editor’s note: IMO, we need to have/define a mechanism to support mapping PEM-1 input parameters to Policy input variables.
2. Output variables. Output variables may be assigned values as part of rule actions, during the processing of a policy. When PEEM is used in the callable usage pattern, these variables are passed back to a requester via a response via the PEM-1 interface. When PEEM is used in the proxy usage pattern, the policy logic may determine, using output variables, whether the request for a target resource is being forwarded or denied. The requester expects output variables to be returned and should know how to process them.

Editor’s note: IMO, we need a mechanism to support mapping of Policy output parameters to PEM-1 output parameters.
3. Intermediate variables. Intermediate variables are those which may be used as part of the evaluation and execution process, but are not mapped to PEM-1 input parameters or PEM-1 output parameters.

All variables can be assigned values multiple times as part of the policy processing. Hence, the categorization of the variables as input, output or intermediate is only from the perspective of their relationship with input and/or output parameters carried via the PEM-1 interface.
5.1.3 Constants

The policy expression language supports various data types, namely basic data types such as int, float, bool, string, and complex data types such as array and struct. Variables may need to be assigned constant values. Constants corresponding to the variable data types include:

1. Integer constants. Integer constants consist of a sequence of decimal digits from 0 through 9, preceded by a positive or negative sign, depending on whether a positive or negative value of a constant is represented (the sign is optional in case of a positive integer constant). Some examples of integer constants representations are:

254

+600

600

2. Float constants. Float constants follow the scientific convention, i.e., a sequence of digits with a period in between (or at the ends), followed by an optional exponent (i.e., an e or E, followed by an integer constant). Different float constant representations are supported, such as:

2.

2.0

.45

0.45

1.32e+32

.0045E-1

0.04e3

3. Boolean constants. Boolean constants can take one of two values, representing “true” or “false”.

String constants. String constants consist of a sequence of octets. String constants can also include certain escape sequences (e.g. to support values for “newline”, “tab”).

5.1.4 Parameterized Constants

The policy expression language supports various data types, namely basic data types such as int, float, bool, string, and complex data types such as array and struct. Variables may need to be assigned values based on the accessing application, service provider etc. The parameterized constants can as well be used in Policy constructs like selections.

The format of the parameterized constant is:

Name-of-value[]
The Name-of-value[] is the constant like maximum length of a message

The value is taken from the appropriate data file where the value attached to the tag with the same name as the parameterized constant has is selected. The specific policy defines which type of data files to use and the input variables to the Policy may be used to select the specific data file.

An example:

A rule limiting message length for applications. It will use data files for applications. Using the Application Id input variable to select the correct file and the rule will use the value given for the max-length tag.

The constant is taken from data in the policy engine based on the input information in the policy call to PEM-1 as in the example the Application Id.

5.1.5 Operators

Operators are used to express conditions and actions. Basic operators supported by the PEL include mathematical operators and logical operators. The PEL may be extended to include additional operators, as needed when required by the expression of conditions or actions.

The policy expression language supports the following basic mathematical operators:

1. The “plus” operator. The “plus” operator is used to express the addition operation; it can also be used as unary operator.
2. The “minus” operator. The “minus” operator is used to express the subtraction operation
3. The “divide” operator. The “divide” operator is used to express the division operation.
4. The “multiply” operator. The “multiply” operator is used to express the multiplication operation s.
5. The “modulus” operator. The “modulus” operator is used to express the modulus operation.

Some examples of valid arithmetic expressions are:

Editor’s note: examples in this editor’s note will have to be updated once the syntax for all PEL elements is agreed. At that point the editor’s note is to be removed, and examples following the agreed syntax, should be moved to the TS text, if so desired.

Representative examples:

-PrepaidBalance

(-x + (y*2 + 3)/z) % 34
The policy expression language supports the following basic logical operators:

1. The “less than” . The “less than” operator is used to express a comparison

2. The “less than or equal to” operator. The “less than or equal to” operator is used to express a comparison.

3. The “equal to” operator. The “equal to” operator is used to express a comparison.

4. The “greater than” operator. The “greater than” operator is used to express a comparison.

5. The “greater than or equal to” operator. The “greater than or equal to” operator is used to express a comparison.

6. The “not equal to” operator. The “not equal to” operator is used to express a comparison.

7. The “AND” Boolean operator. The “AND” operator is used to express a disjunction.

8. The “OR” Boolean operator. The “OR” operator is used to express a conjunction.

9. The “NOT” Boolean operator. The “NOT” operator is used to express the Boolean value opposite to the value of the Boolean variable or constant subject to the operation.

Some examples of valid boolean expressions are:

Editor’s note: examples in this editor’s note will have to be updated once the syntax for all PEL elements is agreed. At that point the editor’s note is to be removed, and examples following the agreed syntax, should be moved to the TS text, if so desired.

Representative examples:

SimpleServiceProps[0].ServiceName == “USER_LOCATION”

(b1 OR b2) AND (NOT b3) AND (x > y)

(b1 || b2) && (! b3) && (x/3 > (y + 2))
Note that a Boolean expression may contain arithmetic expressions as sub-expressions. The result of a Boolean expression must evaluate to a Boolean value.

5.2 PEL data types for rule sets

The PEL data types do not have to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types are dictated by the type of variables that PEL is likely to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used. Also, an analysis conducted for PEM-1 interface bindings has also concluded that the basic programming languages, plus some derived data types, as needed (e.g. URI) are sufficient and/or that such data types can be derived from existing data types if need be. Limiting the set of all data types supported in programming languages to a subset, will reduce the need to define a number of derived data types in Diameter AVPs, or XML data types, or other binding that may still be added – at a time when there is no certainty that such data types will ever be needed.

Furthermore, an appendix is documenting all possible data types, hence, if a policy may need additional data types, those could be easy added later when the need is confirmed, rather than incurring the work now when the need is unknown. The data types that are initially included in PEL need to be those that are basic data types, and some more complex types that are likely to be encountered in writing policies. With those data types in place, others can be easily derived later, if needed. The following data types SHALL be supported in the Policy Expression Language:

	PEL Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters

	bool
	A type that can only take the values TRUE or FALSE

	URI
	A type derived from string, with a well-specified structure as per [RFC 2396]

6. Future Policy Language Considerations
· Transaction operation
· Support complex data structure: array, union, structure, …

· Priority of rules

· Support two methods of ACTION:

· Asynchronous (run and return);

· Synchronous (run and wait until the result is given)

· Multiple selections (case…. 0….1…2…)

· Support nesting usage of policy

Appendix A. Change History
(Informative)

<< The following is a model of a revision table. DELETE THIS COMMENT >>

	Document Identifier
	Date
	Sections
	Description

	OMA-WP-xxyyz-200x0521-D
	 2007
	all
	initial version of WP as permanent doc

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Appendix B. <Additional Information>

If needed, add annex to provide additional information to support the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

B.1 App Headers

<More text>

B.1.1 More Headers

<More text>

B.1.1.1 Even More Headers

<More text>

(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WhitePaper-20070101-I]
(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WhitePaper-20070101-I]

