Doc# OMA-ARC-PEEM-2008-0018-CR_PEM_2_management_of_tags[image: image1.jpg]
Change Request

Doc# OMA-Template-ChangeRequest-20080101-I.doc
Change Request

Change Request

	Title:
	PEM-2 support of management of tags
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Doc to Change:
	PEM-2 TS (OMA-TS-PEEM_PEM2-V1_0-20080805-C)

	Submission Date:
	29 AUG 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Paulus Karremans, Ericsson, Paulus.karremans@ericsson.com
Michael Brenner, Alcatel-Lucent, Brenner, mrbrenner@alcatel-lucent.com

	Replaces:
	n/a

1 Reason for Change

The development of the GPM TS is proceeding. As part of the GPM TS it may be decided to specify GPM-specific policy condition elements and/or policy action elements. An example of this could be a white list of friends that are allowed to find out my presence status or location.

At present the PEM-2 TS allows only for ‘downloading’ and ‘uploading’ of complete policies, and not for managing parts of policies only (such as adding or deleting a single buddy to/from a whitelist).

The reason that management of tags was declared out of scope of the PEM-2 TS is that for complex workflow type of policies (such as BPEL policies) it may be handier to manage the policy in its complete form – to be able to see how the individual tags that describe the workflow relate to one another.
On the other hand it is handy for less complex policies (such as Commonpol-based policies) to be able to manage individual tags.

In fact, already existing OMA specifications that deal with management of Commonpol policies, mandate management at tag level. An example can be found in the OMA-TS-XDM_Core-V2_0-20080825-D, section 6.1.1.2.4 to 6.1.1.2.9.

PEM-2 should support management of policy elements in order to support enablers such as GPM and to be compatible with existing enablers such as XDM.
2 Impact on Backward Compatibility

The proposed change is backward compatible.
3 Impact on Other Specifications

No impact on other specifications has been identified.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To discuss and agree on the detailed Change Proposal. Close GPM issue RUL-1.
6 Detailed Change Proposal

Change 1: Allow for management of policy elements in the PEM-2 TS
5. PEM-2 Interface definition
PEM-2 Interface SHALL be compliant to the IETF XML Configuration Access Protocol (XCAP) specification [RFC 4825]. The policy management operations requests (Client side) and responses (Server side) specify how to apply the [RFC 4825]. The policy management operations defined in PEM-2 handle entire policies (normatively), as well as policy elements and elements’ attributes within a policy (optionally). Hence PEM-2 full compliance to [RFC 4825] will allow implementations to support those additional features in implementations.

It is also possible that PEM-2 may be implemented as part of a broader XDM implementation [XDMSPEC], since XDM is also based on [RFC 4825]. However, in order to meet PEM-2 requirements, not all of the currently defined [XDMSPEC] features need to be supported, hence the relationship to XDM is addressed in the informative Appendix C. PEM-2 dependency on XDM, rather than XCAP may be reconsidered, should future versions of [XDMSPEC] identify the subset needed by PEM-2, as a more granular XDM profile. The following sections define the PEM-2 conformance to [RFC 4825].

5.1 PEM-2 relationship to XCAP
XCAP defines a protocol that can be used to manipulate XML documents, on a per-principal basis. This section introduces terminology and aspects of XCAP needed to define the PEM-2 interface (see [RFC 4825] for details).

XCAP includes a set of conventions for mapping XML documents and document components into HTTP URIs, rules for how the modification of one resource affects another, data validation constraints, and authorization policies associated with access to those resources and normal HTTP primitives can be used to manipulate the data.
Specific usages of XCAP are referred to as XCAP applications. The Application Usage defines the XML schema for the data used by the application, along with other key pieces of information. XCAP specifies how clients read, write, modify, create, and delete pieces of that data, through operations supported using HTTP/1.1 [RFC 2616]. An XCAP server acts as a repository for collections of XML documents, stored for each XCAP application. Within each application, documents are stored for each user, who can have multiple documents for a particular application. To access some component of one of those documents, XCAP defines an algorithm for constructing a URI that can be used to reference that component (e.g. the document itself, or elements or elements’ attributes within the document). Each document managed via XCAP follows the XCAP document URI (XCAP URI) construction specification, which includes an XCAP Root and a Document Selector, and optionally a Node Selector (see [RFC 4825] for details). An XCAP Root URI identifies the XCAP Root, a Document URI identifies the document, and a Node URI identifies the node (an element or an element’s attribute) within the document. Document Selectors may include a Global Tree and a Users Tree, and a document in the Users Tree may include an XCAP User Identifier (XUI).
Any HTTP resource that follows the naming conventions and validation constraints defined here is called an XCAP resource. Since XCAP resources are also HTTP resources, they can be accessed using HTTP methods. Reading an XCAP resource is accomplished with HTTP GET, creating or modifying one is done with HTTP PUT, and removing one of the resources is done with an HTTP DELETE. POST operations to HTTP URIs representing XCAP resources are not defined.

Each Application Usage is associated with an Application Unique ID (AUID), which uniquely identifies the Application Usage within the namespace of Application Usages, and is different from AUIDs used by other applications. AUIDs may be registered in an IETF namespace or maybe defined in a vendor-proprietary namespace.

An XCAP Server needs to validate the content of each XCAP resource when an XCAP Client tries to modify one, and XCAP Clients need to know how to construct valid requests. Application Usage is documented in a specification that conveys the following information:

· Application Unique ID (AUID): If the application usage is meant for general use on the Internet, the application usage MUST register the AUID into the IETF tree.
· XML Schema
· Default Document Namespace
· MIME Type
· Validation Constraints
· Data Semantics
· Naming Conventions
· Resource Interdependencies
· Authorization Policies
5.1.1 PEM-2 Application Usage

Policy management via PEM-2 interface has to support policies that may be written conforming to different XML schemas, corresponding respectively to the specific Policy Expression Language used. PEM-2 specification defines 2 Application Usages, conforming to the 2 PEL options supported by PEEM specifications. Application Usage is extensible. For example, OMA enablers, Service Providers and Vendors MAY extend the specified Application Usage with additional constraints, data semantics, naming conventions, resource interdependencies and authorization policies, or add entirely new additional Application Usages, under new AUIDs. However, while PEM-2 specifies a certain Application Usage, and therefore an implementation has to support such Application Usage, it does so that the implementations have a further choice to use it to validate documents being created or replaced if so desired, and not because validation of the passed documents is mandated as part of the PEM-2 specification. PEM-2 specification explicitly defines any validations that PEEM may perform, based on the Application Usage defined, as out-of-scope for the PEM-2 specification. PEEM implementations may provide tools to enable or disable validation of incoming policies, based on the specified Application Usage.

5.2.2.1 Application Unique ID

The AUID for policies using PEL option for ruleset framework SHALL be “org.openmobilealliance.policy-commonpol”.
The AUID for policies using PEL option for business process SHALL be “org.openmobilealliance.policy-bpel”.
5.2.2.2 MIME Type

The MIME type for a policy using PEL option for ruleset framework SHALL be “application/vnd.oma.policy-commonpol+xml”.

The MIME type for a policy using PEL option for business process SHALL be “application/vnd.oma.policy-bpel+xml”.
5.2.2.3 Default Namespace

The default namespace for policies using PEL option for ruleset framework SHALL be “urn:oma:xml:xdm:policy-commonpol”.

The default namespace for policies using PEL option for business process SHALL be “urn:oma:xml:xdm:policy-bpel”.
5.2.2.4 XML Schema

Policies using PEL options SHALL conform to the respective policy schemas supported by the PEEM implementation. Extensions to PEL options MAY come from work in OMA or outside OMA.
For example, in this version of PEM-2 TS, the policies using PEL option for ruleset framework (based on RFC 4745) SHALL conform to the XML schema described in [RFC 4745], and the extensions added in OMA described in [XSD_commPol] and [XSD_ext].

For example, the policies using PEL option for business process (based on BPEL) SHALL conform to the XML schema described in [XSD_BPEL].

5.2.2.5 Additional Constraints

None.

5.2.2.6 Data Semantics

None.
5.2.2.7 Naming Conventions

None.

5.2.2.8 Data Interdependencies

None.
5.2.2.9 Authorization Policies

None.
5.2 Procedures at the PEEM management requestor (client side)

A PEEM management requestor is a resource that uses the PEM-2 interface to issue policy management requests. A PEEM management requestor acts like an XCAP Client, and SHALL follow the procedures described in as described in [RFC 4825].

5.2.1 PEEM policy identifier parameter

A PEEM policy SHALL be encapsulated in an XML document, and a Policy identifier SHALL be an XCAP URI. The construction of a policy identifier SHALL follow the procedures described in [RFC 4825], that apply to creation of an XCAP URI for an XML document. The XML document has to conform to the XML schema, and to data constraints described under the Application Usage definition, used both by PEEM management requestor (XCAP Client) and PEEM component (XCAP Server).

5.2.2 Policy Management Operations

The PEM-2 interface SHALL support the operations of Create Policy, Modify Policy, Delete Policy and View Policy. These operations SHALL re-use interface messages specified in [RFC 4825]. For policy management operations, the procedures in the referred sections SHALL apply, that are relevant to handling XCAP URIs that represent XML document (i.e. policy identifiers). The procedures that are relevant to handling of XCAP URIs that are tags internal to XML documents MAY optionally be supported. The PEEM management requestor (XCAP Client) MUST be able to handle PEEM component responses to policy management operations, including error responses, which may be issued by the PEEM component (see section 5.2.3 for details).

5.2.2.10 Create Policy

The Create Policy operation SHALL follow the procedures described in [RFC 4825] for Creating a policy document, and MAY in addition optionally be used for Creating elements that are part of such a document. For this request, the HTTP PUT method is being used, where the XCAP URI parameter is a new PEEM policy identifier parameter constructed as described in section 5.1.1, identifying the location where the policy document is to be placed. An XCAP URI Node Selector MAY be used to identify elements (i.e. tags) inside the policy document. The MIME content type MUST be the type defined by the Application Usage. A successful response is represented by a 201 Created response, accompanied by an entity tag and optionally a Location header field for the document. For errors handling see section 5.2.3.

5.2.2.11 Modify Policy

The Modify Policy operation SHALL follow the procedures described in [RFC 4825] for Replacing a policy document, and MAY in addition optionally be used for Modifying elements that are part of such a document. For this request, the HTTP PUT method is being used, where the XCAP URI parameter is an existing PEEM policy identifier parameter constructed as described in section 5.1.1, identifying the location of the policy document to be replaced. An XCAP URI Node Selector MAY be used to identify elements (i.e. tags) inside the policy document. The MIME content type MUST be the type defined by the Application Usage. A successful response is represented by a 200 OK response, and no other content. For errors handling see section 5.2.3.

5.2.2.12 Delete Policy

The Delete Policy operation SHALL follow the procedures described in [RFC 4825] for Deleting a policy document, and MAY in addition optionally be used for Deleting elements that are part of such a document. For this request, the HTTP DELETE method is being used, where the XCAP URI parameter is the PEEM policy identifier parameter constructed as described in section 5.1.1, identifying the location of the policy document to be deleted. An XCAP URI Node Selector MAY be used to identify elements (i.e. tags) inside the policy document. A successful response is represented by a 200 OK response. If the response includes an entity tag, it means that the document was not deleted, and only an element’s attribute within the document was part of the deletion request. For error handling see section 5.2.3.

As a side effect of a successful Delete Policy operation (success being defined as a 200 OK response, and no accompanying entity tag), the XCAP URI can be later re-used.

5.2.2.13 View Policy

The View Policy operation SHALL follow the procedures described in [RFC 4825] for Fetching a policy document, and MAY in addition optionally be used for Fetching elements that are part of such a document. For this request, the HTTP GET method is being used, where the XCAP URI parameter is the PEEM policy identifier parameter constructed as described in section 5.1.1, identifying the location of the policy document to be retrieved. An XCAP URI Node Selector MAY be used to identify elements (i.e. tags) inside the policy document. A successful response is represented by a 200 OK response, accompanied by the returned policy as an XML document. If the response includes an entity tag, a successful response would be 200 OK, accompanied by an XML fragment representing the selected element or the element’s attribute. For error handling see section 5.2.3.

5.2.3 PEM-2 Error Handling
PEEM management requestor (XCAP Client) MUST be able to handle any errors received in response of a PEM-2 request from a PEEM component (XCAP Server). See detailed error description in section 5.4.

5.3 Procedures at the PEEM component (server side)
The PEEM component acts as an XCAP Server, when handling policy management requests received via the PEM-2 interface. For handling of incoming requests, PEEM component SHALL follow the procedures described in [RFC 4825] section 6.2. The procedures, that are relevant to handling XCAP URIs that represent XML document (i.e. policy identifiers) SHALL apply. The procedures that are relevant to handling of XCAP URIs that are tags internal to XML documents MAY optionally be supported. Errors returned by the PEEM component (XCAP Server) are described in section 5.3.

In particular:

· Upon receiving a Create Policy request, PEEM component SHALL create a new policy (or policy element) using the policy (or element) identifier received, store the policy (or element) identified by the XCAP URI, and acknowledge the success of the operation, or return an error. A Create Policy request is using the HTTP PUT method, and the semantics of PUT are specified in [RFC 2616]. If the Create Policy was successful, and the document interdependencies have been resolved, the PEEM component SHALL return a 201 Created. In this case, the response MUST include an entity tag and MAY include a Location header field for the document. If the Create Policy request processing failed, the PEEM component SHALL return an error, as defined in the next section.
· Upon receiving a Modify Policy request, PEEM component SHALL identify and replace an existing policy (or policy element) in its repository, with the policy (or element) identified by the XCAP URI received, and acknowledge the success of the operation, or return an error. A Modify Policy request is using the HTTP PUT method, and the semantics of PUT are specified in [RFC 2616]. If the Modify Policy was successful, and the document interdependencies have been resolved, the PEEM component SHALL return a 200 OK, and the response MUST NOT include any other content. If a Node Selector was used to modify an element or an element’s attribute within the document, then the 200 OK response MUST include the entity tag of the document. If the Modify Policy request processing failed, the PEEM component SHALL return an error, as defined in the next section.
· Upon receiving a Delete Policy request, PEEM component SHALL identify and delete an existing policy (or policy element) in its repository, using the policy (or element) identified by the XCAP URI received, and acknowledge the success of the operation, or return an error. A Delete Policy request is using the HTTP DELETE method, and the semantics of DELETE are specified in [RFC 2616]. If the Delete Policy was successful, the PEEM component SHALL return a 200 OK, and the response MUST NOT include any other content, if the entire document is deleted. If a Node Selector was used to delete an element or an element’s attribute within the document, but the document continues to exist at the completion of this request, then the 200 OK response MUST include the entity tag of the document. If the Delete Policy request processing failed, the PEEM component SHALL return an error, as defined in the next section.
· Upon receiving a View Policy request, PEEM component SHALL identify and retrieve an existing policy (or policy element) from its repository, using the policy (or element) identified by the XCAP URI received, and acknowledge the success of the operation, or return an error. A View Policy request is using the HTTP GET method, and the semantics of GET are specified in [RFC 2616]. If the View Policy was successful, the PEEM component SHALL return a 200 OK. The MIME type of the body of the 200 OK response MUST be the MIME type defined by that Application Usage. If the View Policy request processing failed, the PEEM component SHALL return an error, as defined in the next section. See [RFC 4825] for handling responses when the XCAP URI includes a Node Selector.
5.4 PEM-2 errors
The PEEM component acts as an XCAP Server in response to requests issued via PEM-2. As such, the errors it will return will be errors that an XCAP Server returns when handling HTTP requests for document creation, modification, deletion or retrieving (see table below).

	HTTP Error Code
	HTTP Error Description
	Received in response to PEM-2 request
	Error explanation
	Handling by PEEM management requestor (client side)

	400
	Bad Request
	Any PEM-2 request
	This error is issued when any qualified names are present that use a namespace prefix, and that prefix is not defined in an xmlns() expression in the query component of the request URI.
	Check [RFC 4825] for details.

	404
	Not Found
	Any PEM-2 request
	This error can be issued in one of the following cases:

1. the URI in the PEM-2 request refers to an Application Usage not understood by the PEEM component.

2. the URI in the PEM-2 request refers to a user (identified by an XUI) that is not recognized by the PEEM component.

3. the URI in the PEM-2 request includes extension-selectors that the PEEM component does not understand.
	Check for the possible conditions, correct and re-issue PEM-2 request.

	404
	Not Found
	View Policy (via HTTP GET)

OR

Delete Policy (via HTTP DELETE)
	This error can be issued in one of the following cases:

1. the URI in the PEM-2 request contains only a document selector, but the document cannot be found.

2. the URI in the PEM-2 request contains a Node Selector, and:

a. The document pointed to by the document selector cannot be found, OR

b. The document pointed to by the document selector exists, but the Node Selector is a no-match or invalid (see [RFC 4825] for details).
	Check for the possible conditions, correct and re-issue PEM-2 request.

	405
	Method Not Allowed
	Invalid PEM-2 operation (via HTTP POST)
	This error is issued when a PEEM component receives an HTTP POST request. HTTP POST operations are not defined in XCAP, hence not defined in PEM-2.

Note: While [RFC 4825] does not define the use of HTTP POST for Creating, Replacing, Deleting or Fetching of XML documents, [XDMSPEC] specifies the use of HTTP POST for Search Operations at an XDM Aggregation Proxy. This is an XDM extension, and out of scope for PEM-2.
	This is out-of-scope for XCAP and PEM-2.

HTTP POST should not be used for PEM-2 operations.

	405
	Method Not Allowed
	Create Policy (via HTTP PUT)

OR

Modify Policy (via HTTP PUT)

OR

Delete Policy

(via HTTP DELETE)

OR
	If the request URI contained a namespace-selector, the server MUST reject the request with a 405 (Method Not Allowed) and MUST include an Allow header field including a list of valid methods for the requested resource (see [RFC 4825] and [RFC 2616] for details).
	Check for the possible conditions, correct using the provided methods, and re-issue PEM-2 request.

	409
	Conflict
	Create or Modify Policy

(via HTTP PUT)
	This error can be issued in several situations:

1. If the parent URI has no node selector separator, it is referring to the directory into which the document should be inserted. In normal XCAP operations, this will be either the user's home directory or the global directory, which will always exist on the server. However, if an application usage is making use of subdirectories (despite the fact that this is not recommended), it is possible that the directory into which the document should be inserted does not exist. In this case, the server MUST return a 409 response, and SHOULD include a detailed conflict report including the <no-parent> element. Detailed conflict reports are discussed in the next section. If the directory does exist, the server checks to see if there is a document with the same filename as the target node. If there is none, the operation is the creation operation. If there is such a document, the operation is the modification operation. The 409 error may be a result of the following conditions:
a. The document is not a well-formed document. The error 409 will be issued, accompanied by a detailed conflict report including the <not-well-formed> element.
b. The document is not UTF-8 encoded. The error 409 will be issued, accompanied by a detailed conflict report including the <not-utf-8> element.
c. The document is not compliant with the schema provided in the data constraints. The error 409 will be issued, accompanied by a detailed conflict report including the <schema-validation-error> element.
d. The document does not meet element uniqueness constraints provided in data constraints. The error 409 will be issued, accompanied by a detailed conflict report including the <uniqueness-failure> element.
e. The document does not meet URI constraints and/or other non-schema data constraints. The error 409 will be issued, accompanied by a detailed conflict report including the <constrain-failure> element.
f. Issues with attempts of creating or replacing elements or elements’ attributes. These are out-of-scope for PEM-2, and may occur as a result of implementation extensions. See [RFC 4825] for explanations.
2.

	Check for the possible conditions, correct and re-issue PEM-2 request.

	
	
	

	
	

	415
	Unsupported Media Type
	Create or Modify Policy

(via HTTP PUT)
	This error is issued if the MIME type in the Content-Type header field of the PEM-2 request is not equal to the MIME type defined for the application usage.
	Correct the MIME type in the Content-Type header field, and re-issue PEM-2 request.

Table 1: PEM-2 errors issued by a PEEM component (XCAP Server)

.See [RFC 4825] and [RFC 2616] for additional details, and see next section for Detailed Conflict Reports.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

