Doc# OMA-ARC-PSA-2009-0016-INP_MMS_extend_messaging_format_types[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-PSA-2009-0016-INP_MMS_extend_messaging_format_types
Input Contribution

Input Contribution

	Title:
	Enhance Multimedia messaging to allow other messaging service types to use it
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC PSA

	Submission Date:
	23 January 2008

	Source:
	Vitomir Ilic, Ericsson
<vitomir.ilic@ericsson.com>

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Parlay X Multimedia messaging specifications need to be enhanced to allow for other types of messaging services rather than MMS only.
2 Summary of Contribution

Although it is meant to provide generic messaging features, current version of Parlay X Multimedia messaging specifications (3GPP TS 29.199-5 V8.0.0) can be used barely for MMS messaging service. The specifications do not provide means for an application to indicate the type of message format/messaging service in SendMessageRequest (section 8.1.1.1) and then it makes difficult for underlying network to decide how the request is to be handled (for example, whether the request should be handled by MMS-C, SMS-C or IM-C).
This contribution proposes a new optional parameter called “Format” in SendMessageRequest message to indicate the message format/messaging service type (also known as message mode) that will assist the underlying network (Parlay X gateway) to make proper decision on how the request should be handled.

In addition, in Section 7, a new enumeration data type MessageFormat, that includes message format types that can be used with these specifications, is added. MessageReference structure is also updated to include an optional element “Format”.
Section 4, Detailed service description, is updated to reflect these changes.

WSDL files for Multimedia messaging are updated to reflect these changes.

Impacts on Backward Compatibility

None

Impacts on other specifications

None

3 Detailed Proposal

4 Detailed service description

Currently, in order to programmatically receive and send Multimedia messages, it is necessary to write applications using specific protocols to access MMS functions provided by network elements (e.g. MMS-C). This approach requires application developers to have a high degree of network expertise.
This clause describes Parlay X Web Service for sending and receiving Multimedia messages. The overall scope of this Web Service is to provide application developers primitives to handle Multimedia messages in a simple way. In fact, using Multimedia Messaging Web Service, application developers can invoke Multimedia Messaging functions without specific Telco knowledge.
This version of Multimedia Messaging Web Services provides generic messaging features that can support different messaging service types such as SMS, MMS, IM, E-mail etc.

·
·

Multimedia Messaging provides operations (see clause 8.1, SendMessage API) for sending a Multimedia message to the network and a polling mechanism for monitoring the delivery status of a sent Multimedia message. It also provides an asynchronous notification mechanism for delivery status (see clause 8.3, MessageNotification API). In addition, a mechanism is provided to start and stop the notification of delivery receipts (see clause 8.4, MessageNotificationManager API).

Multimedia messaging also allows an application to receive Multimedia messages. Both a polling (see clause 8.2, ReceiveMessage API) and an asynchronous notification mechanism (see clause 8.3, Message Notification API) are available.

Figure 4.1 shows an example scenario using sendMessage and getMessageDeliveryStatus to send data to subscribers and to determine if the data has been received by the subscriber. The application invokes a Web Service to retrieve a stock quote (1) and (2) and sends the current quote - sendMessage - using the Parlay X Interface (3) of the Multimedia Messaging Web Service. After invocation, the Multimedia Message Web Service sends the message to an MMS-C using the MM7 interface (4) for onward transmission (5) to the subscriber over the Mobile network.

Later, when the next quote is ready, the application checks to see - getMessageDeliveryStatus - if the previous quote has been successfully delivered to the subscriber. If not, it may for instance perform an action (not shown) to provide a credit for the previous message transmission. This way, the subscriber is only charged for a stock quote if it is delivered on time.

[image: image1.wmf]MMSC

-X

component

Multimedia

Message Web

Service

Parlay X I/F

MMSC

MMS-C

MM7 VASP

Interface

Mobile network

Stock Quote

Web Service

Stock Quote

Web Service

……

..

content1

=

get

StockQuote

()

…

..

Retrieve

user Profile

…

.

messageId

=

sendMessage

(

content

1

)

…

.

status

=

getMessageDeliveryStatus

(

messageId)

if

status

=Message_Waiting

…

.

fi

…

content2

=

get

StockQuote

()

messageId

=

sendMessage

(

content2

)

User

profile

1

2

3

4

5

6

Figure 4.1: Multimedia Messaging Scenario

Alternatively this service could have been built using WAP push features in the network.

Figure 4.2 shows an example scenario using sendMessage and getMessageDeliveryStatus to send a link to subscribers and to determine if the data has been received by the subscriber. The application invokes a Web Service to generate a stock quote graph (1) and (2) and sends the current quote as a WAP push link - sendMessage - using the Parlay X Interface (3) of the Multimedia Messaging Web Service. After invocation, the Multimedia Message Web Service sends the message to an SMS (4) for onward transmission (5) to the subscriber over the Mobile network. The subscriber can then open the link and access his content.

[image: image2.jpg]User.

=

Multimedia

Message Web
Service
Parlay X IF

.Y
contentl= generatetockQuok Graph)

Retrieve
user Profle

‘messageld sendMessage(lindk to conientl)

R -
N Wabing

£

content2= generateStockQuok Graph)
messageli- sendMessage (link to conent?)

Send WAP
push message

Follow link to
content

Figure 4.2: WAP push scenario

7.4 MessageReference structure

Message information.
	Element name
	Element type
	Optional
	Description

	messageIdentifier
	xsd:string
	Yes
	If present, contains a reference to a message stored in the Parlay X gateway. If the message is pure text, this parameter is not present.

	messageService
ActivationNumber
	xsd:string
	No
	Number associated with the invoked Message service, i.e. the destination address used by the terminal to send the message.

	senderAddress
	xsd:anyURI
	No
	Indicates message sender address.

	subject
	xsd:string
	Yes
	If present, indicates the subject of the received message. This parameter will not be used for SMS services.

	priority

	MessagePriority
	No
	The priority of the message: default is Normal.

	message
	xsd:string
	Yes
	If present, then the messageIdentifier is not present and this parameter contains the whole message. The type of the message is always pure ASCII text in this case. The message will not be stored in the Parlay X gateway.

	format
	MessageFormat
	Yes
	Indicates message format type. If not present, MMS message format (default) is assumed.

	DateTime
	xsd:dateTime
	Yes
	Time when message was received by operator

7.8 MessageFormat enumeration

List of message format types.

	Enumeration
	Description

	MMS
	Multimedia messaging service

	WapPush
	Wap Push messaging service

	SMS
	Short messaging Service

	EMS
	Enhanced messaging service, as defined in 3GPP TS 23.040

	SmartMessaging™
	Smart messaging (defines alogo/ringtone format)

	IM
	Instant (immediate) messaging service (Can be short IM or large IM. Underlying network can decide message type from message context)

	IMPagerMode
	Short IM text message, as defined in OMA-TS-SIMPLE_IM-V1_0.

	IMLargeMessage
	Large IM message with multimedia, as defined in OMA-TS-SIMPLE_IM-V1_0.

	IMFileTransfer
	Large IM used for File Transfer, as defined in OMA-TS-SIMPLE_IM-V1_0

	EMail
	E-mail messaging service

8.1 Interface: SendMessage

Operations to send messages and check status on sent messages.

8.1.1 Operation: SendMessage

Request to send a Message to a set of destination addresses, returning a requestIdentifier to identify the message. The requestIdentifier can subsequently be used by the application to poll for the message status, i.e. using getMessageDeliveryStatus to see if the message has been delivered or not. The content is sent as one or more attachments as specified in SOAP Messages with Attachments [7].

addresses may include group URIs as defined in the Address List Management specification. If groups are not supported, a PolicyException (POL0006) will be returned to the application.

Optionally the application can also indicate the sender address (senderAddress), i.e. the string that is displayed on the user's terminal as the originator of the message, the message priority, the message subject, the charging information and a receiptRequest. The receiptRequest which is a SimpleReference structure indicates the application endpoint, interface used for notification of delivery receipt and a correlator that uniquely identifies the sending request. By invoking this operation with the optional receiptRequest part the application requires to receive the notification of the status of the message delivery.

The optional message part receiptRequest is not used (or will be overridden) in case the startDeliveryReceiptNotification operation is used when the application requires to receive delivery receipt notifications. This is to avoid overlapping criteria.

If notification mechanism is not supported by a network a fault (SVC0283) will be returned to the application and the message will not be sent to the addresses specified. Notification to the application is done by invoking the notifyMessageDeliveryReceipt operation at the endpoint specified in receiptRequest.

The correlator provided in the receiptRequest must be unique for this Web Service and application at the time the notification is initiated, otherwise a ServiceException (SVC0005) will be returned to the application.
Optional parameter format is used to indicate the format of a message that is included in the request (at the same time it indicates preferred delivery method for the message). If the parameter is not present, MMS format type is assumed. Enumeration data type MessageFormat includes message format types that can be used with these specifications. If a specified message format is not supported, a ServiceException (SVC0284) will be returned to the application.
8.1.1.1 Input message: SendMessageRequest

	Part name
	Part type
	Optional
	Description

	Addresses
	xsd:anyURI [1..unbounded]
	No
	Destination addresses for the Message.

	SenderAddress
	xsd:string
	Yes
	Message sender address. This parameter is not allowed for all 3rd party providers. Parlay X server needs to handle this according to a SLA for the specific application and its use can therefore result in a PolicyException.

	Subject
	xsd:string
	Yes
	Message subject. If mapped to SMS this parameter will be used as the senderAddress, even if a separate senderAddress is provided.

	Priority
	MessagePriority
	Yes
	Priority of the message. If not present, the network will assign a priority based on an operator policy.

	Charging
	Common:Charging
Information
	Yes
	Charging to apply to this message.

	ReceiptRequest
	Common:Simple
Reference
	Yes
	It defines the application endpoint, interfaceName and correlator that will be used to notify the application when the message has been delivered to terminal or if delivery is impossible. It is not used (or will be overridden) in case the startDeliveryReceiptNotification operation is used.

	Format
	MessageFormat
	Yes
	Includes message format type. If not present, the default is MMS message format type.

NOTE:
The input message contains one or more attachments, with appropriate content as defined by SOAP Messages with Attachments [7].

8.1.1.2 Output message: SendMessageResponse

	Part name
	Part type
	Optional
	Description

	result
	xsd:string
	No
	It is a correlation identifier that is used in a getMessageDeliveryStatus message invocation, i.e. to poll for the delivery status of all of the sent Messages.

8.1.1.3 Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

· SVC0004 - No valid addresses.

· SVC0006 - Invalid group.

· SVC0283 - Delivery Receipt Notification not supported

· SVC0284 – Message format type not supported
PolicyException from [6]:

· POL0001 - Policy error.

· POL0006 - Groups not allowed.

· POL0007 - Nested groups not allowed.
· POL0008 - Charging not supported.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The recommendation is to agree to the proposed changes that will be later included with an official CR to 3GPP.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20080101-I]

_1107096053.doc
[image: image1.emf][image: image2.emf]

MMSC

-X

component

Multimedia Message Web Service

Parlay X I/F

MMSC

MMS-C

MM7 VASP

Interface

Mobile network

Stock Quote

Web Service

Stock Quote

Web Service

……

..

content1

=

get

StockQuote

()

…

..

Retrieve

user Profile

…

.

messageId

=

sendMessage

(

content1

)

…

.

status

=

getMessageDeliveryStatus

(

messageId)

if

status=Message_Waiting

…

.

fi

…

content2

=

get

StockQuote

()

messageId

=

sendMessage

(

content2

)

User

profile

1

2

3

4

5

6

