Doc# OMA-ARC-REST-2009-0026R04-INP_Initial_Cook_Book_draft_for_collection_of_feedback[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-REST-2009-0026R02-INP_Initial_Cook_Book_draft_for_collection_of_feedback.doc
Input Contribution

Input Contribution

	Title:
	OMA ParlayREST Cook Book
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST

	Submission Date:
	25 August 2009

	Source:
	ARC Singapore drafting session

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

OMA ParlayREST Cook Book
R01 incorporates the agreed contribution OMA-ARC-REST-2009-0027
R02 incorporates the following noted contributions:
· OMA-ARC-REST-2009-0028-CR_ParlayREST_addCookBook
· OMA-ARC-REST-2009-0029-CR_ParlayREST_modifyCookBook
· OMA-ARC-REST-2009-0030-INP_added_errorcodes_to_cook_book

· OMA-ARC-REST-2009-0038-INP_ParlayREST_API_guidelines
· Note that REST-0038 had an attachment with additional explanations, which is not included in REST-0026R02
R03 incorporates the following noted contributions:
· OMA-ARC-REST-2009-0039R02-CR_ParlayREST_added_security_to_Cook_Book
· OMA-ARC-REST-2009-0043R02-INP_RESTful_API__Access_use_cases
· OMA-ARC-REST-2009-0044R02-CR_ParlayREST_added_URI_Length_Limitation_Concern_etc_to_Cook_Book
· OMA-ARC-REST-2009-0045-INP_ParlayREST_Guidelines_Goals_and_Title
· OMA-ARC-REST-2009-0046R01-INP_ParlayREST_Guidelines_Operations_and_Resources_
· OMA-ARC-REST-2009-0048R01-INP_ParlayREST_Guidelines_Versioning
· OMA-ARC-REST-2009-0049-INP_ParlayREST_Guidelines_Callback
R04 incorporates the following noted contributions:
· OMA-ARC-REST-2009-0047R01-INP_ParlayREST_Guidelines_Body_Format
2 Summary of Contribution

OMA ParlayREST Cook Book, created based on input contribution OMA-ARC-REST-2009-0021.
This is the first iteration. Feedback during the ARC Singapore meeting needs to be incorporated and some cleanup to the Intro section is required. It is made available as new input contribution, so that ARC members can propose revisions.

The objective is to create an OMA ParlayREST Cook Book to aid ARC members to produce inputs for the ParlayREST WID.
Disclaimer: input contribution REST-0026 and its revisions will serve as a receptacle in which we collect all Cook Book proposals. This collection will have to be reviewed and reconciled, so that we eventually end up with an agreed and consistent set of guidelines.
3 Detailed Proposal

Guidelines for ParlayREST API specifications
1 Introduction

This document is OMA ParlayREST cookbook to provide the guidelines for defining REST bindings for Parlay X. This cookbook includes general key principles that are used in mapping the Parlay X SOAP bindings to REST bindings.

1.
2.
3.
4.

2 Principles for defining the REST bindings for Parlay X web services
1. A key guideline is that REST APIs are intended for use by typical web developers. These developers are assumed not to have a detailed understanding of telecoms services and will need to be able to leverage the OMA specified REST services as simply as they would leverage services from major web players, service providers or platforms.

Therefore, OMA specified REST APIs should be consistent with other popular REST services provided on the Web. Wherever technically feasible, REST APIs would be used by applications acting on behalf of the end user (e.g. web site, portal), other specialized applications (sms campaign managers, various notification services etc) or applications located on the end user device (e.g. mobile phone, dvd player). The cases where the OMA specified REST APIs specified do not serve well a particular client environment have to be identified, analyzed, documented and addressed (in the same Work Item, or a different Work Item, as deemed appropriate).
2. As far as possible, when the goal is to use a REST architectural style in transforming APIs previously bound to a different set of protocols, the operations available through REST APIs should provide an equivalent level of functionality as was provided by the original set of APIs, and should use similar data elements (when applicable accordantly with the chosen REST architectural style). In the particular case of ParlayREST, the operations made available through ParlayREST API should provide an equivalent level of functionality to the ParlayX SOAP API subset selected for such transformation, and should use similar data elements (when applicable accordantly with the chosen REST architectural style).
3. REST API specifications should conform to the REST & HTTP practices, in particular:
a. Services should be defined in terms of resources that are addressable as URIs.

b. Use of nouns in URIs is recommended over the use of verbs
· URIs identify resources
· HTTP methods identify Operations
· Use HTTP verbs, i.e. POST, GET, PUT, DELETE for CRUD (Create, Read, Update, Delete) operations, for all interfaces for which CRUD is a good fit , using the following mapping:
· POST maps to Create. Note: In certain cases, POST may be used when the operation cannot be mapped to a CRUD operation. For example transformational update of the resource space is usually difficult to map to a CRUD operation (e.g. batch update, etc).
· GET maps to Read. GET must be safe (i.e. it cannot change a resource), and must be idempotent (i.e. the outcome of calling it multiple times is the same as calling it once - unless somebody else changed the resource between calls)
· PUT maps to a complete Update of the resource, and must be idempotent.
· DELETE maps to Delete, and must be idempotent
· Use standard HTTP Status codes in responses for both successful and failed operations. In the case of a failed operation additional status information (if available) will be returned in the body of the response
4. Content type used in response message body must match content type used in request body. At least XML and JSON content types should be supported, with other content types optionally supported on a case-by-case basis (e.g. www-form-urlencoding may be supported to GET simple name-value pairs).
5. Content type used is established using the following methodology:
a. In cases where content negotiation is not supported, the content type of the request and response message body will be indicated in the URL path. At least one of two mechanisms must be supported :
· format=content type (e.g. format=xml)
· an extension on the terminating "file" portion of the URL path (e.g. .json or .xml). This mechanism is advantageous in the cases where a client may decide to “save as” the response in a file of the type indicated by the extension.
b. In cases where content negotiation is supported, the Accept header must be used for content negotiations.

c. In cases where both Accept header as well as an explicit indication of the content type in the URL path are present, then the latter indication should take priority over the first (e.g. the use of “format=xml” or “file.xml” overwrite the content type present in an Accept header).

6. It is recommended to specify REST API versioning by inserting the API version in the resource URI path (e.g. a 2.0 version is a completely separate set of resources/endpoints from the previous 1.0 version).

a. Minor API revisions are backwards compatible (in general, unknown parameters should be ignored for forwards compatibility) and major revisions are a distinct set of paths.

b. If a change is made to the XML request/response format that is not backwards compatible, the major version number must be incremented, otherwise the minor version number is incremented.

c. The URI only includes the major version number in the path.

d.
In the case that the API version is not present in the URL path the server will assume that the version is the latest supported by the implementation.

Example: If service X supports version 1.0, 1.1, .. and 2.0, 2.1, etc, then you use http://example.com/service/1/smsservice for the 1.0, 1.1, 1.x version and
http://example.com/service/2/smsservice for the 2.0, 2.1, 2.x version of the smsservice.
7. Callback APIs specification and client implementations of the callback APIs have to comply with the remainder set of guidelines in this cookbook. Wherever necessary, callback functionality (i.e. the ability for the enabler to notify the application of particular events subscribed to) will be supported in the most appropriate manner consistent with the general REST architectural style chosen.
a. For example, in the case when the client resides in a server-like environment a request URL may be passed by the client on which it can be notified of particular events that the client subscribed to.
b. In all cases, other approaches may be followed on a case-by-case basis, using an analysis of specific client access particularities.
Editors Note: ParlayREST to analyze how to address recommendations resulting from an analysis of the different client access cases, in particular from the perspective of handling notifications and security considerations. In essence, eventually ParlayREST needs to decide whether all the different access cases are fulfilled by ParlayREST WID and how, or whether ParlayREST will make recommendations to other enablers on how to address any specific cases, or whether ParlayREST will simply decide all the particular cases are out-of-scope for ParlayREST and as a result will not address them in any specific way.
8.
9.

10. The examples provided to illustrate the REST bindings include only those HTTP elements that are required to understand the operation. Other HTTP elements, e.g. headers such as Accept and Content-Length, have been omitted from the examples for readability purposes but would of course be required in a real operation.
11. As far as possible, the REST operations and their signatures (e.g. parameters, parameter names, etc) should match those of the SOAP operations. However, it is more important that the REST operations and parameters are easy to understand and use for web developers.

For example, in defining a REST binding for the getReceivedSMS operation, the smsServiceActivationNumber parameter was renamed to destination in order to make it easier for developers to understand.

12.
a.
b.
c.
·
·
·
·
·
13.

14.
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

c.
d.

e.
f.
g.

d.
e.

15.

16.

17.

18. The example in the REST interface description should avoid using real host and real company name. For example the host in the example should use “www.example.com” instead of “www.carrier.com” and “myapp.developer.com”
19. There are some notes repeated in the interface doc again and again. There should be a common section to describe the common notes. For example, the description of parameter URL
Note 2: as specified in [PARLAYRESTTS] all parameters MUST be URL encoded, therefore the endUserId and description parameters in the above example would be encoded as endUserId=tel%3A%2B447990123456 and description=Some%20billing%20information. They have been left unencoded for readability purposes.
Note: as specified in [PARLAYRESTTS] all parameters MUST be URL encoded, therefore the notifyURL parameter in the above example would be encoded notifyURL=http%3A%2F%2Fmyapp.developer.com%2Fvoting_mms%F. It has been left unencoded for readability purposes.

20. For the convenience of the reader, the response example should use the same format. For example:
HTTP Status: 201 Created

XML output:

Content-Type: text/xml

<ReserveResponse version=”1.0” reservationId=”1234”/>

JSON output:

Content-Type: text/json

{version: "1.0",reservationId:"1234"}
Or use the Parameter table：
	HTTP Status
	Content-Type
	Output

	201 Created
	text/xml
	<ReserveResponse version=”1.0” reservationId=”1234”/>

	201 Created
	text/json
	{version: "1.0",reservationId:"1234"}

21. The column of “type” in request/response description is necessary, because with the help of “type”, the developer will understand how to use the parameter better. To be consistent , the recommended format should be：
	Parameter
	Type
	Optional
	Description

	version
	xsd:decimal
	No
	API version

	contentIdentifer
	xsd:string
	No
	Globally unique ContentIdentifier, generated by Content Management Web Service

	ContentMetaData
	ContentData
	No
	Content description information about content location, content name, content description, content provider, content version, keywords, IngestionRequired and IsDerivative.

	ContentMediaData
	ContentMedia
	Yes
	Data related to content media, including content type, duration and file size.

	ContentControlData
	ContentControl
	Yes
	Data related to content control, including content access restrictions, content charging and content validity.

	contentState
	xsd:String
	Yes
	visible, invisible, retired

22. The complex data types and enumeration types defined as parameters of the REST operations should be specified with the detail description of the REST binding.
For example, the BalanceExpireDetails type and AccountChangedEvent type are described in the Account Management REST binding specification based on the XML schema data type definitions in the Parlay X specifications.

 - BalanceExpireDetails structure
	Element Name
	Element Type
	Optional
	Description

	balanceType
	xsd:string
	No
	Identifies the type of balance. End user accounts may have one or more balances for different types of usage (e.g Voice, SMS, gaming etc)

	date
	xsd:dateTime
	Yes
	It is the date the identified balance will expire. Do not specify if the balance does not expire

- AccountChangedEvent enumeration
	Enumeration value
	Description

	Charge
	A balance associated with the account is charged

	Recharge
	A balance associated with the account is recharged

	AccountLow
	A balance associated with the account is below the balance threshold

23. The REST binding operations are need to be based on the latest version of 3GPP TS 29 series, at present, release 8.

24. Fault definitions of the REST binding should follow those of the Parlay X SOAP binding and need to be specified in the individual REST binding description respectively.

For example, the REST binding of the voucherUpdateRequest operation has the following fault definitions in the description. These faults are specified as the error messages following the HTTP status code.

- Service Exceptions, for example:

. SVC0001 - Service error

. SVC0002 - Invalid input value

. SVC0250 - End user authentication failed

. SVC0251 - Unknown voucher
- Policy Exceptions, for example:

. POL0001 - Policy error

. POL0220 - Vouchers not accepted
25. Each ParlayREST API should be specified in a resource-oriented manner. Each specification of ParlayREST API has layout as follows:
· Definition of resources which are used in the API

· Data type definition, such as complex data type and enumeration type

· Definition of operations(HTTP methods) for each resource

· Description of the operation

· Request

· Response

· Referenced faults

26. The name of the base SOAP binding operation need to be specified in the description of the respective REST binding operation for the better understanding and consistency.

For example, the description may be like “This REST operation is based on the getBalance SOAP operation to get account balances [3GPP 29.199-7].”
27. The definitions of common things such as data types and common faults should be included in the OMA_TS_ParlayREST_Common document.
28. The error response from an OMA REST server should return additional information, in addition to the standard HTTP status codes returned to the requestor. The information should be self-contained, so the client does not need to save any state information. After receiving and interpreting a request message, a server responds with an HTTP response message, as defined in RFC2616.

Response
= Status-Line

*((general-header

 | response-header

 | entity-header) CRLF)

CRLF

[message-body]

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

In the standard HTTP protocol, the defined types of response-headers are quite limited, and not suitable for underlying error messages. The specification allows extensions of these headers, but not all HTTP clients might interpret them, therefore if desirable, the underlying error code, should be returned in the message body, and match the output parameter in the request.

If the RESTful API is implemented on top of a Parlay or Parlay-X gateway or some other gateway, the gateway returns Service exceptions or Policy exceptions. The exceptions from the gateway contain a Message identifier, with prefix SVC or POL, Message text, with replacement variables marked with %#, Variables to substitute into Text string, which then could be returned in the message-body. In addition parts of the requestor string could be returned, so that the client can be stateless.

Example with output=XML:

HTTP Status: 400 Bad Request

Content-Type: text/xml

Message-body:

<?xml version="1.0" ?>

<error>

 <Request-Line>

 <Method>GET</method>

 <Request-URI>/location?version=1.0&address=tel:+447990123456</Request-URI>

 <host>www.example.com</host>

 <HTTP-Version>HTTP/1.1</HTTP-Version>

 </request-line>

 <type>org.csapi.schema.parlayx.common.v4_0.ServiceException</type>

 <message-id>SVC0002</message-id>

 <message>Invalid input parameter</message>

 <link>http://www.example.com/terminal/location_parameters.html</link>

</error>

Example with output=JSON:

HTTP Status: 400 Bad Request

Content-Type: text/json
Message-body:

"error": [

 {

 "Request-Line": [

 "Method": "GET"

 "Request-URI"; "/location?version=1.0&address=tel:+447990123456",

 "HTTP-Version": "HTTP/1.1",

 "host": "www.example.com"

],

 "type":"org.csapi.schema.parlayx.common.v4_0.ServiceException",

 "message-id": "SVC0002",

 "message: "Invalid input parameter",

 "link": "http://www.example.com/terminal/location_parameters.html"

 }]
Or using a parameter table

	HTTP Status
	Content-Type
	Response-body

	400 Bad request
	text/xml
	<?xml version="1.0" ?>

<error>

 <Request-Line>

 <Method>GET</method>

 <Request-URI>/location?version=1.0&address=tel:+447990123456</Request-URI>

 <host>www.example.com</host>

 <HTTP-Version>HTTP/1.1</HTTP-Version>

 </request-line>

 <type>org.csapi.schema.parlayx.common.v4_0.ServiceException</type>

 <message-id>SVC0002</message-id>

 <message>Invalid input parameter</message>

 <link>http://www.example.com/terminal/location_parameters.html</link>

</error>

	400 Bad request
	text/json
	"error": [

 {

 "Request-Line": [

 "Method": "GET"

 "Request-URI"; "/location?version=1.0&address=tel:+447990123456",

 "HTTP-Version": "HTTP/1.1",

 "host": "www.example.com"

],

 "type":"org.csapi.schema.parlayx.common.v4_0.ServiceException",

 "message-id": "SVC0002",

 "message: "Invalid input parameter",

 "link": "http://www.example.com/terminal/location_parameters.html"

 }]

29.
30.
31.
a.
b.
i.
ii.
c.
i.
ii.
iii.
iv.
d.
32.
e.
f.
g.
h.
i.
j.
k.
33.
34. Common data types should be reused (consistently) across multiple APIs (common XML schema).

The API definition should contain a column to indicate the Data Type of the parameter: such as "xsd:int", "xsd:string", etc.

Examples: terminal identification, phone number, address
35. When GET is used, complex data types parameters should be broken out into individual “url encoded” simple parameters.

Note: this guideline should also followed in the case when clients have implemented POST with "x-www-form-urlencoding" content type of the request body.

36.
l.
m.
n.

37.

38.
o.
p.
39. Error and status codes will match ParlayX (i.e. should have the same meaning). Proprietary extensions are supported.

FFS: format of the error message
40. If multiple attachments need to be sent as part of the client request or callback request from the server, then MIME Content-Type multipart/related should be used.
41. APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability.

Note: Client and Server should ignore unrecognized parameters and data elements for forward compatibility reasons.
42. Examples provided to illustrate the REST APIs should include only those HTTP elements that are required to understand the operation. Other HTTP elements, e.g. headers such as Accept and Content-Length, may be included if needed.
43. All URLs in the API specifications are for illustration purposes only. Particular implementation of the API can use different URLs structure and clients have to discover right URLs to use in runtime (no hard coding URLs into the client code) with the exception of the initial (home/starting URLs). This is needed to ensure client portability between different implementations of the API by different vendors. It would also allow server implementation to evolve without requiring clients to adopt new URL structure or hierarchy. Clients are free to cache URLs for the future use according to general HTTP/HTML practices. In other words: they don’t have to start from the API home page all the time.

44. If a message contains sensitive data, such as passwords, account numbers, and card numbers (as in account management and payment APIs), security consideration to protect these information is required.
Editors Note: The mechanisms for protecting sensitive data will be decided in the context of a specific API and added to the Cook Book at that time.
45. Before the detail description of each ParlayREST API, the resources which are used by the API should be defined and explained about their meaning and/or usage.

In addition, the resource definition needs to include overall structure of resources, the relationship among resources and some guidelines together with use cases like sequence diagrams in original ParlayX SOAP API specifications for clear understanding. It may be needed to describe their usage with respect to the original SOAP operations for those who are used to the ParlayX SOAP operations.

Especially, if a resource name is newly identified instead of being extracted from original ParlayX operations, the relationship between the newly defined resource name and ParlayX SOAP API needs to be described. In this case, use case diagram which depicts the resource and operations applied to it may be included for clearer understanding.

The resource description included in each ParlayREST API specification contains the following information:
· Definition of resources identified
· Overall structure of resources if several resources are used by the API
· Relationship among those resources
· Use cases of the resources

46. The HTTP protocol does not place any a priori limit on the length of a URI according to RFC2616. However, some old implementations have a limitation, that is, 256 bytes, while other implementations have at least 4000 characters limitation. GET-based forms with a URI above 255 bytes may get response including 414 (Request-URI Too Long) status code. In that case, we would consider using POST method instead of GET on a case by case basis.
The following Uses Cases should be addressed:

1. REST client executed on a Server machine

[image: image1]
The RESTful API exposed by Server Machine deployed on the Network Operator Service Layer Domain, may be accessed by a client application installed on a Server resident on the Service Provider Infrastructure.
2. REST client executed on a Mobile device

[image: image2]
The RESTful API exposed by Server Machine deployed on the Network Operator Service Layer Domain, may be accessed by a client application resident on an end user device.
3. REST client executed on a Fixed device

[image: image3]
The RESTful API exposed by Server Machine deployed on the Network Operator Service Layer Domain, may be accessed by a client application resident on a fixed device connected to the Operator.
Editors Note: Deeply analyze during the Cook Book activities which are the issue, best practice, expected behaviour related the usage of REST API in above cases.
E.g: Request/Response vs Subscribe/asynchronous notification mechanism, security issue, always-on vs on-demand connection, native client vs browser/widget client etc
Editors Note: If necessary add the analysis result to TS common part.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To be NOTED and collect further feedback.
*:request/response �or subscribe/notify

Response *

Request *

REST

Client

Service Provider

Service Layer

REST

API z

REST

API b

REST

API a

Network Operator Domain

*:request/response �or subscribe/notify

Response *

Request *

REST

Client

EndUser�Mobile�Device

Service Layer

REST

API z

REST

API b

REST

API a

Network Operator Domain

*:request/response �or subscribe/notify

Response *

Request *

REST

Client

EndUser fixed Device

Service Layer

REST

API z

REST

API b

REST

API a

Network Operator Domain

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 12 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

