Doc# OMA-ARC-REST-2009-0038-INP_[image: image1.jpg]ParlayREST_API_guidelines
Input Contribution

Doc# OMA-ARC-REST-2009-0038-INP_ParlayREST_API_guidelines.doc
Input Contribution

Input Contribution

	Title:
	ParlayREST API guidelines
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC, REST AHG

	Submission Date:
	Oct. 3 2009

	Source:
	Michael Brenner, Alcatel-Lucent, mrbrenner@alcatel-lucent.com

	Attachments:
	Guidelines for ParlayREST comparison
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	 n/a

1 Reason for Contribution

A contribution with ParlayREST API guidelines.
2 Summary of Contribution

This contribution is proposing to adopt a set of guidelines specifically for OMA ParlayREST APIs specifications, in line with industry REST and HTTP practices. It is proposed to name them “Guidelines for ParlayREST API specifications” to make it obvious that these are not generic REST guidelines, but the ARC interpretation on how we apply REST architectural style and the use of HTTP in the particular ParlayREST WID context (the debate about how pure REST architectural style guidelines should read may be endless). Since the initial ARC contribution 21, then 26 served as a good basis for starting this work, we have also attached a comparison table against those initial guidelines in an attachment.
3 Detailed Proposal

Guidelines for ParlayREST API specifications
The following is a set of guidelines to be followed in the process of creating a consistent set of ParlayREST API:
1. REST APIs are intended for use by typical web developers. These developers are assumed not to have a detailed understanding of telecoms services and will need to be able to leverage the REST services as simply as they would leverage services from say Google or Amazon.
Therefore, REST APIs should be consistent with other popular REST services provided on the Web.

Wherever technically feasible, REST APIs would be used by two types of clients: applications located on the end user device (mobile phone, dvd player, etc) or by server application acting on behalf of the end user (web site, portal, service, etc).
2. As far as possible, the operations available through REST APIs should provide the same level of functionality as it is currently available through ParlayX SOAP APIs. All data elements necessary to provide functionally equivalent to ParlayX SOAP APIs should be provided.
3. REST API definitions should conform to the REST & HTTP practices, namely:
a. Services should be defined in terms of resources that are addressable as URIs
b. The use of nouns in URIs is recommended over the use of verbs
i. URIs identify resources
ii. http methods are used to identify Operations (see c.)
c. use HTTP verbs, i.e. POST, GET, PUT, DELETE for CRUD operations (Create, Read, Update, Delete), for all interfaces for which CRUD is a good fit , using this mapping:
i. POST maps to Create. Note: In certain cases, POST may be used when the operation cannot be mapped to a CRUD operation. For example transformational update of the resource space is usually difficult to map to a CRUD operation (e.g. batch update, etc).
ii. GET maps to Read. GET must be safe (i.e. it cannot change a resource), and must be idempotent (i.e. the outcome of calling it multiple times is the same as calling it once - unless somebody else changed the resource between calls)
iii. PUT maps to a complete Update of the resource, and must be idempotent.
iv. DELETE maps to Delete, and must be idempotent
d. Use standard HTTP Status codes in responses for both successful and failed operations

4. XML formatted body of HTTP request and response should be supported, but other formats such as JSON or "x-www-form-urlencoding" may also be supported if needed.

Notes:

a. Content-type header should identify the format being used in the request and the response. See #8 for more info on controlling output format.

b. Use XML namespaces in requests and responses and don't change the namespace used across versions of the API.

c. As much as possible maintain backwards compatibility in the format.

d. Keep as much as possible the meaning/processing of elements and attributes constant across versions.

e. Unknown markup should be ignored by clients and servers for forwards compatibility (See also #13).

f. For Further Study (FFS) to decide on whether to reuse the Parlay X namespaces once the new format is defined. Reuse should only occur if the new format is compatible with the Parlay X format.

g. FFS whether version (major+minor) is indicated in the root elements version attribute.
5. In request and response bodies resources should be referred using full URI rather then requiring client to construct URIs from provided identifiers.

New resource creation should result in the 201 response with resource URI specified both in the response body and location header.

6. Common data types should be reused (consistently) across multiple APIs (common XML schema).

The API definition should contain a column to indicate the Data Type of the parameter: such as "xsd:int", "xsd:string", etc.

Examples: terminal identification, phone number, address
7. When GET is used, complex data types parameters should be broken out into individual “url encoded” simple parameters.

Note: this guideline should also followed in the case when clients have implemented POST with "x-www-form-urlencoding" content type of the request body.

8. HTTP GET and POST reply output format should be determined by:

a. An extension on the terminating "file" portion of the URL path (either .json or .xml)

b. If the URL extension is missing then use the Accept header to perform content negotiation.
c. If both URL extension and Accept header are present, the URL extension shall take precedence over the Accept header.
Note: Rather then returning content immediately redirect should be used to point to the appropriate URI of the chosen format. Include "Vary: Accept" header in the response to tell caches that the response changes based on the value of the Accept header.

http://example.com/resource.xml gives you the XML version of the resource and http://example.com/resource.json gives you the JSON version.

http://example.com/resource would redirect to http://example.com/resource.xml or http://example.com/resource.json depending on the value of Accept: header.

9. REST API versioning:

API version should be put it in the resource URI path i.e. the 2.0 version is a completely separate set of resources/endpoints from the 1.0 versions.

Minor API revisions are backwards compatible (in general, unknown parameters should be ignored for forwards compatibility) and major revisions are a distinct set of paths.

If a change is made to the XML request/response format that is not backwards compatible, the major version number must be incremented, otherwise the minor version number is incremented.

The URI only includes the major version number in the path.

Example: If service X supports version 1.0, 1.1, .. and 2.0, 2.1, .. then you use http://example.com/service/1/smsservice for the 1.0, 1.1, 1.x version and http://example.com/service/2/smsservice for the 2.0, 2.1, 2.x version of smsservice.

10. Callback APIs specification and client implementations of the callback APIs have to comply with the set of guidelines in this cookbook.

Notes:
a. Client-to-server scenarios requiring notifications to be sent towards end user clients may need to rely on additional layer between Parlay REST APIs and end user device. This is out of scope for ParlayREST Work Item.
b. Server should assume that client is accepting same version of the API that client used when callback (notification) request was created.
11. Error and status codes will match ParlayX (i.e. should have the same meaning). Proprietary extensions are supported.

FFS: format of the error message
12. If multiple attachments need to be sent as part of the client request or callback request from the server, then MIME Content-Type multipart/related should be used.
13. APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability.

Note: Client and Server should ignore unrecognized parameters and data elements for forward compatibility reasons.
14. Examples provided to illustrate the REST APIs should include only those HTTP elements that are required to understand the operation. Other HTTP elements, e.g. headers such as Accept and Content-Length, may be included if needed.
15. All URLs in the API specifications are for illustration purposes only. Particular implementation of the API can use different URLs structure and clients have to discover right URLs to use in runtime (no hard coding URLs into the client code) with the exception of the initial (home/starting URLs). This is needed to ensure client portability between different implementations of the API by different vendors. It would also allow server implementation to evolve without requiring clients to adopt new URL structure or hierarchy. Clients are free to cache URLs for the future use according to general HTTP/HTML practices. In other words: they don’t have to start from the API home page all the time.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The recommendation is to review the guidelines provided in the Detailed Proposal and agree them as the baseline for “Guidelines for specifying ParlayREST APIs”. ARC WG could decide to:

1. Keep them as an internal ParlayREST working document

2. Agree them for inclusion in an Appendix to the planed ParlayREST Common TS, or a different document belonging to the OMA ParlayREST enabler release.
3. or start with 1, then decide later on 2.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

