	Index
	From Contribution 26
	Proposed alternativeF From Contribution 38

	Comments

	Title
	Principles Used in Defining the REST Bindings for OneAPI
	Guidelines for ParlayREST API specifications

	We are creating a set of guidelines specifically for the current ParlayREST APIs, and not long-term general REST principles guidelines. It is both debatable and possibly misleading to call those REST principles or guidelines. For example, the notion that we need to stick to operations and parameters as defined for SOAP bindings is itself contradicting a pure REST approach. “REST APIs” is used instead of “REST bindings” in the proposed guidelines – since the latter implies a pure mapping exercise with NO CHANGES, which may not be consistent with the use of REST (some changes in the API may be both inevitable and beneficial).

	0.
	GSMA ACCESS’ objective in submitting the REST documents to the OMA Boston meeting was to help expedite the definition of REST bindings. The group recognizes that these documents are a first cut at the bindings and that there is still significant work to do to complete the specifications. However, it was hoped that these REST documents would provide a good start to the REST work in OMA ARC.
	
	There is no equivalent in our proposal – since this is an explanation of why GSMA ACCESS created their principles. We have already agreed in Singapore that we would create a set of guidelines (Cookbook). However, #1 could be re-worded to become a paragraph explaining the role of the guidelines.

	1.
	A key principle is that the REST bindings are intended for use by typical web developers. These developers are assumed not to have a detailed understanding of telecoms services and will need to be able to leverage the REST services as simply as they would leverage services from say Google or Amazon.
Therefore, the REST bindings need to be simple to understand and use for typical web developers, and should be consistent with other popular REST services provided on the Web.
	REST APIs are intended for use by typical web developers. These developers are assumed not to have a detailed understanding of telecoms services and will need to be able to leverage the REST services as simply as they would leverage services from say Google or Amazon.
Therefore, REST APIs should be consistent with other popular REST services provided on the Web.
Wherever technically feasible, REST APIs would be used by two types of clients: applications located on the end user device (mobile phone, dvd player, etc) or by server application acting on behalf of the end user (web site, portal, service, etc).
	The proposed alternative adds clarity and context. It will help think through the APIs knowing what type of application may use them.

	2.
	As far as possible, the REST operations and their signatures (e.g. parameters, parameter names, etc) should match those of the SOAP operations. However, it is more important that the REST operations and parameters are easy to understand and use for web developers.

For example, in defining a REST binding for the getReceivedSMS operation, the smsServiceActivationNumber parameter was renamed to destination in order to make it easier for developers to understand.
	As far as possible, the operations available through REST APIs should provide the same level of functionality as it is currently available through ParlayX SOAP APIs. All data elements necessary to provide functionally equivalent to ParlayX SOAP APIs should be provided.
	We think we should not impose a very strict constraint on perfectly matching SOAP APIs, since this will make it almost impossible to claim that we create REST APIs.
We also are recommending against including an example on a specific API that has not been agreed yet. A specific example could be added once the 1st API is agreed, on the merit of the general guidelines.

	3.
	Since REST is being used, the REST definitions would conform to the usual REST (HTTP) practices, namely

· Services should be defined as entities/resources and URLs defined accordingly, i.e. using nouns not verbs. Messages, subscribers, calls, etc become resources. For example, the SMS service would be defined as /<path>/sms as opposed to say /<path>/sendsms.
· Use HTTP verbs, i.e. POST, GET, PUT, DELETE, for all interfaces, using this mapping:
· POST maps to Create
· GET maps to Read. GET must be idempotent, i.e. it cannot change a resource.
· PUT maps to Update
· DELETE maps to Delete

- Use standard HTTP Status codes in responses for both successful and failed operations
	REST API definitions should conform to the REST & HTTP practices, namely:
- Services should be defined in terms of resources that are addressable as URIs
- The use of nouns in URIs is recommended over the use of verbs
· URIs identify resources
· http methods are used to identify Operations (see c.)
- use HTTP verbs, i.e. POST, GET, PUT, DELETE for CRUD operations (Create, Read, Update, Delete), for all interfaces for which CRUD is a good fit , using this mapping:
· POST maps to Create. Note: In certain cases, POST may be used when the operation cannot be mapped to a CRUD operation. For example transformational update of the resource space is usually difficult to map to a CRUD operation (e.g. batch update, etc).
· GET maps to Read. GET must be safe (i.e. it cannot change a resource), and must be idempotent (i.e. the outcome of calling it multiple times is the same as calling it once - unless somebody else changed the resource between calls)
· PUT maps to a complete Update of the resource, and must be idempotent.
· DELETE maps to Delete, and must be idempotent
- Use standard HTTP Status codes in responses for both successful and failed operations

	REST is not equivalent to HTTP, and these guidelines include best practices from both.

CRUD may not be the best fit for everything we end up specifying.

	4.
	Parameters in request operations would be expressed as name-value pairs, e.g. address=tel:+447990123456.

In our examples, we showed all parameters encoded as query strings attached to the URL, e.g. /<path>/sms?address=tel:+447990123456, but it is expected that this would only be the case for GET operations. For all other operations, e.g. POST, it is expected that the parameters would be included (still as name-value pairs) in the body of the HTTP message encoded as form data, e.g.

POST /<path>/sms HTTP/1.1

Host: www.example.com

Content-type: application/x-www-form-urlencoded

version=1.0&address=tel:+447990123456& address=tel:+447990121212&
message=Hello%20World&

correlator=123456&

notifyURL=http://myapp.developer.com/deliveryreceipt&senderName=Bob
	XML formatted body of HTTP request and response should be supported, but other formats such as JSON or "x-www-form-urlencoding" may also be supported if needed.

Note 1: Content-type header should identify the format being used in the request and the response.

Note 2: See #8 for more info on controlling output format.

Note 3: Use XML namespaces in requests and responses and don't change the namespace used across versions of the API.

Note 4: As much as possible maintain backwards compatibility in the format.

Note 5: Keep the meaning/processing of elements and attributes constant across versions.

Note 6: Unknown markup should be ignored by clients and servers for forwards compatibility (See also #13).

Note 7: FFS to decide on whether to reuse the Parlay X namespaces once the new format is defined. Reuse should only occur if the new format is compatible with the Parlay X format.

Note 8: FFS whether version (major+minor) is indicated in the root elements version attribute.
	The proposed alternative is the broadly accepted method in the industry, and a consistent guideline for all APIs, request and responses, is desirable.

	5.
	No equivalent
	In request and response bodies resources should be referred using full URI rather then requiring client to construct URIs from provided identifiers.

New resource creation should result in the 201 response with resource URI specified both in the response body and location header.

Editor’s note: the above should be revisited after discussing specific APIs.

	

	6.
	No equivalent
	Common data types should be reused (consistently) across multiple APIs (common XML schema).

The API definition should contain a column to indicate the Data Type of the parameter: such as "xsd:int", "xsd:string", etc.
Examples: terminal identification, phone number, address
	

	7.
	Parameters in the SOAP binding that are complex types are broken out into individual parameters in the REST binding. For example, the common:SimpleReference type consists of

· endpoint

· interfaceName

· correlator

In the example above, these are broken out into

· correlator and

· notifyURL

Note also in this case that since we are no longer using a common complex type (SimpleReference), we removed the interfaceName parameter and we renamed endpoint to notifyURL since that is a clearer description of its purpose. Again, the focus was on making the API as easy as possible for developers to understand and use.
	When GET is used, complex data types parameters should be broken out into individual url encoded simple parameters.

Note: this guideline should also followed in the case when clients have implemented POST with "x-www-form-urlencoding" content type of the request body.
	

	8.
	At least XML and JSON content types should be supported. The examples in the REST bindings illustrate the use of XML, but it is assumed that the REST binding specifications would provide JSON examples also.
It was assumed that the default output format would be XML and that JSON could be requested in the normal manner used on the Web, i.e. by adding the parameter output=json.
	HTTP GET and POST reply output format should be determined by:

a. An extension on the terminating "file" portion of the URL path (either .json or .xml);

b. If the extension is missing then use the Accept header to perform content negotiation.

c. If both URL extension and Accept header are present, the URL extension shall take precedence over the Accept header.

Note: Rather then returning content immediately redirect should be used to point to the appropriate URI of the chosen format. Include "Vary: Accept" header in the response to tell caches that the response changes based on the value of the Accept header.

http://example.com/resource.xml gives you the XML version of the resource and http://example.com/resource.json gives you the JSON version.

http://example.com/resource would redirect to http://example.com/resource.xml or http://example.com/resource.json depending on the value of Accept: header.
	Our proposed guideline 6 is in line with the principle 8 from contribution 26 for the 1st paragraph, while our “new” principle 8. adds more clarity for handling responses – as an alternative to the 2nd paragraph in principle 8.

	9.
	An explicit versioning parameter is included in each operation, e.g. version=1.0. This tells the server (i.e. recipient of the operation) exactly which version of the service the client (i.e. requester) wants to use. If the server does not support the requested version, it can reject the request indicating that the version is not supported.

Note:

It is assumed that the version would apply at the overall service level not at the individual interface or operation level. For example, a client could not send an SMS using version=1.0 but then query for delivery status using version=1.1.

Also, consideration needs to be given as to which HTTP Status code is used to indicate that the version is not supported by the server. It is assumed that an existing or additional 4XX status code would be used.
	REST API versioning:

API version should be put it in the resource URI path i.e. the 2.0 version is a completely separate set of resources/endpoints from the 1.0 versions.

Minor API revisions are backwards compatible (in general, unknown parameters should be ignored for forwards compatibility) and major revisions are a distinct set of paths.

If a change is made to the XML request/response format that is not backwards compatible, the major version number must be incremented , otherwise the minor version number is incremented.

The URI only includes the major version number in the path.

Example: If service X supports version 1.0, 1.1, .. and 2.0, 2.1, .. then you use http://example.com/service/1/smsservice for the 1.0, 1.1, 1.x version and http://example.com/service/2/smsservice for the 2.0, 2.1, 2.x version of smsservice.
	

	10.
	Callbacks would be supported, i.e. the ability for the enabler to notify the application of particular events. Typically, in the request the client provides a URL on which it can be notified of particular events.

For example, when sending an SMS the client would provide a notifyURL parameter specifying the URL to which to send delivery receipts notifications, e.g. notifyURL=http://myapp.developer.com/deliveryreceipt.
	Callback APIs specification and client implementations of the callback APIs have to comply with the set of guidelines in this cookbook.

Notes:
1. Client-to-server scenarios requiring notifications to be sent towards end user clients may need to rely on additional layer between Parlay REST APIs and end user device. This is out of scope for ParlayREST Work Item.

2. Server should assume that client is accepting same version of the API that client used when callback (notification) request was created.

	

	11.
	
	Error and status codes will match ParlayX (should mean the same thing). Proprietary extensions are supported.

FFS: format of the error message

	

	12.
	No equivalent.
	If multiple attachments need to be sent as part of the client request or callback request from the server, then

MIME Content-Type multipart/related should be used.
	

	13.
	No equivalent.
	APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability.

Note: Client and Server should ignore unrecognized parameters and data elements for forward compatibility reasons.
	

	14.
	The examples provided to illustrate the REST bindings include only those HTTP elements that are required to understand the operation. Other HTTP elements, e.g. headers such as Accept and Content-Length, have been omitted from the examples for readability purposes but would of course be required in a real operation.
	Examples provided to illustrate the REST APIs should include only those HTTP elements that are required to understand the operation. Other HTTP elements, e.g. headers such as Accept and Content-Length, may be included if needed.
	Not sure we would need to keep this recommendation, or rather transform it into a note – once the guidelines are agreed. It seems to be more a recommendation for what how to make the guidelines themselves more readable.

	15.
	No equivalent.
	All URLs in the API specifications are for illustration purposes only. Particular implementation of the API can use different URLs structure and clients have to discover right URLs to use in runtime (no hard coding URLs into the client code) with the exception of the initial (home/starting URLs). This is needed to ensure client portability between different implementations of the API by different vendors. It would also allow server implementation to evolve without requiring clients to adopt new URL structure or hierarchy. Clients are free to cache URLs for the future use according to general HTTP/HTML practices. In other words: they don’t have to start from the API home page all the time.
	

