OMA-WP-Guidelines-for-ParlayREST-API-specifications-20091106-D
Page 2 V(13)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	White Paper on Guidelines for ParlayREST API specifications

	Draft – 06 Nov 2009

	Open Mobile Alliance

	OMA-WP-Guidelines-for-ParlayREST-API-specifications-20091106-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Introduction
7
5.
Principles for defining the REST bindings for Parlay X web services
8
5.1
API Documentation
10
5.2
Exception Handling
10
5.3
Examples
10
5.4
Use Cases
10
5.4.1
REST client executed on a Server machine
10
5.4.2
REST client executed on a Mobile device
11
5.4.3
REST client executed on a Fixed device
11
Appendix A.
Change History (Informative)
13

Figures

8Figure 1: Example Figure

Tables

8Table 1: Example Table

1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”,{ Version x.y,} Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
Check the version of the Dictionary you are using and update the reference below. Delete the [OMADICT] entry if the dictionary is not used. In general, use the latest available version unless seeking alignment with an existing set of specifications.

DELETE THIS COMMENT

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

	
	

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

3. Terminology and Conventions

3.1 Conventions

This is an informative document, which is not intended to provide testable requirements to implementations.

<< If needed, describe or declare any additional conventions used. DELETE THIS COMMENT >>

3.2 Definitions

<< Add definitions in new rows of the following table as needed. The following examples show how dictionary references should be made as well as locally defined terms. This table should be maintained in sorted alphabetic order based on the labels of the terms.

Examples:

Entity
Use definition #1 from [OMADICT]

Interactive Service
Use definition from [OMADICT]

Local Term
The definition description would be presented directly

DELETE THIS COMMENT>>

	
	

	
	

	<< Add/Remove definition rows to this table as needed - DELETE This Row >>

3.3
Abbreviations

<< Add abbreviations as needed to the following table. No special notation should be made regarding terms copied from the Dictionary. This table should be maintained in alphabetic order.

DELETE THIS COMMENT >>

	OMA
	Open Mobile Alliance

	
	

	
	

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

4. Introduction

This document is the OMA Guidelines for ParlayREST API speicifcation development and is intended to provide the guidelines for defining REST bindings for Parlay X. These guidelines includes general key principles that are used in mapping the Parlay X SOAP bindings to REST bindings.

5. Principles for defining the REST bindings for Parlay X web services
1. A key guideline is that REST APIs are intended for use by typical web developers. These developers are assumed not to have a detailed understanding of telecoms services and will need to be able to leverage the OMA specified REST services as simply as they would leverage services from major web players, service providers or platforms.

Therefore, OMA specified REST APIs should be consistent with other popular REST services provided on the Web. Wherever technically feasible, REST APIs would be used by applications acting on behalf of the end user (e.g. web site, portal), other specialized applications (sms campaign managers, various notification services etc) or applications located on the end user device (e.g. mobile phone, dvd player). The cases where the OMA specified REST APIs specified do not serve well a particular client environment have to be identified, analyzed, documented and addressed (in the same Work Item, or a different Work Item, as deemed appropriate).
2. As far as possible, when the goal is to use a REST architectural style in transforming APIs previously bound to a different set of protocols, the operations available through REST APIs should provide an equivalent level of functionality as was provided by the original set of APIs, and should use similar data elements (when applicable accordantly with the chosen REST architectural style). In the particular case of ParlayREST, the operations made available through ParlayREST API should provide an equivalent level of functionality to the ParlayX SOAP API subset selected for such transformation, and should use similar data elements (when applicable accordantly with the chosen REST architectural style).
3. REST API specifications should conform to the REST & HTTP practices, in particular:
a. Services should be defined in terms of resources that are addressable as URIs.

b. Use of nouns in URIs is recommended over the use of verbs
· URIs identify resources
· HTTP methods identify Operations
· Use HTTP verbs, i.e. POST, GET, PUT, DELETE for CRUD (Create, Read, Update, Delete) operations, for all interfaces for which CRUD is a good fit , using the following mapping:
· POST maps to Create. Note: In certain cases, POST may be used when the operation cannot be mapped to a CRUD operation. For example transformational update of the resource space is usually difficult to map to a CRUD operation (e.g. batch update, etc).
· GET maps to Read. GET must be safe (i.e. it cannot change a resource), and must be idempotent (i.e. the outcome of calling it multiple times is the same as calling it once - unless somebody else changed the resource between calls)
· PUT maps to a complete Update of the resource, and must be idempotent.
· DELETE maps to Delete, and must be idempotent
· Use standard HTTP Status codes in responses for both successful and failed operations. In the case of a failed operation additional status information (if available) will be returned in the body of the response.
4. Content type used is established using the following methodology:
a. In cases where content negotiation is not supported, the content type of the request and response message body will be indicated in the URL path. At least one of two mechanisms must be supported :
· format=content type (e.g. format=xml)
· an extension on the terminating "file" portion of the URL path (e.g. .json or .xml). This mechanism is advantageous in the cases where a client may decide to “save as” the response in a file of the type indicated by the extension.
b. In cases where content negotiation is supported, the Accept header must be used for content negotiations.

c. In cases where both Accept header as well as an explicit indication of the content type in the URL path are present, then the latter indication should take priority over the first (e.g. the use of “format=xml” or “file.xml” overwrite the content type present in an Accept header).
5. It is recommended to specify REST API versioning by inserting the API version in the resource URI path (e.g. a 2.0 version is a completely separate set of resources/endpoints from the previous 1.0 version).
a. Minor API revisions are backwards compatible (in general, unknown parameters should be ignored for forwards compatibility) and major revisions are a distinct set of paths.
b. If a change is made to the XML request/response format that is not backwards compatible, the major version number must be incremented, otherwise the minor version number is incremented.
c. The URI only includes the major version number in the path.
d. In the case that the API version is not present in the URL path the server will assume that the version is the latest supported by the implementation.

Example: If service X supports version 1.0, 1.1, .. and 2.0, 2.1, etc, then you use: http://example.com/service/1/smsservice for the 1.0, 1.1, 1.x version and
http://example.com/service/2/smsservice for the 2.0, 2.1, 2.x version of the smsservice.
6. Callback APIs specification and client implementations of the callback APIs have to comply with the remainder set of guidelines in this cookbook. Wherever necessary, callback functionality (i.e. the ability for the enabler to notify the application of particular events subscribed to) will be supported in the most appropriate manner consistent with the general REST architectural style chosen.

a. For example, in the case when the client resides in a server-like environment a request URL may be passed by the client on which it can be notified of particular events that the client subscribed to.
b. In all cases, other approaches may be followed on a case-by-case basis, using an analysis of specific client access particularities.
Editors Note: ParlayREST to analyze how to address recommendations resulting from an analysis of the different client access cases, in particular from the perspective of handling notifications and security considerations. In essence, eventually ParlayREST needs to decide whether all the different access cases are fulfilled by ParlayREST WID and how, or whether ParlayREST will make recommendations to other enablers on how to address any specific cases, or whether ParlayREST will simply decide all the particular cases are out-of-scope for ParlayREST and as a result will not address them in any specific way.
7. The API specifications should include examples. The example in the REST interface description should avoid using real host and real company name (use “www.example.com” instead of “www.carrier.com” and “myapp.developer.com”).
8. It is recommended that REST binding operation are based on the latest version of 3GPP TS 29 series, release 8. Exceptions should be noted in the TS.
9. The name of the equivalent SOAP binding operation is recommended to be specified in the description of the respective REST binding operation for the better understanding and consistency wherever applicable.

10. If multiple attachments need to be sent as part of the client request or callback request from the server, then MIME Content-Type multipart/related should be used.

11. APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability.

Note: Client and Server should ignore unrecognized parameters and data elements for forward compatibility reasons.

12. All URLs in the API specifications are for illustration purposes only. Particular implementation of the API can use different URLs structure and clients have to discover right URLs to use in runtime (no hard coding URLs into the client code) with the exception of the initial (home/starting URLs). This is needed to ensure client portability between different implementations of the API by different vendors. It would also allow server implementation to evolve without requiring clients to adopt new URL structure or hierarchy. Clients are free to cache URLs for the future use according to general HTTP/HTML practices. In other words: they don’t have to start from the API home page all the time.

13. If a message contains sensitive data, such as passwords, account numbers, and card numbers (as in account management and payment APIs), security consideration to protect these information is required.
Editors Note: The mechanisms for protecting sensitive data will be decided in the context of a specific API and added to the Guidelines at that time.
14. The HTTP protocol does not place any a priori limit on the length of a URI according to RFC2616. However, some old implementations have a limitation, that is, 256 bytes, while other implementations have at least 4000 characters limitation. GET-based forms with a URI above 255 bytes may get response including 414 (Request-URI Too Long) status code. In that case, we would consider using POST method instead of GET on a case by case basis.
5.1 API Documentation
Editors Note: Text dependent on OMA-ARC-REST-2009-0057-INP_merged_API_Documentation_for_cookbook contribution disposition.
5.2 Exception Handling

Editors Note: Text dependent on OMA-ARC-REST-2009-0053-INP_merged_Exception_for_cookbook contribution disposition.
5.3 Examples

Editors Note: Text dependent on OMA-ARC-REST-2009-0056-INP_merged_Example_for_cookbook contribution disposition.
5.4 Use Cases

The following Uses Cases should be addressed:

5.4.1 REST client executed on a Server machine

[image: image2]
The RESTful API exposed by Server Machine deployed on the Network Operator Service Layer Domain, may be accessed by a client application installed on a Server resident on the Service Provider Infrastructure.
5.4.2 REST client executed on a Mobile device

[image: image3]
The RESTful API exposed by Server Machine deployed on the Network Operator Service Layer Domain, may be accessed by a client application resident on an end user device.
5.4.3 REST client executed on a Fixed device

[image: image4]
The RESTful API exposed by Server Machine deployed on the Network Operator Service Layer Domain, may be accessed by a client application resident on a fixed device connected to the Operator.
Editors Note: Deeply analyze during the Cook Book activities which are the issue, best practice, expected behaviour related the usage of REST API in above cases.

E.g: Request/Response vs Subscribe/asynchronous notification mechanism, security issue, always-on vs on-demand connection, native client vs browser/widget client etc
Editors Note: If necessary add the analysis result to TS common part.
Appendix A. Change History
(Informative)

	Document Identifier
	Date
	Sections
	Description

	OMA-WP-Guidelines-for-ParlayREST-API-specifications-20091106-D
	06 Nov 2009
	All
	Initial version of WP as permanent doc

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Network Operator Domain

REST

API a

REST

API b

REST

API z

Service Layer

Service Provider

REST

Client

Request *

Response *

*:request/response �or subscribe/notify

Network Operator Domain

REST

API a

REST

API b

REST

API z

Service Layer

EndUser�Mobile�Device

REST

Client

Request *

Response *

*:request/response �or subscribe/notify

Network Operator Domain

REST

API a

REST

API b

REST

API z

Service Layer

EndUser fixed Device

REST

Client

Request *

Response *

*:request/response �or subscribe/notify

(2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WhitePaper-20090101-I]
(2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WhitePaper-20090101-I]

