Doc# OMA-ARC-REST-2009-00xxR01-CR-ParlayREST_SMS_API V0 3.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance




Change Request

Doc# OMA-ARC-REST-2009-00xxR01-CR-ParlayREST_SMS_API V0 3.doc
Change Request



Change Request

	Title:
	Vodafone comments on REST SMS API
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	ARC REST AHG

	Doc to Change:
	OMA-ARC-REST-2009-0041R02-CR_ParlayREST_SMS_API

	Submission Date:
	<18 Nov 2009>

	Classification:
	 FORMCHECKBOX 
 0: New Functionality
 FORMCHECKBOX 
 1: Major Change
 FORMCHECKBOX 
 2: Bug Fix
 FORMCHECKBOX 
 3: Clerical

	Source:
	Kevin Smith, Vodafone, Kevin.smith@vodafone.com

Other supporters: GSMA OneAPI project

	Replaces:
	N/A


1 Reason for Change

Change 1: The REST SMS API TS spec currently being developed by the ARC REST AHG only has examples of the XML request and response format. 

However, the use of the MIME type application/x-www-form-urlencoded for REST requests such as POST is extremely popular on the Internet, provides a very simple and easy-to-use model for developers, and is completely legitimate for use in REST APIs. Popular web sites and applications such as Twitter, Facebook and Amazon S3 use this form-encoded model extensively for their REST APIs, and it is very popular with developers. The use of the application/x-www-form-urlencoded also makes it easy for developers to understand and test the APIs through the use of simple tools such as browsers or curl.

This document proposes an addition to the SMS API specification in order to include examples of API requests using the application/x-www-form-urlencoded Content-Type. Specifically, it is proposed to add an Appendix to the SMS API specification to illustrate examples of the application/x-www-form-urlencoded format. The set of operations defined in the examples is limited to those supported in PXProf. 

The option was considered of inserting the examples into the individual sections of the SMS API document, but it was felt that this would make the document difficult to read. It was felt that a better option was to include the examples in a separate Appendix. 

If the use of the application/x-www-form-urlencoded Content-Type within REST requests is not included, not only does it break with common Internet practice and exclude a legitimate REST API format, but (perhaps more importantly) it will severely limit the attractiveness of the REST APIs to the broader Internet developer community. 

Including application/x-www-form-urlencoded also allows for OneAPI SMS to be declared as a profile of Parlay REST SMS 
Note : It is recognized that the format and content of the SMS API TS is still undergoing some degree of change, e.g. the input provided in 0041R02 has not yet been folded into the SMS API TS. Therefore, while this CR applies OMA-TS-ParlayREST_ShortMessaging-V1_0-20090624-D, the content of this CR conforms to the changes proposed in 0041R02. The author of this CR will be pleased to update the changes proposed in this document to reflect the final structure and content agreed for the SMS API TS. 

Change 2) inline with the Editor’s note in section 5.1, the sender address should also be considered sensitive data. It should not form part of the resource URI path (since it has no bearing on the resource itself) and should be passed in header fields.

Change 3) is to change the HTTP error response 404 (‘Not Found’) to the specific 405 (‘Method not allowed’), and for the response to include the ‘Allow:’ header to enumerate the accepted methods.

2 Impact on Backward Compatibility

N/A

3 Impact on Other Specifications

N/A

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Update the SMS API TS to include the content defined in the Change Proposal below. 

6 Detailed Change Proposal

Change 1:  Add Appendix with examples of application/x-www-form-urlencoded MIME type for the PXProf Profile Operations
Appendix A. Application/x-www-form-urlencoded Request Format for PXProf REST Operations

This section defines a format for SMS REST API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type. The operations defined in this Appendix are limited to those defined in the PXProf Profile. 

Note : only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. 

The following SMS REST operations are defined in this section:

· Sending a SMS to a terminal

· A polling mechanism for monitoring the delivery status of a sent SMS

· An asynchronous notification mechanism for delivery status, plus a mechanism to start and stop the notification of delivery receipts

· A polling mechanism to receive SMS

· An asynchronous notification mechanism for SMS reception, plus a mechanism to start and stop the notification of received SMS

A.1 Send a SMS to a terminal

A.1.1 Request

This operation is used to create an outgoing message request.

Note: ParlayX SOAP equivalent is SendSmsRequest for SMS.
The request parameters are as follows : 
	Parameter
	Optional
	Description

	address
	No
	One or more addresses to which the SMS will be sent. If the address is in the form of an MSISDN, include the protocol prefix 'tel:' and '%2B' followed by the country code before the subscriber number; e.g. tel:%2B447990123456. 

	senderAddress
	No
	The address of the sender to whom a responding SMS may be sent. If the address is in the form of an MSISDN, include the protocol prefix 'tel:' and '%2B' followed by the country code before the subscriber number; e.g. tel:%2B447990123456.

	message
	No
	The message to be sent

	correlator
	Yes
	Correlator for inclusion in a delivery receipt notification

	notifyURL
	Yes
	URL to notify the application for delivery receipts

	senderName
	Yes
	Name of the sender to appear on the terminal

	charging
	Yes
	Charge to apply to this message 


A typical request would be of the form

POST .../{api version}/smsmessaging/outbound/requests

 HTTP/1.1

Host: www.example.com

Content-Type: application/x-www-form-urlencoded

Accept: application/xml
address=tel:%2B13500000991& 

address=tel:%2B13500000991&
senderAddress=tel:%2B12345678&

message=Hello%20World&

correlator=123456&

notifyURL=http://www.example.com/deliveryreceipt&

senderName=Bob 

A.1.2 Response

XML element: OutboundMessageReference

XML element: receiptRequest

A typical response would be of the form
HTTP/1.1 201 Created
Content-Type: application/xml
Location: http://{server root}/{api version}/smsmessaging/outbound/requests

<?xml version="1.0" encoding="UTF-8"?>
<OutboundMessageReference version=”1.0”>
   <id>1234</id>
   <address>tel:+13500000991</address>
   <address>tel:+13500000992</address>
   <Link rel=”self” href=”http://{server root}/{api version}/smsmessaging/outbound/requests/{MESSAGE REQUEST ID}” />
   <!-- no DeliveryInfos data yet -->
   <receiptRequest> <!-- this is optional -->
            <notifyURL>http://www.example.com/deliveryreceipt</notifyURL>
            <interfaceName>POST</interfaceName>
            <correlator>123456</correlator>
   </receiptRequest>
</OutboundMessageReference>

A.2 Request the delivery status of a SMS 
A.2.1 Request

This operation is used to retrieve outgoing message delivery status.

Note: ParlayX SOAP equivalent is GetSmsDeliveryStatusRequest.

	Parameter
	Optional
	Description

	id
	No
	Identifies a specific SMS delivery request


A typical request would be of the form:

GET .../{api version}/smsmessaging/outbound/requests?id=1234 HTTP/1.1
Accept: application/xml

Host: www.example.com 

A.2.2 Response

This would return a HTTP Status: 200 OK and the delivery status of each recipient:
XML element: OutboundMessageReference

XML element: DeliveryInfos

XML element: DeliveryInfo

For example

HTTP/1.1 200 OK

Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<OutboundMessageReference version=”1.0”>
   <id>1234</id>
   <Link rel=”self” href=”http://{server root}/{api version}/smsmessaging/outbound/requests/{MESSAGE REQUEST ID}” />
   <DeliveryInfos>
     <DeliveryInfo>
      <DeliveryStatus>DeliveredToNetwork</DeliveryStatus>
      <address>tel:+13500000991</address>
     </DeliveryInfo>
     <DeliveryInfo>
      <DeliveryStatus>DeliveredToTerminal</DeliveryStatus>
      <address>tel:+13500000992</address>
     </DeliveryInfo>
   </DeliveryInfos>
</OutboundMessageReference>

A.3 Retrieve all SMS messages received 
A.3.1 Request

This operation is used for reliable inbound message delivery for the particular client. 

Note: ParlayX SOAP equivalent is GetReceivedSms. 
Request URL parameters are:

	Name
	Optional
	Values
	Description

	maxBatchSize
	Yes
	
	Specifies maximum number of messages to be returned in the response

	retrievalOrder
	Yes
	{OldestFirst, NewestFirst}
	Specifies order in which messages should be retrieved is there are more then one pending

	priority
	Yes
	{Default, Low, Normal, High}
	The priority of the messages to poll from the gateway. All messages of the specified priority and higher will be retrieved. If not specified, all messages shall be returned, i.e. the same as specifying Low.


An example of how this method would be called:
GET .../{api version}/smsmessaging/inbound/subscriptions/{offline subscription id}/messages?maxBatchSize=3 HTTP/1.1
Accept: application/xml
Host: www.example.com

A.3.2 Response

This would return a HTTP Status: 200 OK and a list of the received SMS since the last invocation with the following parameters:
XML element: MessageReferences
XML element: InboundMessageReference

For example

HTTP/1.1 200 OK

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<MessagesReferences version=”1.0”>
    <totalNumberOfPendingMessages>20</totalNumberOfPendingMessages>
    <numberOfMessagesInThisBatch>3</numberOfMessagesInThisBatch>
    <InboundMessageReferences
      <!-- SMS -->
      <InboundMessageReference>
        <messageServiceActivationNumber>{SHORT CODE}</messageServiceActivationNumber>
        <senderAddress>sender name</senderAddress>
        <message>First simple message</message>                        
        <messageIdentifier>{MESSAGE ID1}</messageIdentifier>        
        <self-url>http://{server root}/{api version}/messaging/inbound/subscriptions/{offline subscription id}/{MESSAGE ID1}</self-url>
      </InboundMessageReference>
           ...
</MessageReferences>

A.4 Notify SMS delivery status

This REST operation is based on the Parlay X startDeliveryReceiptNotification, notifySmsDeliveryReceipt and stopDeliveryReceiptNotification SOAP methods to enable the application to start a notification session, listen for notifications of SMS delivery status and then stop the session. 

A.4.1 Start delivery receipt notification

A.4.1.1 Request

This REST method is used by the application to start the delivery receipt notifications. It MUST use the HTTP POST method.  The following parameters MUST be used:

	Parameter
	Optional
	Description

	filterCriteria
	No
	Provides flexibility for the application to filter on, for example, the first 4 digits of MSISDN)

	correlator
	No
	Allows the application to correlate the notification

	notifyURL
	No
	Notification endpoint definition


An example of how this method would be called:
POST .../{api version}/smsmessaging/{sender address}/outbound/DeliveryReceiptNotifications HTTP/1.1

Host: www.example.com

Content-Type: application/x-www-form-urlencoded
Accept: application/xml
filterCriteria=13500&

correlator=123456&

notifyURL=http://www.example.com/deliveryreceipt

A.4.1.2 Response
This operation would return a result indicating whether the operation has been successful, i.e.. whether the notification has been set up; there is no content.  For example:
HTTP/1.1 204 No Content

A.4.2 Notify SMS delivery receipt 

A.4.2.1 Request

This REST method notifies the application when an SMS is delivered to a terminal or if delivery was impossible.  It MUST use the HTTP POST method.  The following parameters MUST be used:
XML element: OutboundMessageReference

XML element: DeliveryInfos

XML element: DeliveryInfo

An example of how this method would be called:
POST /deliveryreceipt HTTP/1.1

Host: www.example.com

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<OutboundMessageReference version=”1.0”>
   <id>1234</id>
   <self-url>http://{server root}/{api version}/smsmessaging/{sender address}/outbound/requests/{MESSAGE REQUEST ID}</self-url>
   <DeliveryInfos>
     <DeliveryInfo>
      <DeliveryStatus>DeliveredToNetwork</DeliveryStatus>
      <address>tel:+13500000991</address>
     </DeliveryInfo>
     <DeliveryInfo>
      <DeliveryStatus>DeliveredToTerminal</DeliveryStatus>
      <address>tel:+13500000992</address>
     </DeliveryInfo>
   </DeliveryInfos>
</OutboundMessageReference>

A.4.2.2 Response

This application would expect to return a result indication. Where the operation has been successful, there is no content.  For example:

HTTP/1.1 204 No Content

A.4.3 Stop delivery receipt notification

A.4.3.1 Request

This REST method is used by the application to stop the delivery receipt notifications. It MUST use the HTTP DELETE method.  The following parameters MUST be used:

	Parameter
	Optional
	Description

	correlator
	No
	Of the request to end


An example of how this method would be called:
DELETE .../{api version}/smsmessaging/outbound/DeliveryReceiptNotifications?correlator=123456 HTTP/1.1

Host: www.example.com

A.4.3.2 Response
This operation would return a result indicating whether the operation has been successful; there is no content.  For example:
HTTP/1.1 204 No Content

A.5 Notify SMS reception

These REST methods are based on the Parlay X startSmsNotification, notifySmsReception and stopSmsNotification SOAP methods to enable the application to start a notification session, listen for notifications of received SMS and then stop the session. 
A.5.1 Start SMS notification

A.5.1.1 Request

This REST method is used by the application to start the notification of received SMS. It MUST use the HTTP POST method.  
The following parameters MUST be used:

	Parameter
	Optional
	Description

	destination
	No
	Destination address of SMS

	criteria
	Yes
	The text to match against to determine the application to receive the notification

	notifyURL
	No
	Notification endpoint definition

	correlator
	No
	Allows the application to correlate the notification


An example of how this method would be called:
POST .../{api version}/smsmessaging/inbound/notifications HTTP/1.1

Host: www.example.com

Content-Type: application/x-www-form-urlencoded

Accept: application/xml

Destination=81771

filterCriteria=Vote&

notifyURL=http://www.example.com/voting&

correlator=123456

A.5.1.2 Response
This operation would return a result indicating whether the operation has been successful.  For example:
XML element: InboundMessageOnlineSubscription

XML element: callbackReference

HTTP/1.1 200 OK
Content-Type: application/xml


<?xml version="1.0" encoding="UTF-8"?>
<InboundMessageOnlineSubscription version=”1.0”>
   <id>{subscription id1}</id>
   <messageServiceActivationNumber>80999</messageServiceActivationNumber>
   <criteria>Vote*</criteria>
   <callbackReference>
     <notifyURL>http://www.example.com/voting</notifyURL>
     <correlator>123456</correlator>
   </callbackReference>
   <self-url>http://{server root}/{api version}/smsmessaging/inbound/notifications/{subscription id1}</self-url>
</InboundMessageOnlineSubscription>


A.5.2 Notify SMS reception

A.5.2.1 Request

This REST method notifies the application when a SMS is received.  It MUST use the HTTP POST method.  
XML element: InboundMessageReference

An example of how this method would be called:

POST {client supplied URL} HTTP/1.1
Accept: application/xml
Content-Type: application/xml; charset=UTF-8
Host: {client hostname:port}

<?xml version="1.0" encoding="UTF-8"?>
<!-- SMS -->
<InboundMessageReference>
     <type>SMS</type>
     <messageServiceActivationNumber>{SHORT CODE}</messageServiceActivationNumber>
     <senderAddress>sender name</senderAddress>
     <message>First simple message</message> 
     <inboundMessageOnlineSubscriptionId>{subscription id1}<inboundMessageOnlineSubscriptionId>
</InboundMessageReference>

A.5.2.2 Response

The application would expect to return a result indication. Where the operation has been successful; there is no content.  For example:
HTTP/1.1 204 No Content

A.5.3 Stop SMS notification

A.5.3.1 Request

This REST method is used by the application to stop the delivery receipt notifications. It MUST use the HTTP POST method.  The following parameters MUST be used:
Note: ParlayX SOAP equivalent is stopSmsNotification.
	Parameter
	Optional
	Description

	correlator
	No
	Of the request to end


An example of how this method would be called:
DELETE /<path>/smsNotification?correlator=123456 HTTP/1.1

Host: www.example.com

A.5.3.2 Response
This operation would return a result indicating whether the operation has been successful; there is no content.  For example:
HTTP/1.1 204 No Content

Change 2:  To consider ‘sender address’ as sensitive data

(Note: since this area is subject to an Editor’s note, this change simply indicates that the SMS API will be subject to the same security discussion and recommendations that apply to all APIs. This includes the inclusion of sensitive data such as message content, sender and recipient addresses. 
Change 3:  To use response code 405 for ‘method not allowed’

(note: the use of 405 was agreed  so the text below  can be inserted by the TS editor)
5.2.1.1 HTTP Response Codes

Editor’s Note: this section needs to be updated once the guideline for documenting errors is agreed. An option is to document all error handling in the Common TS, and/or document here only the codes that are specific to this API (if applicable).

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.2.1.2 PUT

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.2.1.3 POST

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.2.1.4 DELETE

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.5.3 HTTP Response Codes

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.5.5PUT

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.5.6POST

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.5.7DELETE

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.6.3HTTP Response Codes

Editor’s Note: this section needs to be updated once the guideline for documenting errors is agreed. An option is to document all error handling in the Common TS, and/or document here only the codes that are specific to this API (if applicable).

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error

5.6.5GET

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.6.5PUT

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.6.7DELETE

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.7.3HTTP Response Codes

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.7.5PUT

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of HTTP RFC 2616
5.7.6POST

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of HTTP RFC 2616
5.8.3HTTP Response Codes

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure  
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.8.5PUT

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.8.7DELETE
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.9.3HTTP Response Codes

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.9.6POST

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of HTTP RFC 2616

5.10.3HTTP Response Codes

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.10.4GET

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.10.5PUT

Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.10.7DELETE
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.11.3HTTP Response Codes

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.11.5PUT
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.11.7DELETE
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.12.3HTTP Response Codes

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.12.5PUT
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.12.6POST
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.12.7DELETE
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616
5.13.3HTTP Response Codes

200 - Success
400 - Invalid parameters in the request
401 - Authentication failure
403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not supported by the resource
500 - Internal server error
5.13.4GET
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.13.5PUT
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of HTTP RFC 2616
5.13.7DELETE
Method not supported by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of HTTP RFC 2616












NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

© 2009 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 16 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

