Doc# OMA-ARC-REST-2009-0175-CR_Authorization_and_Protection_of_sensitive_data.doc[image: image3.jpg]
Change Request

Doc# OMA-ARC-REST-2009-00xx-CR_ParlayREST_Authorization_and_Protection_of_Sensitive_Data-v4-vlad.doc
Change Request

Change Request

	Title:
	Authorization and Protection of sensitive data
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST AHG

	Doc to Change:
	OMA-TS-ParlayREST_Common_TS_V1_0-20090624-D

	Submission Date:
	Dec 11 2009

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Michael Brenner, Alcatel-Lucent, mrbrenner@alcatel-lucent.com
Vlad Mezhibovsky, Alcatel-Lucent, Vladimir.Mezhibovsky@genesyslab.com
Kevin Smith, Vodafone, Kevin.Smith@vodafone.com

	Replaces:
	n/a

1 Reason for Change

This document proposes content for Security/Protection of sensitive data and API authentication/authorization approach in the Common TS.
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

This CR recommends ARC REST AHG to approve the proposed content for the security section of the Common TS.
6 Detailed Change Proposal

Change 1: Security section
Security for ParlayREST: authorization and protection of sensitive data
This section proposes a common approach for all ParlayREST APIs in handling authorization and protection of sensitive data.

API implementations may have to meet different security requirements and should be able to choose desired level of protection. Therefore API interface design needs to ensure possibility to implement such protection in the most efficient (performance, cost) and convenient for the application way. RESTful architecture style and reliance on the HTTP protocol make it possible to utilize generic and API agnostic components for functions such as security, policy enforcement, load balancing, etc. However, depending on desired level of security, for example, a certain degree of coordination may be required between API implementation and the security proxy gateway that would usually be typically deployed in front of the API server.
In this proposal we assume the following:

1) ParlayREST APIs are resource centric
2) Resources could be identified using short term (e.g. inbound SMS message) or long term (e.g. phone number) URIs.

3) The Application needs to be authorized to access resource and specific CRUD (create/read/update/delete) operations that can be performed on that resource.
4) Due to the strict performance and availability requirements - every request from the application needs to carry all necessary authorization data (the server may have difficulty caching session security data)

5) Long lasting URIs are posing potential security threat and may need to be protected for some implementations. Mainly because they are more likely (as compared to request/reply payloads) to be stored by the application or intermediaries for debugging or audit/log reasons (even if secure channel like HTTPS is used).
Following API usage scenarios where identified:
1) Application (server) -> Security gateway -> API implementation -> Enabler

2) Application (end-user device) -> Security gateway -> API Implementation -> Enabler

3) Application (server) = (web page)-> Browser on end-user device -> Security gateway -> API implementation -> Enabler

4) Application (end-user device) -> Application server -> Security gateway -> API Implementation -> Enabler

5) Browser (end-user device) -> Application server -> Security gateway -> API Implementation -> Enabler

6) Enabler -> API implementation -> Security gateway -> Application server

7) Enabler -> API implementation -> Security gateway -> Application server -> Application (end-user device)
8) Enabler -> API implementation -> Security gateway -> Application (end-user device)
9) Enabler -> API implementation -> Security gateway -> Browser (end-user device)
10) Enabler -> API implementation -> Security gateway -> Application server -> Browser (end-user device)
Depending on the API and usage scenario different forms of authentication, authorization and data protection may be required. Table bellow shows possible permutations:
	API
	Use Case#
	Application

identity
	Application user identity
	Authentication method/secret
	Connection to Security Gateway
	App resource
	Application user resource
	Other resource

	SMS
MMS

Location

Payment
	1-10
	app id

service id
	phone number

ip address

SIM
username
	basic

digest

2-leg oAuth [OAuth]
3-leg oAuth [OAuth]
	HTTPS

HTTP
	sms shortcode

registration subscription

location/notification/subscriptions
…
	sender address

message

account

location

	app user profile (phone number, etc)

message

account

location
destination address

Bellow two examples are presented illustrating an approach that would allow:
1) API server implementation to choose the URLs structure, hierarchy and granularity that suits chosen security proxy and meets overall security requirements for the environment
2) Obfuscate sensitive data in the URL on the server side in a way that is most transparent to the application (doesn’t put additional load on the application).
The Application would start by obtaining a Parlay REST service catalog document with links to the API specific resources to use for payment, location, SMS, MMS (as well as other API related resources in future). This approach would effectively allow server to control the structure of the URLs for various API resources and commit client application to following resource URLs supplied by server instead of hard coding them in advance according to the specification.

Server can apply two main techniques in order to protect sensitive data in the URL: hashing or encryption. Both have pros and cons. Implementation should be free to use the most appropriate technique for the environment. Hashing is used in the examples bellow.

In the first example (see figure below) SMS API is using HTTP Digest Authentication. It captures the use case 1:

Application (server) -> Security gateway -> API implementation -> Enabler

[image: image1.emf]App

Server

Service

Access

Security

Gateway

API

Impleme

ntation

Server

Service

Enabler

User

Device

1. Requests GET on API

“entry point” resource(A)

2. Responds with

authorization challenge

3. Repeats GET request with

authorization data for

resource(A)

4. Verifies validity of the

request and redirects to API

implementation

6. Responds with resource

URLs list available for

application to use

Provisioni

ng

database

5. Retrieves resources

application has access to

7. Resends response to the

application

8. Requests GET/POST/etc

on API’s resource(B)

9. Responds with

authorization challenge for

resource(B)

10. Repeats GET/POST/etc

request on API’s resource(B)

with appropriate authorization

data

11. Verifies validity of the

request and redirects to API

implementation

12. Performs requested

operation

13. Responds by sending

resource representation

back

14. Resends response to the

application

15. Requests GET/POST/etc

on API’s resource(B)

21. Responds with re-

authorization challenge for

resource(B)

20. Requests GET/POST/etc

on API’s resource(B)

Figure x.y: Use case 1:

In use case 1, it is assumed that the application has access to multiple SMS short codes for inbound/outbound messaging. SMS shortcode and registration id are considered to be a sensitive data.

The application always start by performing GET on ../{api version}/smsmessaging in order to choose the right resource to use for the given SMS shortcode or registration id. Note that shortcode itself is never present in the URL.

Step a: the security gateway forces the application to provide credentials for accessing “../smsmessaging” resource

->

GET ../smsmessaging HTTP/1.0

<-

HTTP/1.0 401 Unauthorized
WWW-Authenticate: Digest realm="smsmessaging@example.com",

 qop="auth,auth-int",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Step b: the application passes necessary credentials in the “Authorization” header:

->

GET ../smsmessaging HTTP/1.0

Authorization: Digest username="{app id}",

 realm="smsmessaging@example.com",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 uri="../smsmessaging",

 qop=auth,

 nc=00000001,

 cnonce="0a4f113b",

 response="6629fae49393a05397450978507c4ef1",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Note: the security gateway verifies the request and passes it through to the API implementation. The security gateway only needs to know app id/password combination.
Step c: The API implementation checks the provisioning database and returns a list of “inbound” and “outbound” resources available for the application to use based on the app id provided and verified by the security gateway.. The API implementation would control the URLs structure and can substitute sensitive data elements (such as sms shortcode, phone number, etc) by their hashed representation.

<-

HTTP/1.1 200 OK

Content-Type: application/xml

Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<SMSMessagingServices>

 <OutboundSMSService resourceURL="http://{server root}/{api version}/smsmessaging/outbound/{hashed sender address1}/requests”>

 <senderAddress>801234</senderAddress>

 </OutboundSMSService>

 <OutboundSMSService resourceURL="http://{server root}/{api version}/smsmessaging/outbound/{hashed sender address2}/requests”>

 <senderAddress>801235</senderAddress>

 </OutboundSMSService>

 <InboundSMSService resourceURL="http://{server root}/{api version}/smsmessaging/inbound/registrations/{hashed registration id1}”>

 <registrationId>123456789</registrationId>

 </InboundSMSService>

 <InboundSMSService resourceURL ="http://{server root}/{api version}/smsmessaging/inbound/registrations/{hashed registration id2}”>

 <registrationId>987654321</registrationId>

 </InboudSMSService>

</SMSMessagingServices>

Note:. The security gateway only needs to know the static mapping between username and password used by the application to create request authorization header. The API implementation’s responsibility is to know whether the application is supposed to have access to the given resource URL. This way a separation of responsibilities is maintained – the security gateway is making sure that credentials are sufficient for the given URL and the API implementation is responsible for verifying that the API specific request body is matching resource URL and username in the request header.
Step d: The application selects desired service URL using {senderAddress} or {registrationId} as a key and executes the command.

Note that steps a, b, c are only required to be performed once during initialization. After successful authentication, the application can cache credentials for each realm and send them over proactively with every request. If the Server ever needs to revalidate credentials it will reply with “401 Not authorized” and issue a new challenge.

Bellow is an example that assumes credentials for “../smsmessaging” resource and realm=smsmessaging@example.com would be valid for “..smsmessaging/outbound/{hashed sender address}/requests” resource:

->

POST ../smsmessaging/outbound/{hashed sender address}/requests HTTP/1.0

Authorization: Digest username="{app id}",

 realm="smsmessaging@example.com",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 uri="../smsmessaging/outbound/{hashed sender address}/requests",

 qop=auth,

 nc=00000001,

 cnonce="0a4f113b",

 response="6629fae49393a05397450978507c4ef1",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Accept: application/xml

Content-Type: application/xml; charset=UTF-8

Host: example.com:80

<?xml version="1.0" encoding="UTF-8"?>

<OutboundSMSMessageRequest>

 <addresses>tel:1350000001</addresses>

 <addresses>tel:1350000999</addresses>

 <senderAddress>tel:801234</senderAddress>

 <senderName>MyName</senderName>

 <OutboundSMSTextMessage>

 <message>Example Text Message </message>

 </OutboundSMSTextMessage>

</OutboundSMSMessageRequest>

Note: API implementation makes sure that {hashed sender address} taken from the URL is matching sms shortcode specified in the <senderAddress> element of the request body.
<-

HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://{server root}/{api version}/smsmessaging/outbound/{hashed sender address}/requests/{MESSAGE REQUEST ID}

Content-Length: 12345

Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<OutboundSMSMessageRequest>

 <id>{MESSAGE REQUEST ID}</id>

 <addresses>tel:1350000001</addresses>

 <addresses>tel:1350000999</addresses>

 <senderAddress>tel:801234</senderAddress>

 <senderName>MyName</senderName>

 < resourceURL>http://{server root}/{api version}/smsmessaging/outbound/{hashed sender address}/requests/{MESSAGE REQUEST ID}</ resourceURL>

 <DeliveryInfos>

 <resourceURL>http://{server root}/{api version}/smsmessaging/outbound/{hashed sender address}/requests/{MESSAGE REQUEST ID}/deliveryInfos</resourceURL>

 <DeliveryInfo>

 <DeliveryStatus>MessageWaiting</DeliveryStatus>

 <address>tel:1350000001</address>

 </DeliveryInfo>

 <DeliveryInfo>

 <DeliveryStatus>MessageWaiting</DeliveryStatus>

 <address>tel:1350000999</address>

 </DeliveryInfo>

 </DeliveryInfos>

</OutboundSMSMessageRequest>

The example bellow shows the case when new credentials are required for “../smsmessaging/outbound/{hashed sender address}/requests”:

->

POST ../smsmessaging/outbound/{hashed sender address}/requests HTTP/1.0

Authorization: Digest username="{app id}",

 realm="smsmessaging@example.com",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 uri="../smsmessaging/outbound/{hashed sender address}/requests",

 qop=auth,

 nc=00000001,

 cnonce="0a4f113b",

 response="6629fae49393a05397450978507c4ef1",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Accept: application/xml

Content-Type: application/xml; charset=UTF-8

Host: example.com:80

<?xml version="1.0" encoding="UTF-8"?>

<OutboundSMSMessageRequest>

 <addresses>tel:1350000001</addresses>

 <addresses>tel:1350000999</addresses>

 <senderAddress>tel:801234</senderAddress>

 <senderName>MyName</senderName>

 <OutboundSMSTextMessage>

 <message>Example Text Message </message>

 </OutboundSMSTextMessage>

</OutboundSMSMessageRequest>

Note: Security gateway requires different credentials for ../{hashed sender address} URL

<-

HTTP/1.0 401 Unauthorized
WWW-Authenticate: Digest realm="smsmessaging.outbound.{hashed sender address}@example.com",

 qop="auth,auth-int",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Application passes new credentials created using password for {hashed sender address} in the “Authorization” header:

->

POST ../smsmessaging/outbound/{hashed sender address}/requests HTTP/1.0

Authorization: Digest username="{app id+sender address}",

 realm="smsmessaging.outbound.{hashed sender address}@example.com",

 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

 uri="../smsmessaging/outbound/{hashed sender address}/requests",

 qop=auth,

 nc=00000001,

 cnonce="0a4f113b",

 response="6629fae49393a05397450978507c4ef1",

 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Accept: application/xml

Content-Type: application/xml; charset=UTF-8

Host: example.com:80

<?xml version="1.0" encoding="UTF-8"?>

<OutboundSMSMessageRequest>

 <addresses>tel:1350000001</addresses>

 <addresses>tel:1350000999</addresses>

 <senderAddress>tel:801234</senderAddress>

 <senderName>MyName</senderName>

 <OutboundSMSTextMessage>

 <message>Example Text Message </message>

 </OutboundSMSTextMessage>

</OutboundSMSMessageRequest>

Note: API implementation makes sure that {hashed sender address} taken from the URL is matching sms shortcode specified in the <senderAddress> element of the request body.
<-

HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://{server root}/{api version}/smsmessaging/outbound/{hashed sender address}/requests/{MESSAGE REQUEST ID}

Content-Length: 12345

Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<OutboundSMSMessageRequest>

 <id>{MESSAGE REQUEST ID}</id>

 <addresses>tel:1350000001</addresses>

 <addresses>tel:1350000999</addresses>

 <senderAddress>tel:801234</senderAddress>

 <senderName>MyName</senderName>

 <resourceURL>http://{server root}/{api version}/smsmessaging/outbound/{hashed sender address}/requests/{MESSAGE REQUEST ID}</resourceURL>

 <DeliveryInfos>

 <resourceURL>http://{server root}/{api version}/smsmessaging/outbound/{hashed sender address}/requests/{MESSAGE REQUEST ID}/deliveryInfos</resourceURL>

 <DeliveryInfo>

 <DeliveryStatus>MessageWaiting</DeliveryStatus>

 <address>tel:1350000001</address>

 </DeliveryInfo>

 <DeliveryInfo>

 <DeliveryStatus>MessageWaiting</DeliveryStatus>

 <address>tel:1350000999</address>

 </DeliveryInfo>

 </DeliveryInfos>

</OutboundSMSMessageRequest>

The second example (see figure below) illustrates the Location API using HTTP Digest Authentication [RFC2617]. It captures the use case 4:

Application (end user device) -> Application server -> Security gateway -> API implementation -> Enabler.

[image: image2.emf]App

Server

Service

Access

Security

Gateway

API

Impleme

ntation

Server

Service

Enabler

User

Device 2

2. Requests GET on API

resource (user device2)

3. Responds with

authorization challenge

4. Repeats GET request with

authorization data for resource

(user device2)

5. Verifies validity of the

request and redirects to API

implementation

8. Responds with resource

representation

Provisioni

ng

database

6. Check if user

have rights to

access resource

(user device2)

9. Resends response to the

application

7. Performs requested

operation

User

Device 1

1. Invokes application (A)

Figure x.z: Use case 4
Generalizing the examples above, the recommendation is to use a service catalog in front of all APIs, which helps to limit exposure of the sensitive data in the resource URLs and gives each implementation certain flexibility in organizing resource hierarchy in the most appropriate for the given deployment environment. The service catalog is the first resource that a (client) application accesses via a GET operation, and it could represent a catalog with links to all supported API(s) specific resources (SMS, MMS, Terminal Location, Payment).This approach would effectively allow server to control the structure of the URLs for various API resources and replace sensitive data in the URLs by hashed or encrypted value that could be mapped back easily to the real value on the server side. URLs obtained through the catalog could be cached by the application for some period of time to improve performance. Server could always request re-authorization and by doing so effectively force the application to re-read the most recent version of the catalog with potentially different URLs.
Change 2: References
	[RFC2617]
	“HTTP Authentication: Basic and Digest Access Authentication”, J.Franks et al, June 1999, URL:http://www.ietf.org/rfc/rfc2119.txt

	[OAuth]
	“OAuth for Web Applications”,

URL: http://code.google.com/apis/accounts/docs/OAuth.html

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 13 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

_1321307939.vsd
App Server

Service Access Security Gateway

API Implementation Server

Service Enabler

User
Device

1. Requests GET on API “entry point” resource(A)

2. Responds with authorization challenge

3. Repeats GET request with authorization data for resource(A)

4. Verifies validity of the request and redirects to API implementation

6. Responds with resource URLs list available for application to use

Provisioning database

5. Retrieves resources application has access to

7. Resends response to the application

8. Requests GET/POST/etc on API’s resource(B)

9. Responds with authorization challenge for resource(B)

10. Repeats GET/POST/etc request on API’s resource(B) with appropriate authorization data

11. Verifies validity of the request and redirects to API implementation

12. Performs requested operation

13. Responds by sending resource representation back

14. Resends response to the application

15. Requests GET/POST/etc on API’s resource(B)

21. Responds with re-authorization challenge for resource(B)

20. Requests GET/POST/etc on API’s resource(B)

_1321309774.vsd
App Server

Service Access Security Gateway

API Implementation Server

Service Enabler

User
Device 2

2. Requests GET on API resource (user device2)

3. Responds with authorization challenge

4. Repeats GET request with authorization data for resource (user device2)

5. Verifies validity of the request and redirects to API implementation

8. Responds with resource representation

Provisioning database

6. Check if user have rights to access resource (user device2)

9. Resends response to the application

7. Performs requested operation

User
Device 1

1. Invokes application (A)

