Doc# OMA-ARC-REST-2010-0049-CR_content_negotiation_cookbook.doc
Change Request

Doc# OMA-ARC-REST-2010-0049-CR_content_negotiation_cookbook.doc
Change Request

Change Request

	Title:
	Content Negotiation in Cookbook
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST

	Doc to Change:
	REST Cookbook

	Submission Date:
	3 Feb 2010

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Uwe Rauschenbach, Nokia Siemens Networks, uwe.rauschenbach@nsn.com

	Replaces:
	n/a

	Attachment:
	n/a

1 Reason for Change

This CR implements comment F0011, condensing the text on content negotiation in the cookbook.
2 Impact on Backward Compatibility

There is no impact on backward compatibility.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC is kindly requested to review and agree the changes.
6 Detailed Change Proposal

Change 1: Add reference in section 2
	[REST_TS_Common]
	“RESTful bindings for Parlay X Web Services – Common”, Open Mobile Alliance™, OMA-TS-ParlayREST_Common-V1_0, URL:http://www.openmobilealliance.org/

Change 2: The actual change
5. Principles for defining the REST bindings for Parlay X web services
1. A key guideline is that REST APIs are intended for use by typical web developers. These developers are assumed not to have a detailed understanding of telecoms services and will need to be able to leverage the OMA specified REST services as simply as they would leverage services from major web players, service providers or platforms.

Therefore, OMA specified REST APIs should provide the same level of easy-to-use as other popular REST services provided on the Web. Wherever technically feasible, REST APIs would be used by applications acting on behalf of the end user (e.g. web site, portal), other specialized applications (sms campaign managers, various notification services etc) or applications located on the end user device (e.g. mobile phone, dvd player). The cases where the OMA specified REST APIs specified do not serve well a particular client environment have to be identified, analyzed, documented and addressed (in the same Work Item, or a different Work Item, as deemed appropriate).
2. As far as possible, when the goal is to use a REST architectural style in transforming APIs previously bound to a different set of protocols, the operations available through REST APIs should provide an equivalent level of functionality as was provided by the original set of APIs, and should use similar data elements (when applicable accordantly with the chosen REST architectural style). In the particular case of ParlayREST, the operations made available through ParlayREST API should provide an equivalent level of functionality to the ParlayX SOAP API subset selected for such transformation, and should use similar data elements (when applicable accordantly with the chosen REST architectural style).
3. REST API specifications should conform to the REST & HTTP practices, in particular:
a. Services should be defined in terms of resources that are addressable as URIs.

b. Use of nouns in URIs is recommended over the use of verbs
· URIs identify resources
· HTTP methods identify Operations
c. Use HTTP verbs, i.e. POST, GET, PUT, DELETE for CRUD (Create, Read, Update, Delete) operations, for all interfaces for which CRUD is a good fit , using the following mapping:
· POST
· POST maps to Create, if the HTTP client sends a request to the HTTP server to create a subordinate of the specified resource (a.k.a. creating a new member of the resource collection), using some server-side algorithm.
· POST maps to Update if the HTTP client sends a request to the HTTP server to partially update the specified resource, or to update one or more subordinates of the specified resource
· Note: In certain cases, POST may be used when the operation cannot be mapped to a CRUD operation. For example transformational update of the resource space is usually difficult to map to a CRUD operation (e.g. batch update, etc).
· GET maps to Read. GET must be safe (i.e. it cannot change a resource), and must be idempotent (i.e. the outcome of calling it multiple times is the same as calling it once - unless somebody else changed the resource between calls)
· PUT
· In case the URI addressed by the PUT operation points to an existing resource, PUT maps to a complete Update of the resource, and must be idempotent.
· In case the URI addressed by the PUT operation does not point to an existing resource, PUT maps to Create of that resource, if that operation is permitted.
· DELETE maps to Delete, and must be idempotent
d. Use standard HTTP Status codes in responses for both successful and failed operations. In the case of a failed operation additional status information (if available) will be returned in the body of the response.
Use of HTTP Status codes in response should be consistent with RFC 2616 and in case of successful operations it is recommended to use the following Status codes:

POST: for successful response, these are the allowed values:

200 (OK): when no resource URL is provided in the response but the body of the response includes the entity that describes the result.

201 (Created): if a resource has been created on the origin server, the body of the message SHOULD contain an entity which describes the status of the request and refers to the new resource, and a Location header

204(No content): when no resource URL is provided in the response and it does not provide a body.

PUT:

200(OK) or 204(No Content): they are used when the existing resource has been modified (idempotent).

201(Created): MUST be used when a new resource is created.

GET: (idempotent)

200(OK): successful response that includes the entity requested.

DELETE: (idempotent)

200 (OK): for a successful response if the response includes an entity describing the status.

202 (Accepted): if the action has not yet been enacted.

204 (No Content): if the action has been enacted but the response does not include an entity.

4. The content type used in responses is established using the following methodology:
As a general rule, content type used in response message body must match content type used in request body. In case this is not possible, content type negotiation can be used. The methodology for content type negotiation is based on the “Accept” HTTP header in the request to signal the supported content types. A parameter of name “resFormat” can be given to override the information in this header. The methodology for content type negotiation is specified further in [REST_TS_Common].
At least XML and JSON content types are supported, with other content types optionally supported on a case-by-case basis to be specifically documented (e.g. simple name-value pair parameters may be accepted in the URL when using GET and www-form-urlencoding may be supported for the request message body when using POST or PUT).

a.
b.
c.
·
d.
5. It is recommended to specify REST API versioning by inserting the API version in the resource URI path (e.g. a 2.0 version is a completely separate set of resources/endpoints from the previous 1.0 version).
a. Minor API revisions are backwards compatible (in general, unknown parameters should be ignored for forwards compatibility) and major revisions are a distinct set of paths.
b. If a change is made to the XML request/response format that is not backwards compatible, the major version number must be incremented, otherwise the minor version number is incremented.
c. The URI only includes the major version number in the path.
d. In the case that the API version is not present in the URL path the server will assume that the version is the latest supported by the implementation.

Example: If service X supports version 1.0, 1.1, .. and 2.0, 2.1, etc, then you use: http://example.com/service/1/smsservice for the 1.0, 1.1, 1.x version and
http://example.com/service/2/smsservice for the 2.0, 2.1, 2.x version of the smsservice.
6. Callback APIs specification and client implementations of the callback APIs have to comply with the remainder set of guidelines in this cookbook. Wherever necessary, callback functionality (i.e. the ability for the enabler to notify the application of particular events subscribed to) will be supported in the most appropriate manner consistent with the general REST architectural style chosen.

a. For example, in the case when the client resides in a server-like environment a request URL may be passed by the client on which it can be notified of particular events that the client subscribed to.
b. In all cases, other approaches may be followed on a case-by-case basis, using an analysis of specific client access particularities.
7. The API specifications should include examples. The example in the REST interface description should avoid using real host and real company name (use “www.example.com” instead of “www.carrier.com” and “myapp.developer.com”).
8. It is recommended that REST binding operation are based on the latest version of 3GPP TS 29 series, release 8. Exceptions should be noted in the TS.

9. The name of the equivalent SOAP binding operation is recommended to be specified in the description of the respective REST binding operation for the better understanding and consistency wherever applicable.

10. If multiple attachments need to be sent as part of the client request or callback request from the server, then MIME Content-Type multipart/related should be used.

11. APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability.

Note: Client and Server should ignore unrecognized parameters and data elements for forward compatibility reasons.

12. All URLs in the API specifications are for illustration purposes only. Particular implementation of the API can use different URLs structure and clients have to discover right URLs to use in runtime (no hard coding URLs into the client code) with the exception of the initial (home/starting URLs). This is needed to ensure client portability between different implementations of the API by different vendors. It would also allow server implementation to evolve without requiring clients to adopt new URL structure or hierarchy. Clients are free to cache URLs for the future use according to general HTTP/HTML practices; for a detailed description of the cache mechanism see RFC 2616. In other words: they don’t have to start from the API home page all the time.

13. If a message contains sensitive data, such as passwords, account numbers, and card numbers (as in account management and payment APIs), security consideration to protect these information is required.
14. The HTTP protocol does not place any a priori limit on the length of a URI according to RFC2616. However, some old implementations have a limitation, that is, 256 bytes, while other implementations have at least 4000 characters limitation. GET-based forms with a URI above 255 bytes may get response including 414 (Request-URI Too Long) status code. In that case, we would consider using POST method instead of GET on a case by case basis.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

