Doc# OMA-ARC-REST-2010-0227R01-CR_Presence_sequence_diagrams.doc[image: image6.jpg]
Change Request

Doc# OMA- ARC-REST-2010-0227R01-CR_Presence_sequence_diagrams.doc
Change Request

Change Request

	Title:
	ParlayREST Presence sequence diagrams
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST

	Doc to Change:
	OMA-TS-ParlayREST_Presence-V1_0-20100415-D.doc

	Submission Date:
	12 May 2010

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Vitomir Ilic, Ericsson, vitomir.ilic@ericsson.com

	Replaces:
	n/a

1 Reason for Change

This CR proposes sequence diagrams for ParlayREST Presence that shall be used to replace the existing information in section 5.3, Sequence Diagrams, in the TS document OMA-TS-ParlayREST_Presence-V1_0-20100415-D.doc.
R01: The sequence diagrams have been re-designed in order to be more use case driven.
2 Impact on Backward Compatibility

none
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

This CR recommends ARC REST AHG to agree with the proposed sequence diagrams for Presence TS.
6 Detailed Change Proposal

Change 1: Proposed changes for sequence diagrams
5.3 Sequence Diagrams
The following sections show three parts of a possible scenario for the usage of the presence API. There are two applications. Both applications have different roles.

· Application 1 acts on behalf of Alice and has the presentity role.

· Application 2 acts on behalf of Bob and has a watcher role.

5.4 The sequences also try to show the interaction between these different roles.
5.4.1 Application startup; publish presence, fetch watcher information, subscribe to watcher info

This figure below shows a scenario for starting or restarting an application instance of Application 1 on terminal 1 of Alice. Application 1 is a multi-terminal application and can publish different presence status from each of the terminals the application is running on. The sequence shows the following steps.

- Publishing information by application 1 on terminal 1 on behalf of Alice (step 1 - 2)

- Retrieving information about the watchers of Alice (step 3 - 4)

- Subscribing to watcher information for Alice, including the corresponding notification (step 5 - 6)
The resources:

1. To fetch the currently published data the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/presenceSource/{presenceSourceId}

2. To create or update published data the following resource is created or updated:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/presenceSource/{presenceSourceId}

3. To fetch the current watchers this resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers
4. To get detailed information about the individual watchers the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/{watcherId}
5. To subscribe to changes in the watcher information the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions/{subscriptionId}

6. The notification of the watcher info is done an the callback URL provided by the application.

[image: image1]
Figure 1 Publish presence, fetch watcher information, subscribe to watcher info

Outline of the flows:

The idea is that the application 1 is stateless. i.e., it does not store any data between restarts. So in fact it does not know if the current situation is a start or a restart. The resourceURLs are created by the client, and in this case they are created based on the application id and the terminal id (here: app1_term1), to create a unique identifier per terminal per application.

1. To fetch the currently published data by application 1 on terminal 1 application 1 does a GET on the resource:
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/presenceSource/app1_term1

This is an optionally supported in the gateway.
If it is supported the currently published presence data for the application terminal combination is returned, if present. If not present, 404 'not found' is returned (2).
If this method is not supported on this resource, then a 405 'method not allowed' is returned.

2. To create or update published data by application 1 on terminal 1 (2) the application does a PUT on the following following resource to create or update this resource with a client provided ID.
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/presenceSource/app1_term1

The result depends on whether the resource already existed or not. If it did not exist a 201 result is returned with the location of the resource. If the resource already existed a 200 or 204 is returned.

3. Application 1 fetches the current watchers by doing a GET on the following resource
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/watchers

A list of watchers is returned. The result contains most data about the watchers, except for some detailed information with is obtained in the following step.

4. Application 1 gets detailed information about the individual watchers (4), by iterating over the list of watcher-ids received in the previous step, i.e., accessing the following resource, assuming that Carol was part of the list.
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/watchers/sip:carol@example.com

The result gives detailed information about the Carol as a presence watcher.
5. Application 1 subscribes to changes in the watcher information by doing a PUT on the following resource. The application can use the same or another generated ID as used in step 1 and 3 as part of the resourceURL.
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions/app1_term1

The result depends on whether the resource already existed or not.
6. The subscription in step 9 will result in a notification of the application with the current status of the watcher info. The application provided callback URL is used in the notification.

This makes step 5 superfluous, but it was included as an alternative way to fetch the same information by polling.

5.4.2 Adding a watcher; subscribe for presence and updating of presence information.

This is a continuation of the sequence started in the previous section. More specifically the following preconditions apply:

· There is an active subscription for watcher info by application 1 for the presentity Alice.

This figure below shows the following scenario

- Application 2 subscribes to Alices presence on behalf of Bob (and corresponding notify) (step 1 - 2)

- Watcher info notification since Bob becomes a pending watcher (step 3)

- Adding Bob to the allowed list (step 4)

- Presence notification to Bob's application since Bob is now allowed to see the status of Alice (step 5)

- Watcher info notification to Alice's application since the status of the watcher Bob changed to active

The resources:

1. To create a subscription for presence notifications for a single entity the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{watcherId}/presenceContact/{presentityId}/subscriptions/{subscriptionId}

2. The notification of the presence information is done an the callback URL provided by the application.

3. The notification of the watcher info is done an the callback URL provided by the application.

4. To add a watcher to the allowed list the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/authorization/allowlist/watchers/{watcherId}

5. The notification of the presence information is done an the callback URL provided by the application.

6. The notification of the watcher info is done an the callback URL provided by the application.

[image: image2]
Figure 2 Adding a watcher, subscribe for presence and updating of presence information

Outline of the flows:

1. Application 2 creates a subscription to the presence information of Alice. Application 2 acts on behalf of Bob (the watcher). The subscription is created by doing a PUT on a resource with a client generated ID. The similar ID generation scheme as before can be used, so assuming the application is running on terminal 2 the URL becomes:
http://{serverRoot}/{apiVersion}/presence/sip:bob@example.com/presenceContact/sip:alice@example.com/subscriptions/app2_term2

The result depends on whether the subscription with that ID already existed. Here it is assumed that the resource did not yet exist, so a 201 created is returned.

2. The service notifies application 2 about the current status of the subscription. In this case the subscription status is notified as being pending, since Bob is not yet authorized by Alice to view the presence status of Alice.

3. The service notifies application 1 about a new watcher called Bob, whose status is unauthorized.

4. Application 2 adds Bob to the allowed list of Alice, meaning that Bob is authorized to view the status of Alice. This is done by performing a PUT on the resource:
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/authorization/allowlist/watchers/sip:bob@example.com

In this case Bob was not yet authorized, so the result is 201 created.
5. The service notifies application 2 about the current status of the subscription. In this case the subscription status is notified as being active, since Bob is now authorized by Alice to view the presence status of Alice.
The notification will also contain the all of the current presence data of Alice that Bob is allowed to see according to the rules.

6. The service notifies application 1 about a new watcher called Bob, whose status is now changed to active.

5.4.3 Update of presence status

This is a continuation of the sequence started in the previous sections. More specifically the following preconditions apply:

· There is an active subscription for watcher info by application 1 for the presentity Alice.

· There is an active subscription for the presence of presentity Alice by application 2 on behalf of watcher Bob

· There is an active publication resource for presentity Alice create by application 1.

This figure below shows the following scenario

- Application 1 uploads a new status-icon for Alice (step 1)

- Application 1 updates the presence data of Alice to with a link to the uploaded status-icon

- Application 2 is notified about the changed presence data

- Application 2 retrieves the content status-icon

- All the created subscriptions and the publications are terminated (but not the status-icon content)

The resources:

1. To put the content of the status icon the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/content/{contentId}

2. To modify the published presence status the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/presenceSource/{presenceSourceId}/{presenceResource}

3. The notification of the presence information is done an the callback URL provided by the application.

4. To get the content of the status-icon the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{watcherId}/content/{presentityId}/{contentId}

5. To delete the presence subscription the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{watcherId}/presenceContact/{presentityId}/subscriptions/{subscriptionId}

6. To delete the watcher info subscription the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/watchers/subscriptions/{subscriptionId}

7. To delete the publication of presence data the following resource is used:
http://{serverRoot}/{apiVersion}/presence/{presentityId}/presenceSource/{presenceSourceId}

[image: image3]
Figure 3 Updating of presence status
Outline of the flows:

1. Application 1 uploads a new status-icon for the Alice. It includes the content of the icon as the body in a PUT on the following resource. This assumes the id of the icon is smiley.
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/content/smiley

The result depends on whether the content with that ID already exists. In this case it is assumed that it did not yet exist, so a 201 created is returned.

2. Application 1 updates the status of the Alice, by only updating the status-icon part. It does a PUT on the following resource:
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/presenceSource/app1_term1/person/statusIcon

The result depends on whether the old presence data already contained a status icon.

3. The service notifies Application 2 with the watcher Bob about the status change of the presentity Alice. The provided presence information contains the status-icon with a link to the location of the icon (TODO verify!)

4. Application 2 fetches the content of the status-icon by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/presence/sip:bob@example.com/content/sip:alice@example.com/smiley

The response contains the status icon content in the body.

5. Application 2 deletes the subscription resource for presence information by doing a DELETE on the following resource:
 http://{serverRoot}/{apiVersion}/presence/sip:bob@example.com/presenceContact/sip:Alice@example.com/subscriptions/app2_term2

6. Application 1 deletes the watcher info subscription by doing a DELETE on the following resource:
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/watchers/subscriptions/app1_term1

7. Application 2 deletes the publication of presence data by doing a DELETE on the following resource:
http://{serverRoot}/{apiVersion}/presence/sip:alice@example.com/presenceSource/app1_term1
5.4.4

-

-
-

1.
2.
3.
5.4.5

-

-

1.
2.
3.
Server

Application

1. PUT to create watcher info subscription

Create a resource with subscription id

2. Response with created resource including subscription id

3. POST notification to notifyURL specified when creating subscription

4. Response.

6. Response

5. DELETE the subscription.

At some later time,the notification may be cancelled

At some later time,an event occurs to trigger the notification.

Application

Server

1. PUT to create authorization rules

2. Response

3. GET authorization rules with ruleId.

4. Response with rules.

6. Response

5. DELETE the rule with ruleId.

1. PUT new status-icon

Response created

2. PUT change status-icon element

Response

4. GET status-icon content

Response – status-icon content

Response

3. POST inform watcher about presence status

5. DELETE subscription for presence updates

Response

6. DELETE subscription for watchers

Response

7. DELETE presence data for application 1

Response

Application1

Server

Application2

Create resource

Create resource

Create resource

Create resource

Create resource

Remove resource

Create resource

Remove resource

Create resource

Remove resource

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Create resource

Application2

Server

Application1

6. POST inform about watcher

Response

5. POST inform watcher about presence status

Response

2. POST inform watcher about presence status

Response

Response created

4. PUT add Bob to allowed list

3. POST inform about watcher

Response

Response – created

1. PUT Create a presence subscription for Alice on behalf of Bob

Remove resource

Create resource

Remove resource

Create resource

Remove resource

Create resource

Create resource

Create resource

Create resource

Create resource

Application2

Server

Application1

Response

7. DELETE presence data for application 1

Response

6. DELETE subscription for watchers

Response

5. DELETE subscription for presence updates

3. POST inform watcher about presence status

Response

Response – status-icon content

4. GET status-icon content

Response

2. PUT change status-icon element

Response created

1. PUT new status-icon

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20100101-I]

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20100101-I]

