Doc# OMA-ARC-REST-2010- 0714-CR_Sequence_flows_for_authorization_rules_in_ALM.doc
Change Request
Doc# OMA-ARC-REST-2010- 0714-CR_Sequence_flows_for_authorization_rules_in_ALM.doc
Change Request

Change Request

	Title:
	ALM Adding sequence flows for shared resources
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST

	Doc to Change:
	OMA-ParlayREST-AddressListMgmt-V1_0-20101206-D

	Submission Date:
	07 December 2010

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Michael Brenner, Alcatel-Lucent, Michael.Brenner@alcatel-lucent.com

	Attachement:
	n/a

1 Reason for Change

Adding sequence flows for authorization rules and shared resources. Some minor edits (e.g. removing curly brackets where agreed).

2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The group is requested to agree the changes.
6 Detailed Change Proposal

Change 1: Sequence diagrams section changes. Note that many of the figures have been touched to “stretch” them for visibility or typos, yet Word does not show them as changes. Suggestion is to replace the entire section with the changes below. Or, apply each textual change, and replace all sequence flow figures in the ALM draft by the figures in this contribution.
5.3 Sequence Diagrams
5.3.1 Managing contacts in a flat list
The figure below shows various ways to retrieve and manage contacts in a flat list. There is one application acting on behalf of userId. The application retrieves all contacts of userId, creates/updates a new contact for userId or deletes a contact for userId in the flat list of contacts.
The resources:

- To retrieve all the user’s contacts the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts
- To retrieve, add, update or delete one contact in the flat list of contacts the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}
- To retrieve all attributes of a specific contact the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes
- To retrieve, create, update or delete a single attribute of a specific contact the following resource is used: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]

[image: image1.emf]Application Server

1.

GET to retrieve collection of contacts

Response with contacts in a flat list

2.

GET to retrieve a contact from the flat list

Response with individual contact

3.

PUT to create or update a contact in the flat list

Response with updated contact

4.

DELETE to remove a contact from the flat list

Response OK

5.

GET to retrieve all attributes of a contact

Response with contact’s attributes

6.

GET to retrieve a contact’s single attribute

Response with contact’s attribute

7.

PUT to create or update a contact’s single attribute

Response OK

8.

DELETE to remove a contact’s single attribute

Response OK

Figure 2 Managing contacts
1. The application retrieves all contacts for userId, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts

The result contains all the contacts for userId.
2. The application retrieves one contact for userId, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}

The result contains the information for one selected contact.

3. The application adds/updates a new contact by performing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}

The result contains a return code indicating whether or not the operation was successful.
4. The application deletes one contact from flat list of all contacts by performing a DELETE on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}

The result contains a return code indicating whether or not the operation was successful.
5. The application retrieves all attributes of a specific contact by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes
6. The application retrieves a single attribute of a specific contact by performing GET on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]
7. The application creates or updates a single attribute of a specific contact by performing PUT on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]
8. The application deletes a single attribute of a specific contact by performing DELETE on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/contacts/{contactId}/attributes/[ResourceRelPath]
5.3.2 Accessing the member lists and members

The figure below shows various ways to retrieve and manipulate data in member lists. There is one application acting on behalf of Alice. The application is interested in one specific member list, the list with id 'myFriends'. In that list there is one specific member, called Bob that is used in this example.

The resources:

- To fetch all the member lists the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/memberLists

- To add of a member list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/memberLists/{memberListId}

- To fetch all the member s of a list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/memberLists/{memberListId}/members

- To add a specific member to a member list the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/memberLists/{memberListId}/members/{memberId}
- To fetch all attributes for a member list this resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/memberLists/{memberListId}/attributes
- To fetch all attributes of a specific member the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/memberLists/{memberListId}/members/{memberId}/attributes
- To fetch a single attribute of a specific member the following resource is used: http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/memberLists/{memberListId}/members/{memberId}/attributes/[ResourceRelPath]

[image: image2.emf]Application Server

1.

GET all member lists for Alice

Response with list of all member lists

2.

PUT to add a new member list myFriends

Response OK

3.

GET all members in the myFriends member list

Response with all members in myFriends

4.

PUT to add a new member Bob to myFriends member list

Response OK

5.

GET all attributes of the myFriends member list

Response with all attributes of myFriends

6.

GET all attributes of Bob in myFriends member list

Response with all attributes of Bob

Response with the selected attribute of Bob

7.

GET a single attribute of Bob in myFriends member list

Figure 3 Accessing member lists and members
.

1. The application fetches all the lists for the userId Alice by doing a GET on the following resource.
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/memberLists

The result contains all the member lists for Alice.

2. The application adds a new member list called myFriends by doing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/memberLists/myFriends

The result contains a return code indicating whether or not the operation was successful.
3. The application fetches all the members of the myFriends list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/memberLists/myFriends/members

The response will contain all the members of the myFriends list from Alice, but will not contain the attributes of the list.

4. The application adds a new member called Bob to the myFriends list doing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/memberLists/myFriends/members/{bobUserId}

The result contains a return code indicating whether or not the operation was successful.
5. The application fetches all attributes for the myFriends list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt /{aliceUserId}/memberLists/myFriends/attributes

The response will contain all attributes of the myFriends list.
6. The application fetches all attributes of Bob in the myFriends list by doing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{/aliceUserId}/memberLists/myFriends/members/ {bobUserId}/attributes

The result contains all the attributes of Bob in this list.
7. The application fetches the display name attribute of Bob in the myFriends list by doing a GET on the following resource: http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/memberLists/myFriends/members/ {bobUserId}/attributes/display-name

The result contains Bob’s display name attribute.

5.3.3 Subscribing to list changes and receiving notifications

The figure below shows how a client can subscribe for notifications about contacts and member list changes and receive notifications.

The resources:

- To retrieve all the subscriptions to member lists changes, and to create a new subscription the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/ subscriptions/listChanges

- To retrieve or delete an individual subscription, the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/subscriptions/listChanges/{subscriptionId}

[image: image4.emf]Application Server

1.

GET all member lists for Alice

Response with list of all member lists

2.

PUT to add a new member list myFriends

Response OK

3.

GET all members in the myFriends member list

Response with all members in myFriends

4.

PUT to add a new member Bob to myFriends member list

Response OK

5.

GET all attributes of the myFriends member list

Response with all attributes of myFriends

6.

GET all attributes of Bob in myFriends member list

Response with all attributes of Bob

Response with the selected attribute of Bob

7.

GET a single attribute of Bob in myFriends member list

Figure 4 Subscription to notifications about list changes
1. The application retrieves list of all subscriptions for member list changes for the userId by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/subscriptions/listChanges

The result contains all the subscriptions created by Alice.

2. The application retrieves an individual subscription identified by subscriptionId by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/subscriptions/listChanges/{subscriptionId}

The result contains a return code indicating whether or not the operation was successful.
3. The application creates a new subscription for list changes notification by performing a POST on the following resource, including in the request body a client application supplied notifyURL:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/subscriptions/listChanges

If successful (as shown), the response will contain the complete representation of the newly created resource for subscription, including a self reference to the created resource.

4. The application adds a new member called Bob to the myFriends list doing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId}/memberLists/myFriends/members/{bobUserId}

The result contains a return code indicating whether or not the operation was successful.
5. The server notifies the application about the changes in his myFriends member list, by performing a POST on the client application supplied notifyURL in the newly created subscriptionId:
http://{client-supplied notifyURL}

The result contains a return code indicating whether or not the operation was successful.
6. The application deletes the subscription identified by subscriptionId by performing a DELETE on the resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{aliceUserId} /subscription/listChanges/{subscriptionId}

The result was successful.
5.3.4 Managing shared member lists

The figure below shows how to manage shared member lists.

The resources:

- To retrieve all member lists shared by another user the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/shared/{otherUserId}/memberLists
- To retrieve an individual member list shared by another user the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/shared/{otherUserId}/memberLists/{sharedListIdentity}

- To retrieve a member’s information from a member list shared by another user the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/shared/{otherUserId}/memberLists/{sharedListIdentity}/members/{memberId}

[image: image5.emf]Application Server

1.

GET to retrieve contact lists shared by other users

Response with list of shared contact lists

2.

GET to retrieve a given shared list

Response with shared contact list members

3.

GET to retrieve shared member info in a shared list

Response with shared member information

Figure 5 Flow for managing shared member lists
1. The application retrieves a list of all member lists shared by the user identified by otherUserId with the user identified by userId, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/shared/{otherUserId}/memberLists

The result contains all the member lists that otherUserId shares with userId.

2. The application retrieves an individual member list shared by the user identified by otherUserId with the user identified by userId, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/shared/{otherUserId}/memberLists/{sharedListIdentity}

The result contains all the members in the shared member list.

The application retrieves member’s information from a member list shared by the user identified by otherUserId with the user identified by userId, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/shared/{otherUserId}/memberLists/{sharedListIdentity}/members/{sharedMemberId}

The result contains the selected member’s information.

Note: sequence flows for managing shared contacts are similar.
5.3.4 Managing authorization rules

The figure below shows how to manage authorization rules for sharing member lists.

The resources:

- To retrieve all authorization rules and to create a new authorization rule the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/authorizationRules
- To retrieve, update or delete an individual authorization rule the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/authorizationRules/{ruleId}
- To retrieve, update or delete the authorized entity in an authorization rule the following resource is used:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/authorizationRules/{ruleId}/[ResourceRelPath]

[image: image6.emf]Application Server

1.

GET to retrieve all authorization rules for a given user

Response with list of authorization rules

2.

POST to create a new authorization rule for a given user

Response with reference including ruleId

3.

PUT to update an authorization rule

Response OK

4.

PUT to add an authorized entity to authorization rule

Response OK

5.

DELETE to remove an authorization rule

Response OK

Figure 6 Flow for managing authorization rules
1. The application retrieves a list of all authroization rules for a given usermember lists shared by the user identified by userId, by performing a GET on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/authorizationRules

The result contains all the authorization rules for the given user.

2. The application creates a new authorization rule for a given user identified by userId, by performing a POST on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/authorizationRules

The result contains a reference to new resource including the newly created ruleId.
3. The application updates an authorization rule for the user identified by userId by performing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/authorizationRules/{ruleId}

The result contains a return code indicating whether or not the operation was successful.
4. The application adds an authorized entity (e.g. Alice) to the authorization rule for the user identified by userId by performing a PUT on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/authorizationRules/{ruleId}/users/{aliceUserId}

The result contains a return code indicating whether or not the operation was successful.
5. The application deletes an authorization rule for the user identified by userId by performing a DELETE on the following resource:
http://{serverRoot}/{apiVersion}/addresslistmgt/{userId}/authorizationRules/{ruleId}

The result contains a return code indicating whether or not the operation was successful.
Application

1.

GET

get

all memberlists for Alice

Response

–

list of all member lists

Server

2.

PUT

add a new memberlist

Response

3.

GET

get

all members in the

myFriends

list

Response

–

list of all members

4.

PUT

add Bob to the

myFriends

list

Response

5.

GET

get

all attributes of the

myFriends

list

Response

–

the list of attributes

6.

GET

get

all attributes of bob in the

myFriends

list

Response

–

the list of attributes

7.

GET

a single attribute from bob in the

myFriends

list

Response

–

the attribute

_1353214798.ppt

Application

Server

1. GET all member lists for Alice

Response with list of all member lists

2. PUT to add a new member list myFriends

Response OK

3. GET all members in the myFriends member list

Response with all members in myFriends

4. PUT to add a new member Bob to myFriends member list

Response OK

5. GET all attributes of the myFriends member list

Response with all attributes of myFriends

6. GET all attributes of Bob in myFriends member list

Response with all attributes of Bob

Response with the selected attribute of Bob

7. GET a single attribute of Bob in myFriends member list

_1353214888.ppt

Application

Server

1. GET all member lists for Alice

Response with list of all member lists

2. PUT to add a new member list myFriends

Response OK

3. GET all members in the myFriends member list

Response with all members in myFriends

4. PUT to add a new member Bob to myFriends member list

Response OK

5. GET all attributes of the myFriends member list

Response with all attributes of myFriends

6. GET all attributes of Bob in myFriends member list

Response with all attributes of Bob

Response with the selected attribute of Bob

7. GET a single attribute of Bob in myFriends member list

_1353191875.ppt

Application

Server

1. GET to retrieve contact lists shared by other users

Response with list of shared contact lists

2. GET to retrieve a given shared list

Response with shared contact list members

3. GET to retrieve shared member info in a shared list

Response with shared member information

_1353213540.ppt

Application

Server

1. GET to retrieve all authorization rules for a given user

Response with list of authorization rules

2. POST to create a new authorization rule for a given user

Response with reference including ruleId

3. PUT to update an authorization rule

Response OK

4. PUT to add an authorized entity to authorization rule

Response OK

5. DELETE to remove an authorization rule

Response OK

_1353190389.ppt

Application

Server

1. GET to retrieve collection of contacts

Response with contacts in a flat list

2. GET to retrieve a contact from the flat list

Response with individual contact

3. PUT to create or update a contact in the flat list

Response with updated contact

4. DELETE to remove a contact from the flat list

Response OK

5. GET to retrieve all attributes of a contact

Response with contact’s attributes

6. GET to retrieve a contact’s single attribute

Response with contact’s attribute

7. PUT to create or update a contact’s single attribute

Response OK

8. DELETE to remove a contact’s single attribute

Response OK

