 STYLEREF ZDID * MERGEFORMAT
Page 45 V(66)

	 [image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for
Capability Discovery

	Draft Version 1.0 – 28 Nov 2012

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_CapabilityDiscovery-V1_0-20121128-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavours to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
8
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
9
4.
Introduction
10
4.1
Version 1.0
10
5.
Capability Discovery API definition
11
5.1
Resources Summary
11
5.2
Data Types
16
5.2.1
XML Namespaces
16
5.2.2
Structures
16
5.2.2.1
Type: CapabilitySourceList
16
5.2.2.2
Type: CapabilitySource
16
5.2.2.3
Type: ServiceCapability
18
5.2.2.4
Type: ContactServiceCapabilities
19
5.2.3
Enumerations
19
5.2.3.1
Enumeration: CapabilityStatus
19
5.2.3.2
Enumeration: UserType
20
5.2.4
Values of the Link “rel” attribute
20
5.3
Sequence Diagrams
20
5.3.1
Retrieving and managing own service capabilities
20
5.3.2
Handling of individual service capability information with Light-weight Resources
21
5.3.3
Retrieving service capabilities for a contact
23
6.
Detailed specification of the resources
24
6.1
Resource: Service Capability Sources
24
6.1.1
Request URL variables
24
6.1.2
Response Codes and Error Handling
25
6.1.3
GET
25
6.1.3.1
Example 1: Retrieve a list with status of all own service capabilities (Informative)
25
6.1.3.1.1
Request
25
6.1.3.1.2
Response
25
6.1.3.2
Example 2: Retrieve a list with status of all own service capabilities using a filter (Informative)
26
6.1.3.2.1
Request
26
6.1.3.2.2
Response
26
6.1.4
PUT
26
6.1.5
POST
26
6.1.5.1
Example 1: Create a new service Capability Source using ‘tel’ URI, response with a copy of created resource (Informative)
27
6.1.5.1.1
Request
27
6.1.5.1.2
Response
27
6.1.5.2
Example 2: Create a new service Capability Source using ‘acr’ URI, response with a copy of created resource (Informative)
27
6.1.5.2.1
Request
27
6.1.5.2.2
Response
28
6.1.5.3
Example 3: Create a new service Capability Source, response with a location of created resource (Informative)
28
6.1.5.3.1
Request
28
6.1.5.3.2
Response
28
6.1.5.4
Example 4: Creating a new Capability Source fails (Informative)
29
6.1.5.4.1
Request
29
6.1.5.4.2
Response
29
6.1.6
DELETE
29
6.2
Resource: Individual service Capability Source
30
6.2.1
Request URL variables
30
6.2.2
Response Codes and Error Handling
30
6.2.3
GET
30
6.2.3.1
Example 1: Retrieve service capabilities registered for a particular Capability Source (Informative)
30
6.2.3.1.1
Request
30
6.2.3.1.2
Response
31
6.2.3.2
Example 2: Retrieving service capabilities for non-existent Capability Source (Informative)
31
6.2.3.2.1
Request
31
6.2.3.2.2
Response
31
6.2.4
PUT
31
6.2.4.1
Example 1: Enable service capabilities for a particular Capability Source (Informative)
32
6.2.4.1.1
Request
32
6.2.4.1.2
Response
32
6.2.4.2
Example 2: Create (register) a new service capability for a particular Capability Source (Informative)
32
6.2.4.2.1
Request
32
6.2.4.2.2
Response
33
6.2.5
POST
33
6.2.6
DELETE
33
6.2.6.1
Example: Deregister service Capability Source (Informative)
33
6.2.6.1.1
Request
33
6.2.6.1.2
Response
34
6.3
Resource: Individual service capability data
34
6.3.1
Request URL variables
34
6.3.1.1
Light-weight relative resource paths
34
6.3.2
Response Codes and Error Handling
35
6.3.3
GET
35
6.3.3.1
Example: Retrieve an individual own service capability data (Informative)
35
6.3.3.1.1
Request
35
6.3.3.1.2
Response
35
6.3.4
PUT
35
6.3.4.1
Example 1: Enable an individual own service capability (Informative)
36
6.3.4.1.1
Request
36
6.3.4.1.2
Response
36
6.3.4.2
Example 2: Create (register) an individual own service capability (Informative)
36
6.3.4.2.1
Request
36
6.3.4.2.2
Response
36
6.3.4.3
Example 3: Registration of an individual own service capability fails (Informative)
37
6.3.4.3.1
Request
37
6.3.4.3.2
Response
37
6.3.5
POST
37
6.3.6
DELETE
37
6.3.6.1
Example: Deregister an own service capability (Informative)
38
6.3.6.1.1
Request
38
6.3.6.1.2
Response
38
6.4
Resource: Service capabilities for a contact
38
6.4.1
Request URL variables
38
6.4.2
Response Codes and Error Handling
38
6.4.3
GET
38
6.4.3.1
Example 1: Retrieve service capabilities for a contact (Informative)
39
6.4.3.1.1
Request
39
6.4.3.1.2
Response
39
6.4.3.2
Example 2: Check whether a contact has a specific service capability (Informative)
39
6.4.3.2.1
Request
39
6.4.3.2.2
Response
40
6.4.3.3
Example 3: Check whether a contact is an RCSe user or not, response positive (Informative)
40
6.4.3.3.1
Request
40
6.4.3.3.2
Response
40
6.4.3.4
Example 4: Check whether a contact is an RCSe user or not, response negative (Informative)
41
6.4.3.4.1
Request
41
6.4.3.4.2
Response
41
6.4.3.5
Retrieving service capabilities for a contact fails (Informative)
41
6.4.3.5.1
Request
41
6.4.3.5.2
Response
41
6.4.4
PUT
42
6.4.5
POST
42
6.4.6
DELETE
42
7.
Fault definitions
43
7.1
Service Exceptions
43
7.1.1
SVC1004: Capability Source does not exist
43
7.2
Policy Exceptions
43
7.2.1
POL1021: Maximum number of Capability Sources exceeded
43
7.2.2
POL1022: Service capability not supported
43
Appendix A.
Change History (Informative)
45
A.1
Approved Version History
45
A.2
Draft/Candidate Version 1.0 History
45
Appendix B.
Static Conformance Requirements (Normative)
46
B.1
SCR for REST.CapDis Server
46
B.1.1
SCR for REST.CapDis.Own.CapabilitySources Server
46
B.1.2
SCR for REST.CapDis.Own.Single.CapabilitySource Server
46
B.1.3
SCR for REST.CapDis.Own.Individual.Capability Server
46
B.1.4
SCR for REST.CapDis.Contact.Capabilities Server
47
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
48
Appendix D.
JSON examples (Informative)
49
D.1
Retrieve a list with status of all own service capabilities (section 6.1.3.1)
49
D.2
Retrieve a list with status of all own service capabilities using a filter (section 6.1.3.2)
50
D.3
Create a new service Capability Source using ‘tel’ URI, response with a copy of created resource (section 6.1.5.1)
50
D.4
Create a new service Capability Source using ‘acr’ URI, response with a copy of created resource (section 6.1.5.2)
51
D.5
Create a new service Capability Source, response with a location of created resource (section 6.1.5.3)
52
D.6
Creating a new Capability Source fails (section 6.1.5.4)
52
D.7
Retrieve service capabilities registered for a particular Capability Source (section 6.2.3.1)
53
D.8
Retrieving service capabilities for non-existent Capability Source (section 6.2.3.2)
53
D.9
Enable service capabilities for a particular Capability Source (section 6.2.4.1)
54
D.10
Create (register) a new service capability for a particular Capability Source (section 6.2.4.2)
55
D.11
Deregister service Capability Source (section 6.2.6.1)
55
D.12
Retrieve an individual own service capability data (section 6.3.3.1)
56
D.13
Enable an individual own service capability (section 6.3.4.1)
56
D.14
Create (register) an individual own service capability (section 6.3.4.2)
57
D.15
Registration of an individual own service capability fails (section 6.3.4.3)
57
D.16
Deregister an own service capability (section 6.3.6.1)
58
D.17
Retrieve service capabilities for a contact (section 6.4.3.1)
58
D.18
Check whether a contact has a specific service capability (section 6.4.3.2)
58
D.19
Check whether a contact is an RCSe user or not, response positive (section 6.4.3.3)
59
D.20
Check whether a contact is an RCSe user or not, response negative (section 6.4.3.4)
59
D.21
Retrieving service capabilities for a contact fails (section 6.4.3.5)
60
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
61
Appendix F.
Light-weight resources (Informative)
62
Appendix G.
Authorization aspects (Normative)
63
G.1
Use with OMA Authorization Framework for Network APIs
63
G.1.1
Scope values
63
G.1.1.1
Definitions
63
G.1.1.2
Downscoping
63
G.1.1.3
Mapping with resources and methods
64
G.1.2
Use of ‘acr:auth’
66

Figures

12Figure 1 Resource structure defined by this specification

21Figure 2 Management of own service capabilities

22Figure 3 Management of an individual own service capability

23Figure 4 Retrieving service capabilities for a contact

Tables

63Table 1: Scope values for RESTful Capability Discovery API

65Table 2: Required scope values for: Management of own service capabilities

65Table 3: Required scope values for: Retrieving of service capabilities for a contact

1. Scope

This specification defines a RESTful API for Capability Discovery using HTTP protocol bindings.
2. References

2.1 Normative References

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, January 2010, URL: http://tools.ietf.org/html/draft-uri-acr-extension-04

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_CapabilityDiscovery]
	“XML schema for the RESTful Network API for Capability Discovery”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_capabilitydiscovery-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL: http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

Terminology and Conventions

2.3 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

2.4 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT.

	Capability Source
	An entity that on behalf of a user is managing user’s service capabilities which are valid only a certain time unless they are refreshed.
In the context of this specification a Capability Source refers to an instance of service capabilities of the user on the server, which are registered from a particular user application instance (device).

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

3. Introduction

The Technical Specification of the RESTful Network API for Capability Discovery contains HTTP protocol bindings for Capability Discovery, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON).
3.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Register/de-register own service capabilities
· Enable/disable registered own capabilities
· Retrieve service capabilities of a contact
· Discover what type of user is a contact (e.g. RCSe user or not)
In addition, this specification provides:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in a resource URL variable that identifies an end user
4. Capability Discovery API definition
This section is organized to support a comprehensive understanding of the Capability Discovery API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3,described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body, while JSON examples are provided in Appendix D..
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.

Appendix B provides the Static Conformance Requirements (SCR).
Appendix C provides application/x-www-form-urlencoded examples, where applicable.

Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.

Appendix F provides a list of all Light-Weight resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
4.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Capability Discovery.

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
[image: image2.emf]//{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}

/{capabilitySourceId}

/capabilitySources

/contactId}

/contactCapabilities

/[ResourceRelPath]

Heavy-weight resource

Relative path for Light-

weight Resource

//{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}

/{capabilitySourceId}

/capabilitySources

/contactId}

/contactCapabilities

/[ResourceRelPath]

Heavy-weight resource

Relative path for Light-

weight Resource

Heavy-weight resource

Relative path for Light-

weight Resource

Figure 1 Resource structure defined by this specification
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Purpose: To allow application to manage own service capabilities
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service Capability Sources
	/{userId}/capabilitySources

	CapabilitySourceList (used for GET)
CapabilitySource (used for POST)
common:ResourceReference
(OPTIONAL alternative for POST response)
	Retrieves all own registered service capabilities with a status
Note: Query string parameter can be used to select either enabled or disabled capabilities.
	no
	Defines (registers) a new own service Capability Source (i.e. registering service capabilities for a new device)
	

	Individual service Capability Source
	/{userId}/capabilitySources/{capabilitySourceId}
	CapabilitySource
(used for GET and PUT)
	Retrieves all own service capabilities with a status for a specified service Capability Source
	Updates capability information for a specified Capability Source (i.e. add/remove service capabilities, or enable/disable registered service capabilities)
Note: When removing the last service capability registered for a particular Capability Source, it is up to the server policy whether the Capability Source will be removed or not.
	no
	Removes (deregisters) all own service capabilities registered for a specified service Capability Source
Note that after the completion of this operation the Capability Source will be removed.

	Individual service capability data
	/{userId}/capabilitySources/{capabilitySourceId}/[ResourceRelPath]
	The data structure corresponds to an element within the CapabilitySource structure pointed out by the resource URL.

(used for PUT/GET)
	Retrieves individual own service capability information registered for a specified service Capability Source
	Creates or updates capability information for a specified service capability (i.e. add new service capability, or enable/disable registered service capability)

Note: Update/refresh of duration time for a specified Capability Source is possible if such option is supported by service provider)
	no
	Removes (deregisters) specified service capability registered for a specified service Capability Source

Note: When removing the last service capability registered for a particular Capability Source, it is up to the server policy whether the Capability Source will be removed or not.

Purpose: To allow application to retrieve service capabilities of a contact
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service capabilities for a contact
	/{userId}/contactCapabilities/{contactId}
	ContactServiceCapabilities
	Retrieves list of service capabilities defined for a specified contact (response includes only enabled capabilities)

Note: Query string parameters can be used to filter query request, e.g. to query for a specific capability, or to check what type of a user is a contact (e.g. whether the contact is an RCSe user or not)
	no
	no
	no

4.2 Data Types
4.2.1 XML Namespaces

The XML namespace for the Capability Discovery data types is:

urn:oma:xml:rest:netapi:capabilitydiscovery:1

The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_CapabilityDiscovery].
4.2.2 Structures

The subsections of this section define the data structures used in the Capability Discovery API.
Some of the structures can be instantiated as so-called root elements, i.e. they define the type of a representation of a so-called Heavy-weight Resource.

The column [ResourceRelPath] in the tables below, if used, includes relative resource paths for Light-weight Resource URLs that are used to access individual elements in the data structure (so-called Light-weight Resources). A string from this column needs to be appended to the corresponding Heavy-weight Resource URL in order to create Light-weight Resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath].
For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.

4.2.2.1 Type: CapabilitySourceList
This type represents a list of own service Capability Sources.
	Element
	Type
	Optional
	Description

	capabilitySource

	CapabilitySource [0…unbounded]
	Yes
	A list of Capability Sources

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named capabilitySourceList of type CapabilitySourceList is allowed in response bodies.

4.2.2.2 Type: CapabilitySource
This type represents a list of own service capabilities for a particular Capability Source.
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	serviceCapability

	ServiceCapability [0…unbounded]
	Yes
	{capabilityId}
	Array of service capabilities.
Sub-element ‘capabilityId’ of the type ServiceCapability is a key property of element serviceCapability and SHALL NOT be altered when accessed as Light-weight Resource.

	clientCorrelator
	xsd:string
	Yes
	Not applicable
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element SHOULD be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate Capability Source creation in such situations.
In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	applicationTag
	xsd:string
	Yes
	Not applicable
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	duration
	xsd:int
	Yes
	duration
	Specifies the duration of the service Capability Source lifetime in seconds. When this time has elapsed the Capability Source will expire unless it has been refreshed.
If the parameter is omitted during Capability Source creation, a default value specified by the server policy will be used.

A too low value (including “0”) will result in an error response. What is too low is defined by server policy.

A too high requested value may be reduced by the server according to the service policy.

In any case the server SHOULD inform the client about the agreed duration time in the response to the resource creation. If the parameter is not included in the response to the resource creation, it is assumed that the duration time for a service capability would be as long as the Capability Source exists.

	<any element>
	< type is defined by the schema which implements the element> [0…unbounded]
	Yes
	Not applicable
	Optional element that can be used to specify additional information relating to a particular Capability Source. It can be any element from any other namespace (schema) than the target namespace. The type of such element is defined by the schema implementing the element.

In XML implementations, the element must be qualified with the namespace prefix.

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named capabilitySource of type CapabilitySource is allowed in request and/or response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.
Note that applicationTag is used to enable a particular application instance to pick up a previously created resource (if it exists) and continue to operate on it. A typical usage is that a client will perform a GET on the parent resource and in the response receive a list of previously created resources from where the application is able to find its previously created resource. It is up to the client application how to construct the application tag. Please note that a typical usage of the client correlator is not enough for a stateless application to identify a previously created resource since it is uniquely generated every time a new resource is created.
4.2.2.3 Type: ServiceCapability
 This type represents an individual service capability
	Element
	Type
	Optional
	 [ResourceRelPath]
	Description

	capabilityId

	xsd:token
	No
	Not applicable
	Service capability name or identifier (e.g. feature-tag)
SHALL NOT be altered when included in Light-weight Resource URL

If capabilityId is also part of the request URL, the two MUST have the same value.

	status
	CapabilityStatus
	Yes
	{capabilityId}/status
	Describes the status of a service capability.

During the registration of service capability, the application MAY specify the desired initial status of the service capability however it is up to the server policy to accept it or not. If not specified, default status will be “Disabled”.

In any case the server SHALL include the accepted capability status in the response to service capability registration.

	<any element>
	< type is defined by the schema which implements the element> [0…unbounded]
	Yes
	Not applicable
	Optional element that can be used to specify additional information about a service capability. It can be any element from any other namespace (schema) than the target namespace. The type of such element is defined by the schema implementing the element.

In XML implementations, the element must be qualified with the namespace prefix.

Editor Note: FFS to check whether for service capability identifiers should be used the existing feature-tags defined by GSMA RCS (and another standardization bodies) or these should be specific values defined for this API and mapped to/from RCS gateway.
4.2.2.4 Type: ContactServiceCapabilities
This type represents service capabilities for a contact.
	Element
	Type
	Optional
	Description

	serviceCapability

	ServiceCapability [0…unbounded]
	Yes
	List of service capabilities for a contact.
Not included in response to queries which includes a filter for a user type only.

	userType
	UserType [0…unbounded]
	Yes
	Indicates what type of a user is a contact (e.g. RCSe user).
Not included in response to queries which include a filter for a service capability only.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named contactServiceCapabilities of type ContactServiceCapabilities is allowed in response bodies.

4.2.3 Enumerations
The subsections of this section define the enumerations used in the Capability Discovery API.
4.2.3.1 Enumeration: CapabilityStatus
This enumeration defines possible values to describe the status of a particular service capability.
	Enumeration
	Description

	Enabled
	Indicates that a service capability is visible (discoverable) to other users.

	Disabled
	Indicates that a service capability SHALL NOT be visible to other users.

4.2.3.2 Enumeration: UserType

This enumeration defines possible values to describe the type of a user.
	Enumeration
	Description

	RCS
	Indicates an RCS user.

	RCSe
	Indicates an RCSe user.

4.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· CapabilitySourceList
· CapabilitySource
· ContactServiceCapabilities

These values indicate the kind of resource that the link points to.
4.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
4.3.1 Retrieving and managing own service capabilities
This figure below shows a scenario for retrieving and managing own service capabilities.
The resources:

· To retrieve a list and status of all own service capabilities (both enabled and disabled) , read resource under
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitiySources
Note: a query string parameter can be used to filter query request and query for a specific capability status, e.g. for enabled, or disabled capabilities only.
· To define (register) a new Capability Source (with its service capabilities), create resource under
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitySources

· To retrieve all service capabilities for a particular Capability Source, read resource under
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitySources/{capabilitySourceId}
· To update created Capability Source (e.g. add/remove service capabilities or enable/disable service capabilities), update resource under
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitySources/{capabilitySourceId}
· To remove (deregister) Capbility Source (including all its service capabilities), delete resource under
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitySources/{capabilitySourceId}
[image: image3.emf]Application Server

Retrieve all own

service capabilitie

Create a new

Capability Source

Remove Capability

Source with its

capabilities

1. GET: retrieve all own service capabilities

Response with all own service capabilities and status

2. POST: create/register a new Capability Source

Response with created resource

Response

4. DELETE: remove/deregister Capability Source

Update Capability

Source with its

capabilities

3. PUT: update service capabilities for created Capability Source

Response with updated Capability Source

Application Server

Retrieve all own

service capabilitie

Retrieve all own

service capabilitie

Create a new

Capability Source

Create a new

Capability Source

Remove Capability

Source with its

capabilities

Remove Capability

Source with its

capabilities

1. GET: retrieve all own service capabilities

Response with all own service capabilities and status

2. POST: create/register a new Capability Source

Response with created resource

Response

4. DELETE: remove/deregister Capability Source

Update Capability

Source with its

capabilities

Update Capability

Source with its

capabilities

3. PUT: update service capabilities for created Capability Source

Response with updated Capability Source

Figure 2 Management of own service capabilities
1. An application on behalf of a user requests a list and status of all own service capabilities by using GET method and receives the list of service capabilities (both disabled and enabled) from all registered Capability Sources for that particular user.
2. An application creates (defines, registers) a new Capability Source (with its service capabilities) for itself by using POST method and receives the resulting resource URL containing the Capability Source Id.

3. An application updates service capabilities for a particular Capability Source (e.g. add/removes service capabilities, or enables/disables service capabilities) by using PUT method and receives response with updated Capability Source.
4. An application deletes (deregisters) a Capability Source with its service capabilities by using DELETE method and receives response with the result of operation. Note that before performing this operation, the application SHOULD ensure that all service capabilities for that particular Capability Source are disabled.
4.3.2 Handling of individual service capability information with Light-weight Resources
This section describes an alternative method for handling of individual own service capability information by using Light-weight Resources.

The resources:
· To update (refresh) duration (lifetime) for a registered Capability Source (subject to service provider policy) the following resource is used:

http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitySources/{capabilitySourceId}/[ResourceRelPah]

Where [ResourceRelPath] is a light-weight relative resource URL which shall be replaced with a string “duration” (see column [ResourceRelPath] in data types in section 5.2.2.2).
· For handling an individual service capability for a particular Capability Source the following resource is used:

http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitySources/{capabilitySourceId}/[ResourceRelPah]

Where [ResourceRelPath] is a light-weight relative resource URL which shall be replaced with an appropriate string from the column [ResourceRelPath] for data types in section 5.2.2, as follows:

· To retrieve data for an individual service capability, replace [ResourceRelPath] with an appropriate capability Id for that particular capability (see variable “{capabilityId}” in section 5.2.2.2).
· To update status (Enable or Disable) for an individual service capability, replace [ResourceRelPath] with “{capabilityId}/status”, where variable “{capabilityId}” is an identifier of the capability and shall be replaced with a real capability Id.
· To add or remove an individual service capability, replace [ResourceRelPath] with an appropriate capability Id for that particular capability (see variable “{capabilityId}” in section 5.2.2.2).
 [image: image4.emf]Application Server

Retrieve status of

service capability

Remove/deregister

service capability

1. GET: retrieve status of an individual service capability

Response with the status of service capability

Response

3. DELETE: remove/deregister an individual service capability

Change status of

service capability

2. PUT: enable/disable an individual service capability

Response with updated status of service capability

Application Server

Retrieve status of

service capability

Retrieve status of

service capability

Remove/deregister

service capability

Remove/deregister

service capability

1. GET: retrieve status of an individual service capability

Response with the status of service capability

Response

3. DELETE: remove/deregister an individual service capability

Change status of

service capability

Change status of

service capability

2. PUT: enable/disable an individual service capability

Response with updated status of service capability

Figure 3 Management of an individual own service capability
1. An application retrieves an individual own service capability by using GET on the Light-weight Resource and receives capability Id along with the status of the capability.

2. The application enables/disables an individual own service capability using PUT on the Light-weight Resource and receives capability Id along with updated status of the capability.

3. The application removes (deregisters) an individual own service capability.

4.3.3 Retrieving service capabilities for a contact

This figure below shows a scenario for retrieving service capabilities registered for a contact (response includes only enabled capabilities)
The resource:

· To retrieve service capabilities for a specified contact, read the resource below with “{contactId}” identifying the targeted contact.

· Note: a query string parameters can be used to filter query request, e.g. to query for a specific capability, or to verify the user type for a contact (e.g. if a contact is an RCSe user).
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/contactCapabilities/{contactId}
 [image: image5.emf]Application Server

Retrieve list of

service capabilities

for a contact

1. GET: retrieve list of service capabilities for a contact

Response with the list of service capabilities for a contact

Application Server

Retrieve list of

service capabilities

for a contact

Retrieve list of

service capabilities

for a contact

1. GET: retrieve list of service capabilities for a contact

Response with the list of service capabilities for a contact

Figure 4 Retrieving service capabilities for a contact
Outline of flow:

1. An application requests service capabilities for a contact identified by “{contactId}” using GET and receives the list of service capabilities (capability Ids) enabled for a contact. To retrieve information on whether the contact has a specific service capability or to verify the user type for a contact (e.g. if the contact is an RCSe user), the application can filter the request by using query string parameters.
5. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML and JSON):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100) and the use of characters other than digits SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
5.1 Resource: Service Capability Sources
The resource used is:
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitySources
This resource is used by a client to retrieve registered own service capabilities from all Capability Sources as well as to create a new Capability Source.
5.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
5.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to Capability Discovery, see section 7.
5.1.3 GET
This operation is used for retrieval of a list with a status of own service capabilities.
Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	statusFilter
	xsd:string
	Yes
	Defines the level of information that shall be returned in the body of the GET response.

If statusFilter is absent, GET response body SHALL include both enabled and disabled service capabilities.

If statusFilter=Enabled, GET response body SHALL include only enabled service capabilities.

If statusFilter=Disabled, GET response body SHALL include only disabled service capabilities.

5.1.3.1 Example 1: Retrieve a list with status of all own service capabilities
(Informative)
5.1.3.1.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources HTTP/1.1
Host: example.com
Accept: application/xml

5.1.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySourceList xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <capabilitySource>
 <serviceCapability>

 <capabilityId>+g3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</capabilityId>
 <status>Disabled</status>
 </serviceCapability>
 <clientCorrelator>123</clientCorrelator>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001</resourceURL>

 </capabilitySource>

<capabilitySource>

 <serviceCapability>
 <capabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.gsma-is"</capabilityId>
 <status>Enabled</status>
 </serviceCapability>

 <serviceCapability>

 <capabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.ft"</capabilityId>
 <status>Disabled</status>
 </serviceCapability>
 <clientCorrelator>1234</clientCorrelator>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource002</resourceURL>

</capabilitySource>
<resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources</resourceURL>

</cd:capabilitySourceList>

5.1.3.2 Example 2: Retrieve a list with status of all own service capabilities using a filter
(Informative)
5.1.3.2.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources?statusFilter=”Enabled” HTTP/1.1
Host: example.com
Accept: application/xml

5.1.3.2.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySourceList xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <capabilitySource>
 <serviceCapability>
 <capabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.gsma-is"</capabilityId>
 <status>Enabled</status>
 </serviceCapability>

 <clientCorrelator>1234</clientCorrelator>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource002</resourceURL>

 </capabilitySource>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources</resourceURL>

</cd:capabilitySourceList>

5.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET, POST’ field in the response as per section 14.7 of [RFC 2616].
5.1.5 POST
This operation is used to create a new service Capability Source.
5.1.5.1 Example 1: Create a new service Capability Source using ‘tel’ URI, response with a copy of created resource
(Informative)
5.1.5.1.1 Request

	POST /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources HTTP/1.1
Host: example.com
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapability>
 <capabilityId>+g.3gpp.cs-voice</capabilityId>
 </serviceCapability>

 <clientCorrelator>12345</clientCorrelator>
</cd:capabilitySource>

5.1.5.1.2 Response

	HTTP/1.1 201 Created

Location: http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003 HTTP/1.1
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>
 <capabilityId>+g.3gpp.cs-voice</capabilityId>

 <status>Disabled</status>
 </serviceCapability>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003</resourceURL>

</cd:capabilitySource>

5.1.5.2 Example 2: Create a new service Capability Source using ‘acr’ URI, response with a copy of created resource
(Informative)
5.1.5.2.1 Request

	POST /exampleAPI/capabilitydiscovery/v1/acr%3Apseudonym123/capabilitySources HTTP/1.1
Host: example.com
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapability>
 <capabilityId>+g.3gpp.cs-voice</capabilityId>
 </serviceCapability>

 <clientCorrelator>12345</clientCorrelator>
</cd:capabilitySource>

5.1.5.2.2 Response

	HTTP/1.1 201 Created

Location: http://exampleAPI/capabilitydiscovery/v1/acr%3Apseudonym123/capabilitySources/capsource003 HTTP/1.1
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>
 <capabilityId>+g.3gpp.cs-voice</capabilityId>

 <status>Disabled</status>
 </serviceCapability>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/acr%3Apseudonym123/capabilitySources/capsource003</resourceURL>

</cd:capabilitySource>

5.1.5.3 Example 3: Create a new service Capability Source, response with a location of created resource
(Informative)
5.1.5.3.1 Request

	POST /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources HTTP/1.1
Host: example.com
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapability>
 <capabilityId>+g.3gpp.cs-voice</capabilityId>
 </serviceCapability>

 <clientCorrelator>12345</clientCorrelator>
</cd:capabilitySource>

5.1.5.3.2 Response

	HTTP/1.1 201 Created

Location: http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource004 HTTP/1.1
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

<resourceURL>http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource004</resourceURL>

</common:resourceReference>

5.1.5.4 Example 4: Creating a new Capability Source fails
(Informative)
5.1.5.4.1 Request

	POST /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources HTTP/1.1
Host: example.com
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <serviceCapability>
 <capabilityId>+g.3gpp.cs-voice</capabilityId>
 </serviceCapability>

 <serviceCapability>
 <capabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</capabilityId>
 </serviceCapability>

 <clientCorrelator>12345</clientCorrelator>
</cd:capabilitySource>

5.1.5.4.2 Response

	HTTP/1.1 403 Forbidden
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="CapabilitySourceList"

 href="http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources"/>

 <policyException>

 <messageId>POL1021</messageId>

 <text>Maximum number of registered Capability Sources is exceeded</text>

 </policyException>

</common:requestError>

5.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET, POST’ field in the response as per section 14.7 of [RFC 2616].
5.2 Resource: Individual service Capability Source
The resource used is:
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/capabilitySources/{capabilitySourceId}
This resource is used to manage an individual service Capability Source (e.g. retrieve service capabilities, add/remove service capabilities, or enable/disable service capabilities for that particular Capability Source)
5.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	capabilitySourceId
	Identifier of the service Capability Source (e.g. application/device) which is created by the server during the resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
5.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Capability Discovery, see section 7.
5.2.3 GET
This operation is used for retrieval of all own service capabilities registered for a particular service Capability Source.
5.2.3.1 Example 1: Retrieve service capabilities registered for a particular Capability Source
(Informative)
5.2.3.1.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitiySources/capsource001 HTTP/1.1
Host: example.com

Accept: application/xml

5.2.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>

 <capabilityId>+g3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</capabilityId>
 <status>Disabled</status>
 </serviceCapability>
 <clientCorrelator>123</clientCorrelator>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001</resourceURL>

 </cd:capabilitySource>

5.2.3.2 Example 2: Retrieving service capabilities for non-existent Capability Source
(Informative)
5.2.3.2.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitiySources/capsource099 HTTP/1.1
Host: example.com

Accept: application/xml

5.2.3.2.2 Response

	HTTP/1.1 404 Not Found
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 04 Jun 2012 02:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="capabilitySource"

 href="http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource099"/>

 <serviceException>

 <messageId>SVC1004</messageId>

 <text>Specified Capability Source, capsource099, is not defined</text>

 </serviceException>

</common:requestError>

5.2.4 PUT

This operation is used to update registered service Capability Source (e.g. enable/disable service capabilities, or add/remove service capabilities for that particular Capability Source).
5.2.4.1 Example 1: Enable service capabilities for a particular Capability Source
(Informative)
5.2.4.1.1 Request

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001 HTTP/1.1
Host: example.com
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>

 <capabilityId>+g3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</capabilityId>
 <status>Enabled</status>
 </serviceCapability>
 <clientCorrelator>123</clientCorrelator>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001</resourceURL>

</cd:capabilitySource>

5.2.4.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>

 <capabilityId>+g3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</capabilityId>
 <status>Enabled</status>
 </serviceCapability>
 <clientCorrelator>123</clientCorrelator>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001</resourceURL>

</cd:capabilitySource>

5.2.4.2 Example 2: Create (register) a new service capability for a particular Capability Source
(Informative)
5.2.4.2.1 Request

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001 HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>

 <capabilityId>+g3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</capabilityId>
 <status>Enabled</status>
 </serviceCapability>
 <serviceCapability>

 <capabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp"</capabilityId>

 </serviceCapability>
 <clientCorrelator>123</clientCorrelator>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001</resourceURL>

</cd:capabilitySource>

5.2.4.2.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<cd:capabilitySource xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>

 <capabilityId>+g3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im"</capabilityId>
 <status>Enabled</status>
 </serviceCapability>
 <serviceCapability>

 <capabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp"</capabilityId>
 <status>Disabled</status>
 </serviceCapability>
 <clientCorrelator>123</clientCorrelator>

 <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001</resourceURL>

</cd:capabilitySource>

5.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.2.6 DELETE

This operation is used for deregistration of a particular service Capability Source including all its registered service capabilities. To perform this operation, the application SHOULD ensure that all registered service capabilities for that particular Capability Source are disabled.
5.2.6.1 Example: Deregister service Capability Source
(Informative)
5.2.6.1.1 Request

	DELETE /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001 HTTP/1.1
Host: example.com
Accept: application/xml

5.2.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2012 02:51:59 GMT

5.3 Resource: Individual service capability data
The resource used is:
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/ownCapabilities/{capabilitySourceId}/[ResourceRelPath]
This resource is used by a client to manage individual data relating to its Capability Source or a service capability. The precondition to use this resource is that the Capability Source has already been registered as described in 6.1.5.
5.3.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	capabilityId
	Identifier of the service capability

Example: +g.3gpp.cs-voice

	[ResourceRelPath]
	Relative resource path for a Light-weight Resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable, see 6.3.1.1.

See section 6 for a statement on the escaping of reserved characters in URL variables.

5.3.1.1 Light-weight relative resource paths

The following table describes the type of Light-weight Resources that can be accessed by using this resource, applicable methods, and the link to a data structure that contains values (strings) for those relative resource paths.

	Light-weight Resource type
	Method supported
	Description

	Individual Capability Source data
	GET, PUT, DELETE
	Enables access to duration parameter (lifetime) for a particular Capability Source.

See column [ResourceRelPath] for element “duration” in section 5.2.2.2 for possible values for the light-weight relative resource path.

	Individual service capability data
	GET, PUT, DELETE
	Enables access to individual service capability data.
See column [ResourceRelPath] for elements “serviceCapability” in section 5.2.2.2, and “status” in section 5.2.2.3 for possible values of the light-weight relative resource path.

5.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Capability Discovery, see section 7.
5.3.3 GET
This operation is used for retrieval of data for an individual own service capability or retrieval of duration parameter information for a particular Capability Source.
5.3.3.1 Example: Retrieve an individual own service capability data
(Informative)
5.3.3.1.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/%2Bg.3gpp.cs-voice
HTTP/1.1
Host: example.com
Accept: application/xml

5.3.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:serviceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <capabilityId>+g.3gpp.cs-voice</capabilityId>
 <status>Disabled</status>
</cd:serviceCapability>

5.3.4 PUT

This operation is used to register a new own service capability, update the status of a service capability, or update/refresh duration time for aCapability Source.
5.3.4.1 Example 1: Enable an individual own service capability
(Informative)
5.3.4.1.1 Request

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/%2Bg.3gpp.cs-voice/status HTTP/1.1
Host: example.com
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<cd:status xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">Enabled</cd:status>

5.3.4.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:status xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">Enabled</cd:status>

5.3.4.2 Example 2: Create (register) an individual own service capability
(Informative)
5.3.4.2.1 Request

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/%2Bg.3gpp.iari-ref%3D%22urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp%22 HTTP/1.1
Host: example.com
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:serviceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <capabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp"</capabilityId>

</cd:serviceCapability>

5.3.4.2.2 Response

	HTTP/1.1 201 Created
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:serviceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <capabilityId>+g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp"</capabilityId>
 <status>Disabled</status>
</cd:serviceCapability>

5.3.4.3 Example 3: Registration of an individual own service capability fails
(Informative)
5.3.4.3.1 Request

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/%2Bg.3gpp.cs-video HTTP/1.1
Host: example.com
Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:serviceCapability xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <capabilityId>+3gpp.cs-video</capabilityId>

</cd:serviceCapability>

5.3.4.3.2 Response

	HTTP/1.1 403 Forbidden
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 04 Jun 2012 02:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="serviceCapability"
 href="http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/+3gpp.cs-video"/>

 <policyException>

 <messageId>POL1022</messageId>

 <text>Specified service capability, +3gpp.cs-video, is not supported</text>

 </policyException>

</common:requestError>

5.3.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
5.3.6 DELETE

This operation is used for deregistration of an individual own service capability. To perform this operation, the service capability SHOULD be in status “Disabled”.
5.3.6.1 Example: Deregister an own service capability
(Informative)
5.3.6.1.1 Request

	DELETE /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001/%2Bg.3gpp.cs-voice HTTP/1.1
Host: example.com
Accept: application/xml

5.3.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2012 02:51:59 GMT

5.4 Resource: Service capabilities for a contact
The resource used is:
http://{serverRoot}/capabilitydiscovery/{apiVersion}/{userId}/contactCapabilities/{contactId}
This resource is used for discovery (query) of service capabilities for a contact.
5.4.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1.

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123

	contactId
	Identifier of the contact

Examples: tel:+19585550101

See section 6 for a statement on the escaping of reserved characters in URL variables.
5.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Capability Discovery, see section 7.
5.4.3 GET
This operation is used for retrieval (query) of service capabilities for a contact..
Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	capabilityFilter
	xsd:string
	Yes
	Defines for which particular service capability the query is.
For capabilityFilter value, any valid capability identifier can be used (e.g. feature tag),

If a match is found, the response will include the capability Id, otherwise not.

	userTypeFilter
	xsd:string
	Yes
	Defines for which type of users the query is.

(For example, if userTypeFilter=RCSe, it indicates request to check whether the specified contact is an RCSe user or not).

Supported values for userTypeFilter are listed in the enumeration UserType (section 5.2.3.2). If a match is found, the response will include the user type the query is for, otherwise not

See section 6 for a statement on the escaping of reserved characters in URL.

5.4.3.1 Example 1: Retrieve service capabilities for a contact
(Informative)
5.4.3.1.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101
HTTP/1.1
Host: example.com
Accept: application/xml

5.4.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:contactServiceCapabilities xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>
 <capabilityId>+g.3gpp.cs-voice</capabilityId>
</serviceCapability> <resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101</resourceURL>

</cd:contactServiceCapabilities>

5.4.3.2 Example 2: Check whether a contact has a specific service capability
(Informative)
5.4.3.2.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101?capabilityFilter=%2Bg.3gpp.cs-voice HTTP/1.1
Host: example.com
Accept: application/xml

5.4.3.2.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:contactServiceCapabilities xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
 <serviceCapability>
 <capabilityId>+g.3gpp.cs-voice</capabilityId>
 </serviceCapability>

<resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101</resourceURL>

</cd:contactServiceCapabilities>

5.4.3.3 Example 3: Check whether a contact is an RCSe user or not, response positive
(Informative)
5.4.3.3.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101?userTypeFilter=RCSe HTTP/1.1
Host: example.com
Accept: application/xml

5.4.3.3.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:contactServiceCapabilities xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">

 <userType>RCSe</userType >

<resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101</resourceURL>

</cd:contactServiceCapabilities>

5.4.3.4 Example 4: Check whether a contact is an RCSe user or not, response negative
(Informative)
5.4.3.4.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550109?userTypeFilter=RCS HTTP/1.1
Host: example.com
Accept: application/xml

5.4.3.4.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<cd:contactServiceCapabilities xmlns:cd="urn:oma:xml:rest:netapi:capabilitydiscovery:1">
<resourceURL>http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550109</resourceURL>

</cd:contactServiceCapabilities>

5.4.3.5 Retrieving service capabilities for a contact fails
(Informative)
5.4.3.5.1 Request

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101 HTTP/1.1
Host: example.com
Accept: application/xml

5.4.3.5.2 Response

	HTTP/1.1 403 Forbidden

Date: Thu, 04 Jun 2012 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="contactServiceCapabilities"

 href="http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101"/>

 <policyException>

 <messageId>POL2005</messageId>

 <text>Maximum number of requests for a given time period is exceeded</text>

 </policyException>

</common:requestError>

5.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET’ field in the response as per section 14.7 of [RFC 2616].

5.4.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET’ field in the response as per section 14.7 of [RFC 2616].
5.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:GET’ field in the response as per section 14.7 of [RFC 2616].
6. Fault definitions

6.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common].
The following additional Service Exception codes are defined for the RESTful Capability Discovery API.
6.1.1 SVC1004: Capability Source does not exist
	Name
	Description

	MessageID
	SVC1004

	Text
	Specified Capability Source, %1, is not defined.

	Variables
	%1 - Capability Source Id

	HTTP status code(s)
	404 Not found

6.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common].
The following additional Policy Exception codes are defined for the RESTful Capability Discovery API.
6.2.1 POL1021: Maximum number of Capability Sources exceeded
	Name
	Description

	MessageID
	POL1021

	Text
	Maximum number of registered Capability Sources is exceeded.

	Variables
	None

	HTTP status code(s)
	403 Forbidden

6.2.2 POL1022: Service capability not supported
	Name
	Description

	MessageID
	POL1022

	Text
	Specified service capability, %1, is not supported.

	Variables
	%1 - service capability Id

	HTTP status code(s)
	403 Forbidden

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _CapabilityDiscovery-V1_0
	13 Mar 2012
	all
	Initial baseline. Incorporates input to committee:

OMA-ARC-2012-0058-INP_BaselineREST_NetAPI_CapabilityDiscoveryTS

	
	25 Jun 2012
	4, 5, 6, 7, Appendix G
	Incorporated:

OMA-ARC-REST-CapDis-2012-0001-CR_Resources and Data Structures

	
	16 Jul 2012
	2, 4, 5, 6, Appendix C
	Incorporated CRs:

OMA-ARC-REST-CapDis-2012-0003R02-CR_TS_updates_for_section_6
OMA-ARC-REST-CapDis-2012-0006R02-CR_TS_updates_for_section_5,

OMA-ARC-REST-CapDis-2012-0009R01-CR_TS_removing_form_urlencoded_blueprint

	
	10 Sep 2012
	3.2, 5.1, 5.2, 5.3, 6.1, 6.2
	Incorporated CR:

OMA-ARC-REST-CapDis-2012-0014R02-CR_CapDis_TS_adding_support_for_multiple_devices

	
	21 Sep 2012
	3, 4, 5, 6, Appendix B, F, G
	Incorporated CRs:

OMA-ARC-REST-CapDis-2012-0004R02-CR_TS_input_for_Appendix_B

OMA-ARC-REST-CapDis-2012-0015R02-CR_TS_adding_light_weight_resources

	
	31 Oct 2012
	Many
	Incorporated CR:
OMA-ARC-REST-CapDis-2012-0018-CR_TS_CONRR_fixing_editorial_comments

	
	22 Nov 2012
	Many
	Incorporated CRs:

OMA-ARC-REST-CapDis-2012-0021R01-CR_TS_ CONRR_A016_SVC_and_POL_exceptions,

OMA-ARC-REST-CapDis-2012-0022R01-CR_TS_CONRR_ A014_XML_examples_for_error_responses,

OMA-ARC-REST-CapDis-2012-0023R02-CR_TS_CONRR_resolving_Editor_Notes,

OMA-ARC-REST-CapDis-2012-0024R01-CR_Appendix_D_with_JSON_examples,

OMA-ARC-REST-CapDis-2012-0027-CR_modifying_sequence_diagrams_for_Capability_Discovery,

OMA-ARC-REST-CapDis-2012-0028-CR_TS_removing_references_to_Notification_Channel,

OMA-ARC-REST-CapDis-2012-0029- CR_TS_CONRR_A011_resolution

	
	28 Nov 2012
	
	Incorporated CRs:

OMA-ARC-REST-CapDis-2012-0031- CR_TS_CONRR_A009_change_string_to_token

OMA-ARC-REST-CapDis-2012-0033- CR_implementing_blueprint_changes_for_authorization
Small editorial changes such as uppercase/lowercase and grammar.

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.CapDis Server

	Item
	Function
	Reference
	Requirement

	REST-CAPDIS-SUPPORT-S-001-M
	Support for the RESTful Capability Discovery API
	5, 6
	

	REST-CAPDIS-SUPPORT-S-002-M
	Support for the XML request & response format
	6
	

	REST-CAPDIS-SUPPORT-S-003-M
	Support for the JSON request & response format
	6
	

B.1.1 SCR for REST.CapDis.Own.CapabilitySources Server
	Item
	Function
	Reference
	Requirement

	REST-CAPDIS-OWN-CAPSRC-S-001-M
	Support for creation and retrieval of own Capability Source data
	6.1
	

	REST-CAPDIS-OWN-CAPSRC-S-002-M
	Retrieve own service capabilities from all Capability Sources - GET
	6.1.3
	

	REST-CAPDIS-OWN-CAPSRC-S-003-M
	Create (register) Capability Source data – POST

(XML or JSON)
	6.1.5
	

B.1.2 SCR for REST.CapDis.Own.Single.CapabilitySource Server
	Item
	Function
	Reference
	Requirement

	REST-CAPDIS-OWN-CAPS-S-001-M
	Support for management of own service capabilities data from an individual Capability Source
	6.2
	

	REST-CAPDIS-OWN-CAPS-S-002-M
	Retrieve own service capabilities from an individual Capability Source - GET
	6.2.3
	

	REST-CAPDIS-OWN-CAPS-S-003-M
	Update (e.g. add (register) / remove (deregister), enable/disable) own service capabilities from an individual Capability Source – PUT (XML or JSON)
	6.2.4
	

	REST-CAPDIS-OWN-CAPS-S-004-M
	Deregister all own service capabilities for an individual Capability Source - DELETE
	6.2.6
	

B.1.3 SCR for REST.CapDis.Own.Individual.Capability Server
	Item
	Function
	Reference
	Requirement

	REST-CAPDIS-OWN-IND-CAP-S-001-O
	Support for management of an individual own service capability data
	6.3
	REST-CAPDIS-IND-OWN-CAP-S-003-O,

REST-CAPDIS-OWN-IND-CAP-S-004-O

	REST-CAPDIS-OWN-IND-CAP-S-002-O
	Retrieve data of an individual own service capability - GET
	6.3.3
	

	REST-CAPDIS-OWN-IND-CAP-S-003-O
	Register or update status (enable/disable) for individual own service capability – PUT (XML or JSON)
	6.3.4
	

	REST-CAPDIS-OWN-IND-CAP-S-004-O
	Deregister an individual own service capability - DELETE
	6.3.6
	

B.1.4 SCR for REST.CapDis.Contact.Capabilities Server
	Item
	Function
	Reference
	Requirement

	REST-CAPDIS-CONTACT-CAPS-S-001-M
	Support for capability discovery for a contact
	6.4
	

	REST-CAPDIS-CONTACT-CAPS-S-002-M
	Discover (retrieve) service capabilities for a specified contact - GET
	6.4.3
	

	REST-CAPDIS-CONTACT-CAPS-S-003-O
	Check whether a contact has a certain service capability - GET
	6.4.3
	

	REST-CAPDIS-CONTACT-CAPS-S-004-M
	Discover whether a contact belongs to a specified type(s) of users - GET
	6.4.3
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This specification does not define any API request based on application/x-www-form-urlencoded MIME type.

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 Retrieve a list with status of all own service capabilities (section 6.1.3.1)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"capabilitySourceList": {

 "capabilitySource": [

 {

 "clientCorrelator": "123",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001",

 "serviceCapability": {

 "capabilityId": "+g3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im\"",

 "status": "Disabled"

 }

 },

 {

 "clientCorrelator": "1234",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource002",

 "serviceCapability": [

 {

 "capabilityId": "+g.3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.gsma-is\"",

 "status": "Enabled"

 },

 {

 "capabilityId": "+g.3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.ft\"",

 "status": "Disabled"

 }

]

 }

],

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources"

}}

D.2 Retrieve a list with status of all own service capabilities using a filter (section 6.1.3.2)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources?statusFilter=”Enabled” HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"capabilitySourceList": {

 "capabilitySource": {

 "clientCorrelator": "1234",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource002",

 "serviceCapability": {

 "capabilityId": "+g.3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.gsma-is\"",

 "status": "Enabled"

 }

 },

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources"

}}

D.3 Create a new service Capability Source using ‘tel’ URI, response with a copy of created resource (section 6.1.5.1)

Request:

	POST /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources HTTP/1.1
Host: example.com
Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "12345",

 "serviceCapability": {"capabilityId": "+g.3gpp.cs-voice"}

}}

Response:

	HTTP/1.1 201 Created

Location: http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003 HTTP/1.1
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "12345",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003",

 "serviceCapability": {

 "capabilityId": "+g.3gpp.cs-voice",

 "status": "Disabled"

 }

}}

D.4 Create a new service Capability Source using ‘acr’ URI, response with a copy of created resource (section 6.1.5.2)

Request:

	POST /exampleAPI/capabilitydiscovery/v1/acr%3Apseudonym123/capabilitySources HTTP/1.1
Host: example.com
Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "12345",

 "serviceCapability": {"capabilityId": "+g.3gpp.cs-voice"}

}}

Response:

	HTTP/1.1 201 Created

Location: http://exampleAPI/capabilitydiscovery/v1/acr%3Apseudonym123/capabilitySources/capsource003 HTTP/1.1
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "12345",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/acr%3Apseudonym123/capabilitySources/capsource003",

 "serviceCapability": {

 "capabilityId": "+g.3gpp.cs-voice",

 "status": "Disabled"

 }

}}

D.5 Create a new service Capability Source, response with a location of created resource (section 6.1.5.3)

Request:

	POST /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources HTTP/1.1
Host: example.com
Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "12345",

 "serviceCapability": {"capabilityId": "+g.3gpp.cs-voice"}

}}

Response:

	HTTP/1.1 201 Created

Location: http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource004 HTTP/1.1
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"resourceReference": {"resourceURL": "http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource004"}}

D.6 Creating a new Capability Source fails (section 6.1.5.4)

Request:

	POST /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources HTTP/1.1
Host: example.com
Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "12345",

 "serviceCapability": [

 {"capabilityId": "+g.3gpp.cs-voice"},

 {"capabilityId": "+g.3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im\""}

]

}}

Response:

	HTTP/1.1 403 Forbidden
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"requestError": {

 "link": {

 "href": "http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources",

 "rel": "CapabilitySourceList"

 },

 "policyException": {

 "messageId": "POL1021",

 "text": "Maximum number of registered Capability Sources is exceeded"

 }

}}

D.7 Retrieve service capabilities registered for a particular Capability Source (section 6.2.3.1)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitiySources/capsource001 HTTP/1.1
Host: example.com

Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "123",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001",

 "serviceCapability": {

 "capabilityId": "+g3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im\"",

 "status": "Disabled"

 }

}}

D.8 Retrieving service capabilities for non-existent Capability Source (section 6.2.3.2)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitiySources/capsource099 HTTP/1.1
Host: example.com

Accept: application/json

Response:

	HTTP/1.1 404 Not Found
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 04 Jun 2012 02:51:59 GMT
{"requestError": {

 "link": {

 "href": "http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource099",

 "rel": "capabilitySource"

 },

 "serviceException": {

 "messageId": "SVC1004",

 "text": "Specified Capability Source, capsource099, is not defined"

 }

}}

D.9 Enable service capabilities for a particular Capability Source (section 6.2.4.1)

Request:

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001 HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "123",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001",

 "serviceCapability": {

 "capabilityId": "+g3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im\"",

 "status": "Enabled"

 }

}}

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "123",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001",

 "serviceCapability": {

 "capabilityId": "+g3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im\"",

 "status": "Enabled"

 }

}}

D.10 Create (register) a new service capability for a particular Capability Source (section 6.2.4.2)

Request:

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001 HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "123",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001",

 "serviceCapability": [

 {

 "capabilityId": "+g3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im\"",

 "status": "Enabled"

 },

 {"capabilityId": "+g.3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp\""}

]

}}

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"capabilitySource": {

 "clientCorrelator": "123",

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001",

 "serviceCapability": [

 {

 "capabilityId": "+g3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.im\"",

 "status": "Enabled"

 },

 {

 "capabilityId": "+g.3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp\"",

 "status": "Disabled"

 }

]

}}

D.11 Deregister service Capability Source (section 6.2.6.1)

Request:

	DELETE /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001 HTTP/1.1
Host: example.com

Accept: application/json

Response:

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2012 02:51:59 GMT

D.12 Retrieve an individual own service capability data (section 6.3.3.1)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/%2Bg.3gpp.cs-voice

HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"serviceCapability": {

 "capabilityId": "+g.3gpp.cs-voice",

 "status": "Disabled"

}}

D.13 Enable an individual own service capability (section 6.3.4.1)

Request:

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/%2Bg.3gpp.cs-voice/status HTTP/1.1
Host: example.com
Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"status": "Enabled"}

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"status": "Enabled"}

D.14 Create (register) an individual own service capability (section 6.3.4.2)

Request:

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/%2Bg.3gpp.iari-ref%3D%22urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp%22 HTTP/1.1
Host: example.com
Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"serviceCapability": {"capabilityId": "+g.3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp\""}}

Response:

	HTTP/1.1 201 Created
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"serviceCapability": {

 "capabilityId": "+g.3gpp.iari-ref=\"urn%3Aurn-7%3A3gpp-application.ims.iari.rcse.sp\"",

 "status": "Disabled"

}}

D.15 Registration of an individual own service capability fails (section 6.3.4.3)

Request:

	PUT /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/%2Bg.3gpp.cs-video HTTP/1.1
Host: example.com
Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"serviceCapability": {"capabilityId": "+3gpp.cs-video"}}

Response:

	HTTP/1.1 403 Forbidden
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 04 Jun 2012 02:51:59 GMT
{"requestError": {

 "link": {

 "href": "http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource003/+3gpp.cs-video",

 "rel": "serviceCapability"

 },

 "policyException": {

 "messageId": "POL1022",

 "text": "Specified service capability, +3gpp.cs-video, is not supported"

 }

}}

D.16 Deregister an own service capability (section 6.3.6.1)

Request:

	DELETE /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/capabilitySources/capsource001/%2Bg.3gpp.cs-voice HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2012 02:51:59 GMT

D.17 Retrieve service capabilities for a contact (section 6.4.3.1)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101

HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"contactServiceCapabilities": {

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101",

 "serviceCapability": {"capabilityId": "+g.3gpp.cs-voice"}

}}

D.18 Check whether a contact has a specific service capability (section 6.4.3.2)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101?capabilityFilter=%2Bg.3gpp.cs-voice HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"contactServiceCapabilities": {

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101",

 "serviceCapability": {"capabilityId": "+g.3gpp.cs-voice"}

}}

D.19 Check whether a contact is an RCSe user or not, response positive (section 6.4.3.3)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101?userTypeFilter=RCSe HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"contactServiceCapabilities": {

 "resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101",

 "userType": "RCSe"

}}

D.20 Check whether a contact is an RCSe user or not, response negative (section 6.4.3.4)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550109?userTypeFilter=RCS HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/json

Content-Length: nnnn

{"contactServiceCapabilities": {"resourceURL": "http://exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550109"}}

D.21 Retrieving service capabilities for a contact fails (section 6.4.3.5)

Request:

	GET /exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101 HTTP/1.1
Host: example.com
Accept: application/json

Response:

	HTTP/1.1 403 Forbidden

Date: Thu, 04 Jun 2012 02:51:59 GMT

Content-Type: application/json
Content-Length: nnnn

{"requestError": {

 "link": {

 "href": "http://example.com/exampleAPI/capabilitydiscovery/v1/tel%3A%2B19585550100/contactCapabilities/tel%3A%2B19585550101",

 "rel": "contactServiceCapabilities"

 },

 "policyException": {

 "messageId": "POL2005",

 "text": "Maximum number of requests for a given time period is exceeded"

 }

}}

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)
As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources
(Informative)

The following table lists all Capability Discovery data structure elements that can be accessed individually as light-weight resources. For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	Capability Source information
(5.2.2.2)
	duration
	duration
	xsd:int
	duration

	Individual service capability information

(5.2.2.2, and 5.2.2.3)
	serviceCapability
	serviceCapability
	ServiceCapability
	{capabilityId}

	
	status
	status
	CapabilityStatus
	{capabilityId}/status

Note: When appending [ResourceRelPath] string to its Heavy-weight Resource URL, variable within curly brackets “{}” such is: {capabilityId} has to be replaced with its real value.
Appendix G. Authorization aspects
(Normative)

This appendix specifies how to use the RESTful Capability Discovery API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful Capability Discovery API MAY support the authorization framework defined in [Autho4API_10].

A RESTful Capability Discovery API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.1.1 Scope values

G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful Capability Discovery API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_capabilitydiscovery.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_capabilitydiscovery_own
	Provide access to all operations defined for management of own service capabilities.
	No

	oma_rest_capabilitydiscovery_contact
	Provide access to all operations defined for checking of service capabilities for a contact.
	No

Table 1: Scope values for RESTful Capability Discovery API

G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_capabilitydiscovery.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· “oma_rest_capabilitydiscovery_own”
· “oma_rest_capabilitydiscovery_contact”
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1for the RESTful Capability Discovery API map to the REST resources and methods of this API. In these tables, the root “oma_rest_capabilitydiscovery.” of scope values is omitted for readability reasons

	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service Capability Sources
	/{userId}/capabilitySources

	6.1
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own

	Individual service Capability Source
	/{userId}/capabilitySources/{capabilitySourceId}
	6.3
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own
	n/a
	all_{apiVersion}, or

own

	Individual service capability data
	/{userId}/capabilitySources/{capabilitySourceId}/[ResourceRelPath]
	6.3
	all_{apiVersion}, or

own
	all_{apiVersion}, or

own
	
	all_{apiVersion}, or

own

Table 2: Required scope values for: Management of own service capabilities
	Resource
	URL
Base URL: http://{serverRoot}/capabilitydiscovery/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Service capabilities for a contact
	/{userId}/contactCapabilities/{contactId}
	6.4
	all_{apiVersion}, or

contact
	n/a
	n/a
	n/a

Table 3: Required scope values for: Retrieving of service capabilities for a contact
G.1.2 Use of ‘acr:auth’
This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of the{userId} resource URL variable in the resource URL path, when the RESTful Capability Discovery API is used in combination with [Autho4API_10].
In the case the RESTful Capability Discovery API supports [Autho4API_10], the server:

· SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {userId}.
SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:auth’

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20120101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20120101-I]

