OMA-TS-REST_NetAPI_Chat-V1_0-2011111120111118-D
Page 7 V(28)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for Chat

	Draft Version 1.0 – 18 Nov 2011

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_Chat-V1_0-20111118-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

111.
Scope

2.
References
12
2.1
Normative References
12
2.2
Informative References
12
3.
Terminology and Conventions
14
3.1
Conventions
14
3.2
Definitions
14
3.3
Abbreviations
14
4.
Introduction
16
4.1
Version 1.0
16
5.
Chat API definition
17
5.1
Resources Summary
17
5.2
Data Types
27
5.2.1
XML Namespaces
27
5.2.2
Structures
28
5.2.2.1
Type: ChatSubscriptionList
28
5.2.2.2
Type: ChatNotificationSubscription
28
5.2.2.3
Type: ChatEventNotification
29
5.2.2.4
Type: SessionInvitationNotification
30
5.2.2.5
Type: GroupSessionInvitationNotification
31
5.2.2.6
Type: MessageNotification
31
5.2.2.7
Type: ParticipantStatusNotification
32
5.2.2.8
Type: ParticipantStatusEntry
33
5.2.2.9
Type: MessageDeliveryStatusNotification
33
5.2.2.10
Type: ChatMessage
34
5.2.2.11
Type: MessageDeliveryStatus
34
5.2.2.12
Type: ParticipantSessionStatus
34
5.2.2.13
Type: ChatSessionInformation
35
5.2.2.14
Type: GroupChatSessionInformation
35
5.2.2.15
Type: ParticipantList
36
5.2.2.16
Type: ParticipantInformation
36
5.2.2.17
Type: IsComposing
37
5.2.3
Enumerations
38
5.2.3.1
Enumeration: ParticipantStatus
38
5.2.3.2
Enumeration: EventType
38
5.2.3.3
Enumeration: MessageStatus
38
5.2.4
Values of the Link “rel” attribute
39
5.3
Sequence Diagrams
39
5.3.1
Subscribing to and unsubscribing from chat notifications
39
5.3.2
Normal flow of a session-less 1-1 chat
40
5.3.3
Normal flow of a session-based 1-1 chat
40
5.3.4
Normal flow of a group chat
40
5.3.5
Declining a chat session invitation
41
5.3.6
Cancelling an invitation to a session-based 1-1 chat
41
5.3.7
Sending a chat message
41
5.3.8
Receiving a chat message and confirming message delivery success
42
5.3.9
Starting a group chat
43

5.3.10
Accepting or declining a group chat session invitation
43
5.3.11
Accepting a group chat session invitation
44
5.3.12
Declining a group chat session invitation
44
5.3.13
Leaving and re-joining a group chat session
45
6.
Detailed specification of the resources
48
6.1
Resource: All subscriptions to chat event notifications
48
6.1.1
Request URL variables
48
6.1.2
Response Codes and Error Handling
49
6.1.3
GET
49
6.1.3.1
Example: Reading all active chat notification subscriptions (Informative)
49
6.1.3.1.1
Request
49
6.1.3.1.2
Response
49
6.1.4
PUT
50
6.1.5
POST
50
6.1.5.1
Example 1: Creating a new subscription to chat notifications, response with copy of created resource (Informative)
50
6.1.5.1.1
Request
50
6.1.5.1.2
Response
50
6.1.5.2
Example 2: Creating a new subscription to chat notifications, response with location of created resource (Informative)
51
6.1.5.2.1
Request
51
6.1.5.2.2
Response
51
6.1.5.3
Example 3: Creating a new subscription to chat notifications, requiring session-based 1-1 chat support which the server does not support (Informative)
51
6.1.5.3.1
Request
51
6.1.5.3.2
Response
52
6.1.6
DELETE
52
6.2
Resource: Individual subscription to chat event notifications
52
6.2.1
Request URL variables
52
6.2.2
Response Codes and Error Handling
52
6.2.3
GET
52
6.2.3.1
Example: Reading an individual subscription (Informative)
53
6.2.3.1.1
Request
53
6.2.3.1.2
Response
53
6.2.4
PUT
53
6.2.5
POST
53
6.2.6
DELETE
53
6.2.6.1
Example: Cancelling a subscription (Informative)
53
6.2.6.1.1
Request
53
6.2.6.1.2
Response
54
6.3
Resource: Chat messages in a 1-1 chat
54
6.3.1
Request URL variables
54
6.3.2
Response Codes and Error Handling
54
6.3.3
GET
54
6.3.4
PUT
55
6.3.5
POST
55
6.3.5.1
Example 1: Creating a chat message, using tel URI and returning the location of the created resource (Informative)
55
6.3.5.1.1
Request
55
6.3.5.1.2
Response
55
6.3.5.2
Example 2: Creating a chat message, using ACR and returning a copy of the created resource (Informative)
55
6.3.5.2.1
Request
55
6.3.5.2.2
Response
56
6.3.6
DELETE
56
6.4
Resource: Individual chat message in a 1-1 chat
56
6.4.1
Request URL variables
56
6.4.2
Response Codes and Error Handling
57
6.4.3
GET
57
6.4.3.1
Example 1: [Example title] (Informative)
58
6.4.3.1.1
Request
58
6.4.3.1.2
Response
58
6.4.3.2
Example 2: [Example title] (Informative)
58
6.4.3.2.1
Request
58
6.4.3.2.2
Response
58
6.4.4
PUT
58
6.4.4.1
Example 1: [Example title] (Informative)
59
6.4.4.1.1
Request
59
6.4.4.1.2
Response
59
6.4.4.2
Example 2: [Example title] (Informative)
59
6.4.4.2.1
Request
59
6.4.4.2.2
Response
59
6.4.5
POST
59
6.4.5.1
Example 1: [Example title] (Informative)
60
6.4.5.1.1
Request
60
6.4.5.1.2
Response
60
6.4.5.2
Example 2: [Example title] (Informative)
60
6.4.5.2.1
Request
60
6.4.5.2.2
Response
60
6.4.6
DELETE
60
6.4.6.1
Example 1: [Example title] (Informative)
61
6.4.6.1.1
Request
61
6.4.6.1.2
Response
61
6.4.6.2
Example 2: [Example title] (Informative)
61
6.4.6.2.1
Request
61
6.4.6.2.2
Response
61
6.5
Resource: Individual message delivery status in a 1-1 chat
61
6.5.1
Request URL variables
61
6.5.2
Response Codes and Error Handling
62
6.5.3
GET
62
6.5.4
PUT
62
6.5.5
POST
62
6.5.5.1
Example: Reporting the status of a message (Informative)
62
6.5.5.1.1
Request
62
6.5.5.1.2
Response
63
6.5.6
DELETE
63
6.6
1-1 chat session information
63
6.6.1
Request URL variables
63
6.6.2
Response Codes and Error Handling
64
6.6.3
GET
64
6.6.3.1
Example 1: Retrieving chat session information (Informative)
64
6.6.3.1.1
Request
64
6.6.3.1.2
Response
64
6.6.3.2
Example 2: Retrieving chat session information of a 1-1 session that was previously extended to a group chat session (Informative)
64
6.6.3.2.1
Request
64
6.6.3.2.2
Response
64
6.6.4
PUT
65
6.6.4.1
Example: Creating a 1-1 chat session (Informative)
65
6.6.4.1.1
Request
65
6.6.4.1.2
Response
65
6.6.5
POST
65
6.6.6
DELETE
65
6.6.6.1
Example: Terminating a 1-1 chat session (Informative)
66
6.6.6.1.1
Request
66
6.6.6.1.2
Response
66
6.7
Resource: 1-1 chat session status
66
6.7.1
Request URL variables
66
6.7.2
Response Codes and Error Handling
67
6.7.3
GET
67
6.7.4
PUT
67
6.7.5
POST
68
6.7.5.1
Example 1: Accepting a 1-1 chat invitation (Informative)
68
6.7.5.1.1
Request
68
6.7.5.1.2
Response
68
6.7.6
DELETE
68
6.8
Resource: Extend a session-based 1-1 chat to a group chat session
68
6.8.1
Request URL variables
68
6.8.2
Response Codes and Error Handling
69
6.8.3
GET
69
6.8.4
PUT
69
6.8.5
POST
69
6.8.5.1
Example: Extending a session-based 1-1 chat to a group chat session (Informative)
69
6.8.5.1.1
Request
69
6.8.5.1.2
Response
70
6.8.6
DELETE
70
6.9
Resource: All group chat sessions
70
6.9.1
Request URL variables
70
6.9.2
Response Codes and Error Handling
71
6.9.3
GET
71
6.9.4
PUT
71
6.9.5
POST
71
6.9.5.1
Example: Creating a new group chat session (Informative)
71
6.9.5.1.1
Request
71
6.9.5.1.2
Response
72
6.9.6
DELETE
72
6.10
Resource: Individual group chat session
73
6.10.1
Request URL variables
73
6.10.2
Response Codes and Error Handling
73
6.10.3
GET
73
6.10.3.1
Example 1: Retrieving group chat session information (Informative)
73
6.10.3.1.1
Request
73
6.10.3.1.2
Response
74
6.10.3.2
Example 2: Retrieving group chat session information when being disconnected (Informative)
74
6.10.3.2.1
Request
74
6.10.3.2.2
Response
75
6.10.4
PUT
75
6.10.5
POST
75
6.10.6
DELETE
75
6.10.6.1
Example: Terminating a group chat session (Informative)
75
6.10.6.1.1
Request
75
6.10.6.1.2
Response
75
6.11
Resource: All Participants in a group chat session
75
6.11.1
Request URL variables
76
6.11.2
Response Codes and Error Handling
76
6.11.3
GET
76
6.11.3.1
Example 1: Retrieving the list of participants in a group chat session (Informative)
76
6.11.3.1.1
Request
76
6.11.3.1.2
Response
77
6.11.3.2
Example 2: Retrieving the list of participants in a group chat session when being disconnected (Informative)
77
6.11.3.2.1
Request
77
6.11.3.2.2
Response
78
6.11.3.3
Example 3: Retrieving the list of participants in a group chat session when not having access rights (Informative)
78
6.11.3.3.1
Request
78
6.11.3.3.2
Response
78
6.11.4
PUT
78
6.11.5
POST
78
6.11.5.1
Example 1: Adding one participant to a group chat, or joining/re-joining a group chat (Informative)
79
6.11.5.1.1
Request
79
6.11.5.1.2
Response
79
6.11.5.2
Example 2: Adding multiple participants to a group chat (Informative)
80
6.11.5.2.1
Request
80
6.11.5.2.2
Response
80
6.11.5.3
Example 3: Error situation when trying to (re)join a group chat session (Informative)
81
6.11.5.3.1
Request
81
6.11.5.3.2
Response
81
6.11.6
DELETE
82
6.12
Resource: Individual participant in a group chat session
82
6.12.1
Request URL variables
82
6.12.2
Response Codes and Error Handling
82
6.12.3
GET
83
6.12.3.1
Example: Retrieving information about an individual group chat participant (Informative)
83
6.12.3.1.1
Request
83
6.12.3.1.2
Response
83
6.12.4
PUT
83
6.12.5
POST
83
6.12.6
DELETE
83
6.12.6.1
Example: Leaving a group chat session (Informative)
84
6.12.6.1.1
Request
84
6.12.6.1.2
Response
84
6.13
Resource: Individual group chat session participant status
84
6.13.1
Request URL variables
84
6.13.2
Response Codes and Error Handling
85
6.13.3
GET
85
6.13.4
PUT
85
6.13.5
POST
86
6.13.5.1
Example 1: Accepting a group chat invitation (Informative)
86
6.13.5.1.1
Request
86
6.13.5.1.2
Response
86
6.13.6
DELETE
86
6.14
Resource: Group chat messages
86
6.14.1
Request URL variables
87
6.14.2
Response Codes and Error Handling
87
6.14.3
GET
87
6.14.4
PUT
87
6.14.5
POST
87
6.14.6
DELETE
87
6.15
Resource: Individual group chat message
87
6.15.1
Request URL variables
87
6.15.2
Response Codes and Error Handling
88
6.15.3
GET
88
6.15.4
PUT
88
6.15.5
POST
88
6.15.6
DELETE
88
6.16
Individual group chat message delivery status
88
6.16.1
Request URL variables
88
6.16.2
Response Codes and Error Handling
88
6.16.3
GET
88
6.16.4
PUT
89
6.16.5
POST
89
6.16.6
DELETE
89
6.17
Resource: Client notification about 1-1 chat session invitations
89
6.17.1
Request URL variables
89
6.17.2
Response Codes and Error Handling
89
6.17.3
GET
89
6.17.4
PUT
90
6.17.5
POST
90
6.17.5.1
Example: Notify a client about 1-1 chat session invitations (Informative)
90
6.17.5.1.1
Request
90
6.17.5.1.2
Response
90
6.17.6
DELETE
90
6.18
Resource: Client notification about group chat session invitations
90
6.18.1
Request URL variables
91
6.18.2
Response Codes and Error Handling
91
6.18.3
GET
91
6.18.4
PUT
91
6.18.5
POST
91
6.18.5.1
Example: Notify a client about group chat session invitations (Informative)
91
6.18.5.1.1
Request
91
6.18.5.1.2
Response
92
6.18.6
DELETE
92
6.19
Resource: Client notification about chat session events
92
6.19.1
Request URL variables
92
6.19.2
Response Codes and Error Handling
93
6.19.3
GET
93
6.19.4
PUT
93
6.19.5
POST
93
6.19.5.1
Example: Notify a client about chat session events (Informative)
93
6.19.5.1.1
Request
93
6.19.5.1.2
Response
93
6.19.6
DELETE
94
6.20
Resource: Client notification about changes of participant status
94
6.20.1
Request URL variables
94
6.20.2
Response Codes and Error Handling
94
6.20.3
GET
94
6.20.4
PUT
94
6.20.5
POST
94
6.20.5.1
Example: Notify a client about participant status changes (Informative)
95
6.20.5.1.1
Request
95
6.20.5.1.2
Response
95
6.20.6
DELETE
95
6.21
Resource: Client notification containing incoming messages
96
6.21.1
Request URL variables
96
6.21.2
Response Codes and Error Handling
96
6.21.3
GET
96
6.21.4
PUT
96
6.21.5
POST
96
6.21.5.1
Example: Notify a client about incoming messages (Informative)
97
6.21.5.1.1
Request
97
6.21.5.1.2
Response
97
6.21.6
DELETE
97
6.22
Resource: Client notification about message delivery status
97
6.22.1
Request URL variables
98
6.22.2
Response Codes and Error Handling
98
6.22.3
GET
98
6.22.4
PUT
98
6.22.5
POST
98
6.22.5.1
Example: Notify a client about message delivery status (Informative)
98
6.22.5.1.1
Request
98
6.22.5.1.2
Response
98
6.22.6
DELETE
99
7.
Fault definitions
100
7.1
Service Exceptions
100
7.1.1
SVC0yyy: Session-based 1-1 chats not supported
100
Appendix A.
Change History (Informative)
101
A.1
Approved Version History
101
A.2
Draft/Candidate Version 1.0 History
101
Appendix B.
Static Conformance Requirements (Normative)
102
B.1
SCR for REST.Chat Server
102
B.1.1
SCR for REST.Chat.FUNCTION Server
102
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
103
C.1
Creating a new subscription to chat notifications
103
C.1.1
Example (Informative)
104
C.1.1.1
Request
104
C.1.1.2
Response
104
C.2
Accepting/Declining a chat session invitation
104
C.2.1
Example (Informative)
105
C.2.1.1
Request
105
C.2.1.2
Response
105
C.3
Extending a 1-1 chat to a group chat session
105
C.3.1
Example (Informative)
106
C.3.1.1
Request
106
C.3.1.2
Response
106
C.4
Creating a chat message
106
C.4.1
Example 1: using tel URI and returning the location of the created resource (Informative)
107
C.4.1.1
Request
107
C.4.1.2
Response
107
C.4.2
Example 2: using ACR and returning a copy of the created resource (Informative)
107
C.4.2.1
Request
107
C.4.2.2
Response
108
C.5
Creating a new group chat session
108
C.5.1
Example (Informative)
109
C.5.1.1
Request
109
C.5.1.2
Response
109
C.6
Adding participant(s) to a group chat session, or (re)joining a group chat session
110
C.6.1
Example 1: Adding one participant to a group chat, or joining/re-joining a group chat (Informative)
110
C.6.1.1
Request
110
C.6.1.2
Response
111
C.6.2
Example 2: Adding multiple participants to a group chat (Informative)
111
C.6.2.1
Request
111
C.6.2.2
Response
112
C.7
Reporting message status
113
C.7.1
Example (Informative)
113
C.7.1.1
Request
113
C.7.1.2
Response
113
Appendix D.
JSON examples (Informative)
114
D.1
[Example Title] (section [section number cross reference])
114
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
115
Appendix F.
Light-weight resources for Chat (Informative)
116
Appendix G.
Authorization aspects (Normative)
117

Figures

18Figure 1 Resource structure defined by this specification

40Figure 2 Subscribe to and unsubscribe from chat notifications

41Figure 3 Sending a chat message

42Figure 4 Receiving a chat message and confirming successful message delivery

43Figure 5 Starting a group chat

44Figure 6 Accepting a group chat session invitation

45Figure 7 Declining a group chat session invitation

46Figure 8 Leaving and re-joining a group chat session

47Figure 9 Originator leaves group chat and session is ended

Tables

26Table 1: 1-1 chat notifications

27Table 2: Group chat notifications

1. Scope

This specification defines a RESTful API for Chat using HTTP protocol bindings.
2. References

2.1 Normative References

	
	

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, July 2011, URL: http://tools.ietf.org/html/draft-uri-acr-extension-03

	[RC API RD]
	APIs for Rich Communications Requirements, OMA-RD-RC_API-V1_0, Open Mobile Alliance, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_Chat]
	“XML schema for the RESTful Network API for Chat”, Open Mobile Alliance™, OMA-SUP-XSD-rest_netapi_chat-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL: http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H. Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC4975]
	“The Message Session Relay Protocol (MSRP)”, B. Campbell et. al, September 2007, URL: http://www.ietf.org/rfc/rfc4975.txt

	[RFC5438]
	“Instant Message Disposition Notification (IMDN)”, E. Burger and H. Khartabil, September 2007, URL: http://www.ietf.org/rfc/rfc5438.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL: http://www.openmobilealliance.org/

	[RFC3994]
	„Indication of Message Composition for Instant Messaging“, H. Schulzrinne, January 2005, URL: http://www.ietf.org/rfc/rfc3994.txt

	[RFC4575]
	“A Session Initiation Protocol (SIP) Event Package for Conference State”, J. Rosenberg et. al, August 2006, URL: http://www.ietf.org/rfc/rfc3994.txt

	[SIMPLE IM]
	“Instant Messaging using SIMPLE ”, Open Mobile Alliance™, OMA-TS-SIMPLE_IM-V1_0, URL: http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	
	

	
	

	
	

	
	

	
	

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. It is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Originator
	The party that initiates a chat session.

	Participant
	A party that participates in a chat session, including the Originator.

	Recipient
	A party that receives a chat message or notification.

	Sender
	The party that sends a chat message

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

	Terminating Participant
	A participant in a chat session that is not the Originator.

Additionally, all definitions from the OMA Dictionary apply [OMADICT].

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Chat contains HTTP protocol bindings for Chat (also known as Instant Messaging), using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

5. Chat API definition

This section is organized to support a comprehensive understanding of the Chat API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 1 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.Appendix F provides a list of all lightweight resources, where applicable.

Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Chat.
The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

[image: image3]
Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Note: 1-1 chats (session-less or session-based) and group chats (session-based) represent different approaches and are therefore treated differently. In a session-less 1-1 chat, the Participants interact direct and spontaneous without the need to create a session at API level
. In a session-based 1-1 chat, there is first an invitation phase during which the Originator offers the terminating participant to enter a chat, which he can accept or decline. Subsequently, messages can be exchanged until one of the Participants terminates the session. In a group chat session, a “conference focus” (chat server) is involved in the communication that filters and aggregates the traffic, and each Participant is connected to the conference focus using a session model. This results in different handling of many of the events, and also in different sets of events available. In order to provide a clean separation of these different feature sets, 1-1 chat and group chat are modeled as different sets of resources. A 1-1 chat can incorporate exactly 2 Participants, whereas a group chat can incorporate one Originator and one or more Terminating Participants. The different flavours of 1-1 chat allow to be mapped to different underlying systems that exist in the market.
FFS: 1) removal of userId below chat from the resourceURL? Needs to be consistent cross-API.

Ed. Note: Remove the “OPTIONAL” in the method columns once this information has been reflected in SCRs.

Purpose: managing subscriptions for chat notifications
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to chat event notifications
	/subscriptions

	ChatSubscriptionList
 (used for GET)

ChatNotificationSubscription
(used for POST)
common:ResourceReference (OPTIONAL alternative for POST response)
	Read the list of active chat notification subscriptions (OPTIONAL)
	no
	Create new subscription for chat notifications
	no

	Individual subscription to chat event notifications
	/subscriptions/{subscriptionId}
	ChatNotificationSubscription

	Read an individual subscription (OPTIONAL)
	no
	no
	Cancel subscription and stop corresponding notifications

Ed. note: it is FFS whether we want an expiration notification for the subscription (cf. TerminalLocation).

Purpose: 1 to 1 chats
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	1-1 chat messages
	/messages

	ChatMessage
(used for POST)
common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create (send) a chat message
	no

	Individual chat message
	/messages/{messageID}
	(none in this version of the specification)

Ed. Note: possible place for offline msg. Remove if at CONR start there is no method defined.
	no
	no
	no
	no

	Individual message delivery status
	/messages/{messageId}/status
	MessageDeliveryStatus
	no
	no
	Report status of message delivery
	no

	1-1 chat session information
	/sessionInfo

(OPTIONAL)
	ChatSessionInformation

	Retrieve chat session information (OPTIONAL)
	Create a 1-1 chat session

(CONDITIONAL)
	no
	Cancel invitation (Originator)

Decline invitation (Terminating Participant)

Terminate session

(CONDITIONAL)

	1-1 chat session status
	/sessionInfo/status

(OPTIONAL)
	ParticipantSessionStatus

	no
	no
	Accept 1-1 chat session invitation
	no

	Extend 1-1 chat session to a group chat session
	/sessionInfo/extend

(OPTIONAL)
	ParticipantList

	no
	no
	Extend 1-1 chat to a group chat session
	no

Purpose: handling group chat sessions
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All group chat sessions
	/group

	GroupChatSessionInformation
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create a new group chat session
	no

	Individual group chat session
	/group/{sessionId}
	GroupChatSessionInformation

	Retrieve chat session information (OPTIONAL)
	no
	no
	Terminate session (Originator)

Purpose: handling group chat participants
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Participants in a group chat session
	/participants

	ParticipantList
(used for GET)

ParticipantList or
ParticipantInformation
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Retrieve a list of chat Participants (OPTIONAL)
	no
	Add one or more chat Participant(s) (Originator)

(Re-)Join session (Participant)

	no

	Individual group chat session Participant
	/participants/{participantId}
	ParticipantInformation
	Retrieve information about an individual group chat Participant (OPTIONAL)
	no
	no
	Remove Participant from chat session
(Originator)

Decline invitation (Terminating Participant)

Leave session (Participant)

	Individual group chat session Participant status
	/participants/{participantId}/status
	ParticipantSessionStatus
	Retrieve information about an individual chat Participant status (OPTIONAL)
	no
	Accept group chat session invitation
	no

Purpose: handling group chat messages
	Resource
	URL
Base URL: http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Chat messages in a group chat session
	/messages

	ChatMessage
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create a chat message
	no

	Individual chat message
	/messages/{messageID}

Ed. Note: possible place for offline msg. Remove if at CONR start there is no method defined
	(none in this version of the specification)
	no
	no
	no
	no

	Individual message delivery status
	/messages/{messageId}/status
	MessageDeliveryStatus
	no
	no
	Report status of message delivery
	no

Purpose: handling of chat notifications

	Resource
	URL
Base URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about 1-1 chat session invitations
	Specified by client when subscription is created or provisioned
	SessionInvitationNotification
	no
	no

	Notify client about incoming chat invitation
	no

	Client notification about chat session events
	Specified by client when subscription is created or provisioned
	ChatEventNotification
	no
	no

	Notify client about chat events
	no

	Client notification about changes of Participant status
	Specified by client when subscription is created or provisioned
	ParticipantStatusNotification
	no
	no
	Notify client about Participant status changes
	no

	Client notification containing incoming messages
	Specified by client when subscription is created or provisioned
	MessageNotification
	no
	no
	Notify client about incoming chat message
	no

Ed. Note: for “Individual chat message”, the behaviour needs to be specified. In this version of the specification, this resource is only intended for correlating a chat message and the related success/failure report. No state is created on the server (this would mean to have a message store feature available which needs further elaboration). HTTP response is 404 (or, possibly, 403) if any operation is attempted.

Ed. Note: FFS: once the individual notification resources have been defined in section 6.x, move these tables there. Align with the way this is done in Presence.

The following table gives an overview of the different types of notifications. It is also outlined which chat session Participants receive notifications of a particular type, whether a response is needed, and which resources a notification links to via the <link> element.

In the “Receiver” column, the following values can occur:

· Originator: the Originator of the chat session

· Terminating Participant: one individual Terminating Participant of the chat session at a time

· Terminating Participants: all Terminating Participants of the chat session at once

· all: all Participants of the chat session including the Originator at once

· sender: the sender of a chat message

Table 1: 1-1 chat notifications
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href
Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/oneToOne

	n/a
	SessionInvitationNotification
	Terminating Participant
	POST(accept)

DELETE
	ChatSessionInformation

	/{otherUserId}/{sessionIInfo}

	Accepted
	ChatEventNotification
	Originator
	n/a
	ChatSessionInformation
	/{otherUserId}/{sessionInfo}

	Declined
	ChatEventNotification
	Originator
	n/a
	ChatSessionInformation
	/{otherUserId}/{sessionInfo}

	SessionCancelled
	ChatEventNotification
	all
	n/a
	ChatSessionInformation
	/{otherUserId}/{sessionInfo}

	SessionEnded
	ChatEventNotification
	all
	n/a
	ChatSessionInformation
	/{otherUserId}/{sessionInfo}

	n/a
	MessageNotification
	all 1)
	POST(Delivered
), POST(Displayed)
	MessageDeliveryStatus
	/{otherUserId}/messages/{messageId}/status

	n/a
	MessageDeliveryStatusNotification
	sender
	n/a
	ChatMessage
	/{otherUserId}/messages/{messageId}

Table 2: Group chat notifications
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href
Base URL: //{serverRoot}/chat/{apiVersion}/{userId}/group

	n/a
	GroupSessionInvitationNotification
	Terminating Participants
	decline
accept

	GroupChatSessionInformation
ParticipantInformation

	/{sessionId}
/{sessionId}/participants/{participantId}/

	SessionEnded
	ChatEventNotification
	all
	n/a
	GroupChatSessionInformation
	/{sessionId}

	n/a
	MessageDeliveryStatusNotification
	sender
	n/a
	ChatMessage
ParticipantInformation
	/{sessionId}/messages/{messageId}
/{sessionId}/participants/{participantId}

	n/a
	ParticipantStatusNotification
	all
	n/a
	GroupChatSessionInformation

	/{sessionId}

	n/a
	MessageNotification
	all 1)
	POST(Delivered
) POST(Displayed)

	ChatMessage
	/{sessionId}/messages/{messageId}

(1) The MessageNotification also needs to be sent to the message sender, otherwise multiple clients per user will not work.

Ed. Note: when specifying the resources, add a statement that the “The duration for which the Server stores information about a chat message is defined by service provider policies”.

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Chat data types is:

urn:oma:xml:rest:netapi:chat:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_Chat].
5.2.2 Structures

The subsections of this section define the data structures used in the Chat API.

Some of the structures can be instantiated as so-called root elements.
For structures that contain elements which describe a user identifier, the statements in section 1 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.2.2.1 Type: ChatSubscriptionList

List of all active chat notification subscriptions. In order to be able to receive notifications, the client needs to create a subscription first.

	Element
	Type
	Optional
	Description

	chatNotificationSubscription
	ChatNotificationSubscription
[0..unbounded]
	Yes
	Array of chat notification subscriptions

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named chatSubscriptionList of type ChatSubscriptionList is allowed in request and/or response bodies.
Editors Note: Handling a client leaving a session with multiple clients for the same user needs to be defined. I.e. a client is terminated it needs to be ensured that only this client leaves the session not the others.

5.2.2.2 Type: ChatNotificationSubscription

Subscription to chat related event notifications, i.e. all notifications of type ChatEventNotification, SessionInvitationNotification, ParticipantStatusNotification, and MessageNotification related to a particular user.
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	oneToOneSessionsRequired
	xsd:boolean
	Yes
	Signals to the server that this client requires session-based 1-1 chats and does not support session-less 1-1 chats.

In case this is present and set to true, the client requires support for session-based 1-1 chat. If the server does not support this method, it SHALL reject the subscription with the exception SVC0yyy.

Default: false.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named chatNotificationSubscription of type ChatNotificationSubscription is allowed in request and/or response bodies.
5.2.2.3 Type: ChatEventNotification

This is the notification type for those chat events that only need to convey the type of event which occurred. More specific notification types are defined below.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	
	
	
	

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
Depending on the value of eventType, the server MUST include links as defined in Table 1 and Table 2 for ChatEventNotification.

Further, the server SHOULD include a link to the related subscription.

	eventType
	EventType
	No
	Type of event

	eventDescription
	xsd:string
	Yes
	Textual description of the event

A root element named chatEventNotification of type ChatEventNotification is allowed in notification request bodies.
5.2.2.4 Type: SessionInvitationNotification

This describes the notification for a 1-1 chat session invitation.

	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Table 1 for SessionInvitationNotification.

Further, the server SHOULD include a link to the related subscription.

	subject
	xsd:string
	No
	Subject of the chat session

	originatorAddress

	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator.

	originatorName
	xsd:string
	Yes
	Human readable name of the Originator.

	tParticipantAddress

	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Terminating Participant.

	tParticipantName
	xsd:string
	Yes
	Human readable name of the Terminating Participant.

A root element named sessionInvitationNotification of type SessionInvitationNotification is allowed in notification request bodies.
The recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=”ParticipantSessionStatus”.

This is typically:
http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/sessionInfo/status

The recipient can decline the request by sending a DELETE request to one the URL passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”.

Typically, this is http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/sessionInfo
If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a 1-1 session, this means that the session will terminate. Ed. Note: Todo: define an example for such timeout.

5.2.2.5 Type: GroupSessionInvitationNotification

This describes the notification for a group chat session invitation.

	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Table 2 for GroupSessionInvitationNotification.

Further, the server SHOULD include a link to the related subscription.

	subject
	xsd:string
	No
	Subject of the chat session

	participant
	ParticipantInformation
[2..unbounded]
	No
	Contains the list of Participants of the session. The first entry represents the Originator.

A root element named groupSessionInvitationNotification of type GroupSessionInvitationNotification is allowed in notification request bodies.
Each recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=”ParticipantSessionStatus”.

This is typically:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}/status
The recipient can decline the request by sending a DELETE request to the URL passed in the “href” attribute of the “link” element with rel=”ParticipantInformation”.
Typically, this is http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}
If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a group session, this means that this recipient will not be mentioned in any ParticipantStatusNotification.

5.2.2.6 Type: MessageNotification

This describes the notification delivering an incoming chat message.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Table 1 and Table 2 for MessageNotification.

Further, the server MAY include a link to the related subscription.

	senderAdress
	xsd:anyURI
	No
	Identifier of the Participant that sent the message (e.g. 'sip' URI, 'tel' URI, 'acr' URI)

	senderName
	xsd:string
	Yes
	Name of the sender

	chatMessage
	ChatMessage
	Choice
	The actual message

	isComposing
	IsComposing
	Choice
	“isComposing” message

	dateTime
	xsd:DateTime
	Yes
	The time when the message was sent.

A root element named messageNotification of type MessageNotification is allowed in notification request bodies.
In case the “chatMessage” element contains the element “reportRequest”, the recipient MUST acknowledge the requested events (such as ‘Delivered’, ‘Displayed’) by sending a POST request with a “MessageDeliveryStatus” root element in the body to the URL passed in the “href” attribute of the “link” element with rel=”MessageDeliveryStatus”.

For 1-1 chat this is typically:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/messages/{messageId}/status.
For group chat this is typically:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages/{messageId}/status.
5.2.2.7 Type: ParticipantStatusNotification
This type defines the participant status notification to inform about participant status changes in a group chat.
The notification is sent by the server to all subscribed Participants in the chat session triggered by Participants joining or leaving the chat.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Table 2 for ParticipantStatusNotification.

Further, the server SHOULD include a link to the related subscription.

	participant
	ParticipantStatusEntry
[1..unbounded]
	No
	Contains the list of Participants. At least those that changed status since the last notification MUST be included.

A root element named participantStatusNotification of type ParticipantStatusNotification is allowed in notification request bodies.
Note: This notification is not sent in 1-1 chats.
5.2.2.8 Type: ParticipantStatusEntry
This type defines the Participant status.
	Element
	Type
	Optional
	Description

	address
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Participant

	name
	xsd:string
	Yes
	Human readable name of the Participant.

	status
	ParticipantStatus
	Yes
	Connection status of the Participant.

	yourown
	xsd:boolean
	Yes
	If present and set to true, this indicates that the status entry represents the Participant to which this data structure is sent in a message.

	link
	common:Link [0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server SHOULD include a link to the resource representing the Participant in the chat session.

5.2.2.9 Type: MessageDeliveryStatusNotification
This type represents a notification about the delivery status of a chat message.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Table 1 and Table 2 for MessageDeliveryStatusNotification.

Further, the server MAY include a link to the related subscription.

	status
	MessageStatus
	No
	Indicates the status of the message.

	errorCode
	xsd:string
	Yes
	Code of the error, if any.

	description
	xsd:string
	Yes
	Description of the error, if any.

A root element named messageDeliveryStatusNotification of type MessageDeliveryStatusNotification is allowed in notification request bodies.
Note: This notification is not sent in group chats.
5.2.2.10 Type: ChatMessage

This type represents a chat message.
	Element
	Type
	Optional
	Description

	text
	xsd:string
	No
	Text content of a chat message.

	reportRequest
	MessageStatus
[0..unbounded]
	Yes
	List of delivery status events to report. Note that the underlying system might not support reporting (e.g in multiparty chats, reporting is rarely supported), or might only support a limited set of values.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.
Note that in this version of the specification, the resourceURL is only used for correlation purposes, as there is no HTTP method defined for this URL.

A root element named chatMessage of type ChatMessage is allowed in request bodies.
5.2.2.11 Type: MessageDeliveryStatus
This type represents a response to a chat message notification. It is only needed if the chat message includes an indication that the sender wishes to receive a report about successful delivery.
	Element
	Type
	Optional
	
	Description

	status
	MessageStatus
	No
	Indicates the delivery status of the message.

	userId
	xsd:anyURI
	No
	
	Indicates the identifier of the user to whom the message was sent (e.g. 'sip' URI, 'tel' URI, 'acr' URI)

A root element named messageDeliveryStatus of type MessageDeliveryStatus is allowed in request bodies.
5.2.2.12 Type: ParticipantSessionStatus
This type represents the status of a Participant in the chat session.
	Element
	Type
	Optional
	Description

	status
	ParticipantStatus
	No
	Status of the Participant.

To indicate that the client accepts the session invitation, this element MUST be set to “Connected”

A root element named participantSessionStatus of type ParticipantSessionStatus is allowed in request and response bodies.
Ed. Note: Harmonization with IS/FT/VS: some of these specifications might use an extended version of this data structure to signal media type information.
5.2.2.13 Type: ChatSessionInformation

This type describes a 1-1 chat session.

	Element
	Type
	Optional
	Description

	subject
	xsd:string
	No
	Initial message to the Participant(s)

	originatorAddress

	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator.

	originatorName
	xsd:string
	Yes
	Human readable name of the Originator.

	tParticipantAddress

	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Terminating Participant.

	tParticipantName
	xsd:string
	Yes
	Human readable name of the Terminating Participant.

	status
	ParticipantStatus
	Yes
	Connection status of the Participant. Set by the server. SHALL NOT be present in request bodies during resource creation.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named chatSessionInformation of type ChatSessionInformation is allowed in request and/or response bodies.
5.2.2.14 Type: GroupChatSessionInformation

This type describes a chat session.

	Element
	Type
	Optional
	Description

	subject
	xsd:string
	No
	Initial message to the Participant(s)

	participant
	ParticipantInformation
[1..unbounded]
	No
	The Participant(s) active in this chat session. The first entry represents the Originator.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named groupChatSessionInformation of type groupChatSessionInformation is allowed in request and/or response bodies.
Regarding the clientCorrelator field, the note in section 5.2.2.2 applies.

5.2.2.15 Type: ParticipantList

This type describes a list of chat Participants.

Ed. Note: This information is based on resource-list of RFC5366 / RFC 4826 that defines entries of user adresses that should be invited to a conference session. The list is attached as XML in the SIP INVITE.

This note is provided for understanding during the discussion of the design. Remove prior to CONR.

	Element
	Type
	Optional
	Description

	participant

	ParticipantInformation
[1..unbounded]
	No
	List of chat Participants

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named participantList of type ParticipantList is allowed in request and/or response bodies.
5.2.2.16 Type: ParticipantInformation

This type describes a chat Participant.

It is based on the [RFC4575] as defined in [SIMPLE IM] chapter 7.2.1.12.
	Element
	Type
	Optional
	Description

	address

	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Participant

	name
	xsd:string
	Yes
	Human readable name

	isOriginator
	xsd:boolean
	Yes
	If the Participant represented by this data structure is the Originator of a call session, this element MUST be present and set to “true”. It MUST be either absent or set to “false” otherwise. Default: “false”.

	status
	ParticipantStatus
	Yes
	Connection status of the Participant. Set by the server. SHALL NOT be present in request bodies during resource creation.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named participantInformation of type ParticipantInformation is allowed in request and/or response bodies.
Regarding the clientCorrelator field, the note in section 5.2.2.2 applies.

5.2.2.17 Type: IsComposing

This type represents a message indicates to the recipient that the sender is editing (composing) a message. The structure of this message is aligned with [RFC3994]. Note that because the element names in this structure follow the syntax in [RFC3994], they do not follow the naming conventions in OMA RESTful Network APIs as defined in [REST_WP].
	Element
	Type
	Optional
	Description

	state
	xsd:string
	No
	Composer state, as defined in [RFC3994]. One of “idle”, “active”.

	lastactive
	xsd:dateTime
	Yes
	Time of last activity, as defined in [RFC3994].

	contenttype
	xsd:string
	Yes
	Type of message being created, as defined in [RFC3994]. Either a MIME media type, or a combination of media type and subtype.

	refresh
	xsd:positiveInteger
	Yes
	Time interval in seconds after which the receiver can expect an update from the composer, as defined in [RFC3994].

	(any)
	any[0..unbounded]
	Yes
	Any element from another namespace, as defined in [RFC3994].

A root element named isComposing of type IsComposing is allowed in request and/or response bodies.
Ed. Note: This is now a copy of the IETF structure under the OMA Chat namespace (as this has been done in Presence API). Alternative way would be to just reference the type. To be decided.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Chat API.
5.2.3.1 Enumeration: ParticipantStatus

This enumeration defines the possible values for chat participant status. Based on [OMA SIMPLE IM] chapter 7.2.2.10 only the following two values are defined, plus an indication of a “pending” status i.e. “Invited”:
	Enumeration
	Description

	Invited
	User was invited to the session

	Connected
	User is connected to the session

	Disconnected
	User is disconnected from the session

5.2.3.2 Enumeration: EventType

This enumeration is used in notifications to describe the type of event which the notification is about.
	Enumeration
	Description

	SessionCancelled
	The Originator has cancelled the chat session during the invite phase

	SessionEnded
	The session has ended

	Declined
	The Participant has declined the chat session invite (only in 1-1 chat)

	Accepted
	The Participant has accepted the chat invite (only in 1-1 chat)

5.2.3.3 Enumeration: MessageStatus

This enumeration defines the possible values for the message delivery status. The following values are defined:
	Enumeration
	Description

	Delivered
	Message was delivered to the client.

Maps to “delivered” according to [RFC5438] or to success reports (“Success-Report=yes”) according to [RFC4975].

	Displayed
	Message was displayed by the client. Maps to “displayed” according to [RFC5438].

	Failed
	Message was not delivered to the client. Only used in notifications from the server, but not in POST requests from the client.

Maps to failure reports (“Failure-Report=yes”) according to [RFC4975], or any other means to detect failure available to the implementation.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

· ChatSubscriptionList

· ChatNotificationSubscription

· MessageNotification
· ChatMessage
· MessageDeliveryStatus
· ParticipantSessionStatus
· ChatSessionInformation
· GroupChatSessionInformation
· ParticipantList
· ParticipantInformation
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
Ed. note: this is outdated anyway. To be harmonized with the way this is done in IS/VS.

5.3.1 Subscribing to and unsubscribing from chat notifications
Ed. note: this will stay here and may need to be slightly updated.
The figure below shows a scenario for an application subscribing to chat notifications.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.

The resources:

· To subscribe to chat notifications, create a new resource under http://{serverRoot}/chat/{apiVersion}/{userId}/subscriptions
· To cancel subscription to chat notifications delete the resource under http://{serverRoot}/chat/{apiVersion}/{userId}/subscriptions/{subscriptionId}

[image: image4.emf]Application Chat Server

POST ChatNotificationSubscription

Response

subscriptionID

Incl. callbackURL

DELETE ChatNotificationSubscription

Response

delete the

subscription

create a new

subscription

Notif Server

Figure 2 Subscribe to and unsubscribe from chat notifications
Outline of the flows:

1. An application subscribes to chat notifications using the POST method to submit the ChatNotificationSubscription structure to the resource containing all subscriptions and receives the result resource URL containing the subscriptionId
2. The application stops receiving notifications (including chat messages) using DELETE with a resource URL containing the subscriptionId
5.3.2 Normal flow of a session-less 1-1 chat

Ed. note: to be provided.
5.3.3 Normal flow of a session-based 1-1 chat

Ed. note: to be provided.
5.3.4 Normal flow of a group chat

Ed. note: to be provided.
5.3.5 Declining a chat session invitation

Ed. note: to be provided.
5.3.6 Cancelling an invitation to a session-based 1-1 chat

Ed. note: to be provided.
Ed. note: the flows below will all be re-sorted and re-done to align with IS/VS conventions.
5.3.7 Sending a chat message

The figure below shows a scenario for an application to send a chat message. In case of 1-1 chats, the application can immediately send the message to the desired participant. In case of group chats, a group chat session needs to be established first, as described in section 5.3.9.

The resources:

· To send a 1-1 chat message create a new resource at http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/messages

· To send a group chat message create a new resource at http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages

[image: image5.emf]Application Chat Server Notif Server

POST ChatMessage

Response

messageId

MessageDeliveryNotification

create a new

chat message

message for participant

delivered successful

successReport=true

Figure 3 Sending a chat message

Outline of the flows:

1. An application sends a chat message using the POST method to submit the ChatMessage structure to the resource representing a container for all messages. Thereby the creation of a new chat message resource is triggered and the application receives the resulting resource URL containing the messageId.

2. When the application has requested to receive a success report for the delivery of the message by setting the according value in the ChatMessage structure, a MessageDeliveryNotification will be sent to the sender application if delivery was successful (in this version of the specification, this is only applicable for 1-1 chats).

Ed. note: Adapt “succesReport=true” to new reporting scheme.

5.3.8 Receiving a chat message and confirming message delivery success

The figure below shows a scenario for an application to receive a chat message and to confirm message delivery success.

The resources:

· (The chat message is received in a notification)

· To confirm successful message reception in a 1-1 chat update the resource at http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/messages/{messageId}/status
· To confirm successful message reception in a group chat update the resource at http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages/{messageId}/status

[image: image6.emf]Chat Server Notif Server Application

MessageNotification

POST MessageDeliveryStatus

success=true

Response

create a message

delivery success report

Figure 4 Receiving a chat message and confirming successful message delivery

Outline of the flows:

1. An application receives a chat message via the Notification mechanism.

2. If the received message contains an indication that delivery and/or display confirmation is requested, the application confirms message delivery and/or display using the POST method to submit the MessageDeliveryStatus structure to the resource containing the message status. Thereby the creation of a message delivery report is triggered.

Ed. note: Adapt “success=true” to new reporting scheme.

5.3.9 Starting a group chat
The figure below shows a scenario for an application to start a group chat session.

The resources:

· To start a group chat session create a new resource under http://{serverRoot}/chat/{apiVersion}/{userId}/group
with the GroupChatSessionInformation structure.

[image: image7.emf]Application Chat Server Notif Server

POST GroupChatSessionInformation

Response

ParticipantStatusNotification

create a new

group chat session

user accepts or declines

session invitation

Figure 5 Starting a group chat

Outline of the flows:

1. An application starts a group chat session using the POST method to submit the GroupChatSessionInformation structure with the invited participants to the resource containing all group chat sessions. Thereby the creation of a new chat session resource is triggered and the application receives the resulting resource URL containing the sessionId.

2. When the invited users accepted or declined the group chat session invitation, the application receives one or more ParticipantStatusNotification structures with status information for each participant.

5.3.10 Accepting or declining a group chat session invitation

Upon reception of a chat session invitation one of the following options exist:

a. The application accepts the chat session invitation

b. The application declines the chat session invitation

c. The application does not react on the session invitation, which will eventually lead to the invitation to time out.

5.3.11 Accepting a group chat session invitation

The figure below shows a scenario for an application to accept a group chat session invitation.

The resources:

· To accept a group chat session invitation update the participant status resource http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}/status

[image: image8.emf]Chat Server Notif Server Application

GroupSessionInvitationNotification

POST ParticipantSessionStatus

status=connected

Accept invitation to group chat session

Participant status is

changed to connected

Response

ParticipantStatusNotification

Participant connected

to group chat

connected

Figure 6 Accepting a group chat session invitation
Outline of the flows:
1. An application receives a group chat session invitation notification.

2. The application accepts the invitation using the POST method to submit the ParticipantSessionStatus structure to the resource containing the participant status. The status MUST be set to “Connected”.
3. A ParticipantStatusNotification is created by the API server to inform the Participants that the Participant accepted the invitation.

5.3.12 Declining a group chat session invitation
The figure below shows a scenario for an application to decline a group chat session invitation.

The resources:

· To decline a group chat session invitation delete the participant resource http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}

[image: image9.emf]Chat Server Notif Server Application

GroupSessionInvitationNotification

DELETE participant resource

Decline group chat invitation Participant is deleted

Response

with participantId

Figure 7 Declining a group chat session invitation

Ed. Note: It is ffs weather a participant declining a group chat invitation triggers a ParticipantStatusNotification
Outline of the flows:
1. An application receives a group chat session invitation notification.

2. The application declines the chat session invitation using the DELETE method on the participant resource including the participantId of the user

5.3.13 Leaving and re-joining a group chat session
The figure below shows a scenario for an application to leave and re-join a group chat session.

The resources:

· To leave a group chat session delete the resource http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}

· To re-join a group chat session POST the ParticipantInformation to http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants

[image: image10.emf]Chat Server Application

DELETE participant resource

with participantId

Leave a group chat session

Response

POST ParticipantInformation

Re-join chat session

Response

Participant is deleted

Participant is created

with new participantId

status=disconnected

status=connected

Notif Server

ParticipantStatusNotification

ParticipantStatusNotification

Figure 8 Leaving and re-joining a group chat session
Outline of the flows:

1. An application leaves a group chat session using the DELETE method on the participants resource including the participantId. The participant is thereby deleted from the participants list while the session still exists (as this is a group chat session.)

2. A ParticipantStatusNotification is created by the API server to inform all other Participants that a user has left

3. An application re-joins a group chat session using the POST method to submit the ParticipantInformation structure to the resource containing the participants. The status MUST be set to “Connected”. The application receives a resource URL containing a new participantId.

4. A ParticipantStatusNotification is created by the API server to inform all Participants that a user has joined.

Depending on the implementation of the underlying session release policy, the session is or is not ended when the originator of the group chat leaves. The following figure illustrates the case that the session is ended:

[image: image11.emf]Chat Server Application

DELETE participant resource

with participantId

Originator leaves

group chat session

Response

group chat

session ended

Participant is deleted

Session is deleted

ParticipantStatusNotification

Status=disconnected

SessionEnded

Notif Server

ChatEventNotification

Figure 9 Originator leaves group chat and session is ended
Outline of the flows:

1. An application leaves a group chat session using the DELETE method on the participants ressource including the participantId. The participant is the originator of the group chat session, wich leads to a release of the session

2. A ParticipantStatusNotification is created by the API server to inform all other participants that the originator has left

3. The session resource is deleted by the API server

4. A ChatEventNotification is created by the API server to inform all participants that the session has ended.

6. Detailed specification of the resources
ed. note: this section is based on CR 284R01, with all changes accepted, and examples added on top, change-tracked.

The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, x-www-form-urlencoded):

· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].
6.1 Resource: All subscriptions to chat event notifications
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/subscriptions

This resource is used to manage subscriptions to chat event notifications. Note that there is one subscription per client instance.

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.1.3 GET
This operation is used for reading the list of active chat notification subscriptions.

6.1.3.1 Example: Reading all active chat notification subscriptions
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatSubscriptionList xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<chatNotificationSubscription>

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chatNotificationSubscription>

<resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions</resourceURL>

</chat:chatSubscriptionList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used to create a new subscription for chat notifications.
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: Creating a new subscription to chat notifications, response with copy of created resource
(Informative)
6.1.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

</chat:chatNotificationSubscription>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/chat/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>
 </callbackReference>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chat:chatNotificationSubscription>

6.1.5.2 Example 2: Creating a new subscription to chat notifications, response with location of created resource
(Informative)
6.1.5.2.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/chat/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

</chat:chatNotificationSubscription>

6.1.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</common:resourceReference>

6.1.5.3 Example 3: Creating a new subscription to chat notifications, requiring session-based 1-1 chat support which the server does not support
(Informative)
6.1.5.3.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/chat/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml (include the oneToOneSessionsRequired Flag]

6.1.5.3.2 Response

	HTTP/1.1 400 Bad Request
Content-Type: application/xml

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[Exception Payload]

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: Individual subscription to chat event notifications
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/subscriptions/{subscriptionId}
This resource represents an individual subscription to chat notifications.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	subscriptionId
	identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.2.3 GET
This operation is used for reading an individual subscription.

6.2.3.1 Example: Reading an individual subscription
(Informative)
This example shows also an alternative way to indicate desired content type in response from the server, by using URL query parameter “?resFormat” which is described in [REST_NetAPI_Common].
6.2.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001?resFormat=XML HTTP/1.1
Accept: application/xml
Host: example.com

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chat:chatNotificationSubscription>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.2.6.1 Example: Cancelling a subscription
(Informative)
6.2.6.1.1 Request

	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/chat/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jun 2010 17:51:59 GMT

6.3 Resource: Chat messages in a 1-1 chat
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/messages
This resource represents all chat messages in a chat session. In the current version of the specification, it is a “send-only” resource (i.e. chat messages cannot be read back).

6.3.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.5 POST
This operation is used to create a chat message. This method MUST return either a common:resourceReference root element or a chat:chatMessage root element, where using the first option is RECOMMENDED.
6.3.5.1 Example 1: Creating a chat message, using tel URI and returning the location of the created resource
(Informative)
6.3.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

</chat:chatMessage>

6.3.5.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
 </resourceURL>

</common:resourceReference>

Note that alternatively, a copy of the created resource can be returned, as illustrated in section 6.3.5.2.2.

6.3.5.2 Example 2: Creating a chat message, using ACR and returning a copy of the created resource
(Informative)
6.3.5.2.1 Request

	POST /exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

</chat:chatMessage>

6.3.5.2.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
 </resourceURL>
</chat:chatMessage>

Note that alternatively, a the location of the created resource can be returned, as illustrated in section 6.3.5.1.2.
6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.4 Resource: Individual chat message in a 1-1 chat
Ed. note: currently there is no method defined for this resource. This may change when support for offline messageing, as needed in RCS-e, will be added. In case this section has not been filled by the start of CONR, remove it.

The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/messages/{messageId}
This resource is used for [descriptive explanation of the resource].

6.4.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

	messageId
	identifier of the message

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.4.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT, POST, DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

When using query parameters the following conventions apply: >>

· Query parameters are appended to the resource URL starting with a question mark “?” character and then followed by query parameter name – value pairs.

· Multiple query parameter name-value pairs are separated by an ampersand "&" character. Example: ?par1=par1Val&par2=par2Val&..

· Multiple values for the same query parameters are specified as a list of name-value pairs using the same name, separated by an ampersand “&” character. Example: ?par1=par1Val1&par1=par1Val2&...

6.4.3.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.4.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.4.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.4.3.2 Example 2: [Example title]
(Informative)
6.4.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.4.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.4.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, POST, DELETE]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.4.4.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.4.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.4.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.4.4.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.4.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.4.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.4.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, PUT, DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]). [Delete this paragraph unless used in creation of subscription]
6.4.5.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.4.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.4.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.4.5.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.4.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.4.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.4.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, PUT, POST]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.4.6.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.4.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.4.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.4.6.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.4.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.4.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.5 Resource: Individual message delivery status in a 1-1 chat
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/messages/{messageId}/status
This resource represents the delivery status of a message.

6.5.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

	messageId
	identifier of the message

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.5.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

Ed. note: FFS: it may be necessary to enabler read access here, at least as option.
6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.5.5 POST
This operation is used for reporting the status of a message. The client SHALL execute this method if a received message indicates that a status report is requested, by including the element ‘reportRequest’ in the message.

Ed. note: it is FFS whether the “Delivered” notification is generated by the API client. This may depend on the actual notification mechanism used, and on the underlying layers. See also the latest input from RCS-e.
6.5.5.1 Example: Reporting the status of a message
(Informative)
6.5.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages/msg001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageDeliveryStatus xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Displayed</status>

<userId>tel%3A%2B19585550101</userId>

</chat:messageDeliveryStatus>

6.5.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.6 1-1 chat session information

The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otheruserId}/sessionInfo

This resource represents session information in a session-based 1-1 chat.

A 1-1 chat session MAY be extended to a group chat session as described in section 6.8. These are represented using different resources because the feature sets of both types of sessions are different. In case a 1-1 session has been successfully extended into a group chat session, the 1-1 session is closed. For a certain period of time after extending the session, it is RECOMMENDED to redirect all accesses to a 1-1 session resource or its offspring resources to the resource representing the corresponding group chat session. Section 6.6.3.2 provides an example for such redirection.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: Error! Hyperlink reference not valid.example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].

6.6.3 GET

This operation is used to retrieve chat session information.

6.6.3.1 Example 1: Retrieving chat session information
(Informative)

6.6.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo HTTP/1.1
Accept: application/xml
Host: example.com

6.6.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.6.3.2 Example 2: Retrieving chat session information of a 1-1 session that was previously extended to a group chat session
(Informative)

6.6.3.2.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo HTTP/1.1
Accept: application/xml
Host: example.com

6.6.3.2.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>

</common:resourceReference>

6.6.4 PUT

This operation is used to create a 1-1 chat session with the user represented by {userId} as originator and the one represented by {otherUserId} as terminating participant.

6.6.4.1 Example: Creating a 1-1 chat session
(Informative)

6.6.4.1.1 Request

	PUT /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo HTTP/1.1
Accept: application/xml
Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.6.4.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo
<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.6.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.6.6 DELETE

This operation ends the chat session.

It is used in the following contexts:

· by the Originator to cancel a pending invitation before the Terminating Participant has accepted the invitation, which will cause the session to end

· by the Terminating Participant to decline an invitation to a chat session, which will cause the session to end

· by any Participant to terminate the chat session.

6.6.6.1 Example: Terminating a 1-1 chat session
(Informative)

6.6.6.1.1 Request

	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.6.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.7 Resource: 1-1 chat session status

The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/status

This resource represents the status of the session and is used for accepting a 1-1 chat invitation, by means of updating the status.

6.7.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].

6.7.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.7.5 POST

This operation is used is used for accepting a 1-1 chat invitation, by means of updating the status.

6.7.5.1 Example 1: Accepting a 1-1 chat invitation
(Informative)

6.7.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/{otherUserId}/sessionInfo/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.7.5.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.8 Resource: Extend a session-based 1-1 chat to a group chat session

The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/oneToOne/{otherUserId}/extend

This resource is used to extend a session-based 1-1 chat to a group chat session.

6.8.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].

6.8.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.8.5 POST

This operation is used to extend a session-based 1-1 chat to a group chat session.

In case of successful operation, “303 See Other” SHALL be returned, providing a Location header and a resourceReference root element with the location representing the new group chat session in which the Originator is already a Participant. All Participants given in the body of the HTTP request are invited to the group chat session.

On behalf of the Terminating Participant in the original 1-1 session, the API server SHALL end the original 1-1 chat session once the Terminating Participant in the original 1-1 session has accepted or declined the invitation to the group chat, or once that invitation has timed out.

6.8.5.1 Example: Extending a session-based 1-1 chat to a group chat session
(Informative)

6.8.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/{otherUserId}/sessionsInfo/extend HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.8.5.1.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001
Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>

</common:resourceReference>

6.8.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9 Resource: All group chat sessions
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group
This resource represents the active group chat sessions for a particular user.

6.9.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.9.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9.5 POST
This operation is used to create a new group chat session.
6.9.5.1 Example: Creating a new group chat session
(Informative)
6.9.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/chat/group HTTP/1.1

Content-Length: nnnn
Content-Type: application/xml

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>
 <isOriginator>true</isOriginator>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
</chat:groupChatSessionInformation>

6.9.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>
</chat:groupChatSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.10 Resource: Individual group chat session
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}
This resource represents a group chat session.

For a limited time after a Participant has left a group chat session, the API server still exposes the resource URL of a chat session to the client that has left for the purpose of re-joining. The time how long this is exposed is controlled by operator policies. Also, the API server MAY choose based on policies to expose this resource also to other clients, allowing them to join the chat. In case the client is not a Participant of the chat session but the resource URL representing the session is exposed to him, the response to the GET method SHALL be “204 No Content”. Note that the reason for this is the fact that it is implementation-specific whether or not a disconnected Participant gets notifications about session progress from the underlying protocol layers.

6.10.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.10.3 GET
This operation is used to retrieve chat session information.

6.10.3.1 Example 1: Retrieving group chat session information
(Informative)
6.10.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.10.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>
<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001
</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Invited</status>

<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>
<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003
</resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>
</chat:groupChatSessionInformation>

6.10.3.2 Example 2: Retrieving group chat session information when being disconnected
(Informative)
This example illustrates the case that the client reads information about a group chat session on behalf of a user who is currently not participating in the session, but who is allowed to join.
6.10.3.2.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.10.3.2.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.10.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.10.6 DELETE

Ed. Note: It is FFS whether this feature can be realized using the underlying protocol layer. If it cannot, the DELETE method will be removed. It is also FFS whether this can only be done by the originator, or also by a tParticipant.
This operation ends the group chat session.

It is used to terminate the chat session.

6.10.6.1 Example: Terminating a group chat session
(Informative)
6.10.6.1.1 Request

	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.10.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.11 Resource: All Participants in a group chat session
http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants
This resource represents the set of Participants in a group chat session.

For a limited time after a Participant has left a group chat session, the API server still exposes the resource URL of a chat session and the ‘participants’ node to the client that has left, for the purpose of re-joining. The time how long this is exposed is controlled by operator policies. During the time this resource is still available, the client can re-join by executing the POST method as described below. Also, the API server MAY choose based on policies to expose this resource also to other clients, allowing them to join the chat by executing the POST method. In case the client is not a Participant of the chat session but the resource URL representing the session is exposed to him, the response to the GET method SHALL be “204 No Content”. Note that the reason for this is the fact that it is implementation-specific whether or not a disconnected Participant gets notifications about session progress from the underlying protocol layers.
6.11.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.11.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.11.3 GET
This operation is used to retrieve the list of Participants in a group chat session.

6.11.3.1 Example 1: Retrieving the list of participants in a group chat session
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently participating in the session.
6.11.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003

 </resourceURL>
 </participant>
 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

6.11.3.2 Example 2: Retrieving the list of participants in a group chat session when being disconnected
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently not participating in the session, but who is allowed to join.
6.11.3.2.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.2.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.11.3.3 Example 3: Retrieving the list of participants in a group chat session when not having access rights
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently not participating in the session, and who is not allowed to join. In fact, from the API server point of view, there is no difference between a client not being allowed to access, and the session not existing.
6.11.3.3.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.3.2 Response

	HTTP/1.1 403 Forbidden
Date: Mon, 28 Jul 2011 17:51:59 GMT
[TODO: add entity body / exception. Related to error framework discussions.]

6.11.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.11.5 POST
This operation is used to add Participants to a group chat:
· The Originator executes this method to add one or more Participants to a group chat.

· A Participant executes this method to join or re-join a group chat.

Note that for a Participant re-joining a chat session, the {participantId} resource URL variable is not guaranteed to have the same value as in the previous participation of the Participant in the session.

If the operation was successful, it returns an HTTP Status of “201 Created” in case there was just one tParticipantAddress instance passed, or “200 OK” if there were multiple instances passed. Further, in case there was just one tParticipantAddress instance passed, the response entity body contains either a “resourceReference” or a “participant” root element. In case there were multiple tParticipantAddress instances passed, the response entity body contains a “participantList” root element.

In other words, adding one participant corresponds to the creation of a new participant resource in the list of participants and is consistent with the resource creation design pattern used throughout the OMA RESTful Network APIs, whereas the addition of multiple participants corresponds to an update operation of the list of participants.
6.11.5.1 Example 1: Adding one participant to a group chat, or joining/re-joining a group chat
(Informative)
This example illustrates the following three cases for which the same request syntax is being used:

· one participant added to a group chat by the originator

· one participant joining a chat for which she/he has permissions

· one participant re-joining a chat which she/he has left earlier

6.11.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <clientCorrelator>12345</clientCorrelator>

</chat:participantInformation>

6.11.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
</chat:participantInformation>

6.11.5.2 Example 2: Adding multiple participants to a group chat
(Informative)
6.11.5.2.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>
<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550103</address>

 <name>John</name>
 <clientCorrelator>12345</clientCorrelator>

 </participant>

 <participant>

 <address>tel:+19585550104</address>

 <name>Peter</name>
 <clientCorrelator>67890</clientCorrelator>

 </participant>
 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

6.11.5.2.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>
<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003

 </resourceURL>
 </participant>
 <participant>

 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550104</address>

 <name>Peter</name>
<status>Invited</status>

 <clientCorrelator>67890</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part005

 </resourceURL>
 </participant>
 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

6.11.5.3 Example 3: Error situation when trying to (re)join a group chat session
(Informative)
This example illustrates the case that the client is not allowed anymore to (re)join a group chat session, or tries to join a group chat session for which he has no permission, or which does not exist. Either error code 404 (for non-existing sessions) or 403 (for sessions to which the client has no access) are returned.
6.11.5.3.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.5.3.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

[TODO: add entity body / exception. Related to error framework discussions.]

6.11.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.12 Resource: Individual participant in a group chat session
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}
This resource represents a Participant in a group chat session.

6.12.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

	participantId
	identifier of the Participant. Note that this Id is assigned by the server upon resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.12.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.12.3 GET
This operation is used to retrieve information about an individual group chat Participant .

6.12.3.1 Example: Retrieving information about an individual group chat participant
(Informative)
6.12.3.1.1 Request

	GET /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004 HTTP/1.1

Accept: application/xml

Host: example.com

6.12.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
</chat:participantInformation>

6.12.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.12.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.12.6 DELETE

This operation ends the participation of a Participant in the group chat session, i.e. disconnects the Participant from the session.
It is used in the following contexts:

· by the Originator to remove a Participant from the chat session

· by the Terminating Participant to decline an invitation to a chat session

· by any Participant to leave the chat session.

Note that a Participant who has left the session can rejoin (if allowed by policies) using the mechanism defined in section 6.11.5.

As a result of performing the DELETE operation, the server SHALL remove the {participantId} node of the removed Participant from the resource tree, but SHALL keep the {sessionId} node and its {participants} sub-node available for a certain period of time that is controlled by policies. As it is not guaranteed that the server will receive information regarding the further session progress after leaving the session, GET access to these resources on behalf of a disconnected Participant SHALL return ‘204 No Content’.

Ed. note: it is FFS whether and how the Originator can remove a Participant from the session. If this is not possible, this feature may become optional (i.e. to be implemented by each vendor using proprietary means), or will be removed.
6.12.6.1 Example: Leaving a group chat session
(Informative)
6.12.6.1.1 Request

	DELETE /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001 HTTP/1.1

Accept: application/xml

Host: example.com

6.12.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.13 Resource: Individual group chat session participant status
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/participants/{participantId}/status
This resource represents the status of a participant in a group chat session and is used for accepting a group chat invitation, by means of updating the status.

6.13.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

	participantId
	identifier of the Participant. Note that this Id is assigned by the server upon resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.13.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.13.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.13.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.13.5 POST
This operation is used is used for accepting a group chat invitation, by means of updating the status. As this is a POST request that leads to an update rather than to a child resource creation, the response code on success is 200 OK.
6.13.5.1 Example 1: Accepting a group chat invitation
(Informative)
6.13.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001/status HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Connected</status>

</chat:participantSessionStatus>

6.13.5.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Connected</status>

</chat:participantSessionStatus>

Note that the pendant operation, i.e. declining a group chat invitation, is the same as leaving a group chat session. For an example see section 6.12.6.1
6.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.14 Resource: Group chat messages
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages
This resource represents the set of messages in a group chat session.
In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.
6.14.1 Request URL variables

See section 6.3.1..
6.14.2 Response Codes and Error Handling
See section 6.3.2.
6.14.3 GET
See section 6.3.3, with the change that the resourceURL structure defined in section 6.14 applies.

6.14.4 PUT

See section 6.3.4, with the change that the resourceURL structure defined in section 6.14 applies.
6.14.5 POST
See section 6.3.5, with the change that the resourceURL structure defined in section 6.14 applies.
6.14.6 DELETE

See section 6.3.6, with the change that the resourceURL structure defined in section 6.14 applies.
6.15 Resource: Individual group chat message
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages/{messageId}
This resource represents an individual message in a group chat session.

In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.

6.15.1 Request URL variables

See section 6.4.1.

6.15.2 Response Codes and Error Handling
See section 6.4.2.
6.15.3 GET
See section 6.4.3, with the change that the resourceURL structure defined in section 6.15 applies.

6.15.4 PUT

See section 6.4.4, with the change that the resourceURL structure defined in section 6.15 applies.

6.15.5 POST
See section 6.4.5, with the change that the resourceURL structure defined in section 6.15 applies.

6.15.6 DELETE

See section 6.4.6, with the change that the resourceURL structure defined in section 6.15 applies.

6.16 Individual group chat message delivery status
The resource used is:

http://{serverRoot}/chat/{apiVersion}/{userId}/group/{sessionId}/messages/{messageId}/status
This resource represents the delivery status of a group chat message.

In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.
6.16.1 Request URL variables

See section 6.5.1.

6.16.2 Response Codes and Error Handling
See section 6.5.2.

6.16.3 GET
See section 6.5.3, with the change that the resourceURL structure defined in section 6.16 applies.

6.16.4 PUT

See section 6.5.4, with the change that the resourceURL structure defined in section 6.16 applies.

6.16.5 POST
See section 6.5.5, with the change that the resourceURL structure defined in section 6.16 applies.

6.16.6 DELETE

See section 6.5.6, with the change that the resourceURL structure defined in section 6.16 applies.

6.17 Resource: Client notification about 1-1 chat session invitations
This resource is a callback URL provided by the client for notification about chat session invitations. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.17.5.
6.17.1 Request URL variables

Client provided if any.
6.17.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.17.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.17.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.17.5 POST
This operation is used to notify the client about chat session invitations.
6.17.5.1 Example: Notify a client about 1-1 chat session invitations
(Informative)
6.17.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com:80

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.17.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.17.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.18 Resource: Client notification about group chat session invitations
This resource is a callback URL provided by the client for notification about chat session invitations. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.18.5.
6.18.1 Request URL variables

Client provided if any.
6.18.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.18.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18.5 POST
This operation is used to notify the client about chat session invitations.
6.18.5.1 Example: Notify a client about group chat session invitations
(Informative)
This example notification is triggered by the request in example 6.9.5.1. Note that the {userId} resourceURL variable represents the userId of the user on whose behalf the application acts, not the one of the originator.
6.18.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupSessionInvitationNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href=" http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550102/group/sess001"/>
<link rel=" ParticipantInformation"
 href=" http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550102/group/sess001/participants/part003"/>
<subject>Hello</subject>

<participant>

<address>tel:+19585550100</address>

<name>Alice</name>

<isOriginator>true</isOriginator>

<status>Connected</status>

<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>

</participant>

<participant>

<address>tel:+19585550101</address>

<name>Bob</name>

<status>Invited</status>

<resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>

</participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>

 </participant>
</chat:groupSessionInvitationNotification>

6.18.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.18.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.19 Resource: Client notification about chat session events
This resource is a callback URL provided by the client for notification about various chat session events. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.19.5.
6.19.1 Request URL variables

Client provided if any.
6.19.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.19.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.19.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.19.5 POST
This operation is used to notify the client about chat session invitations.
6.19.5.1 Example: Notify a client about chat session events
(Informative)
6.19.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatEventNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001"/>

<link rel="ChatNotificationSubscription"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
<eventType>SessionEnded</eventType>

<eventDescription>The session has ended.</eventDescription>

</chat:chatEventNotification>

6.19.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.19.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.20 Resource: Client notification about changes of participant status
This resource is a callback URL provided by the client for notification about changes of participant status. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.20.5.

This resource is not relevant in 1-1 chats.
6.20.1 Request URL variables

Client provided if any.
6.20.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.20.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.20.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.20.5 POST
This operation is used to notify the client about changes of participant status.
6.20.5.1 Example: Notify a client about participant status changes
(Informative)
6.20.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantStatusNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001"/>
<link rel="ChatNotificationSubscription"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
<participant>

<address>tel:+19585550100</address>

<name>Alice</name>

<status>Connected</status>

<yourown>true</yourown>

 <link rel="ParticipantInformation"

 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001"/>
</participant>
<participant>

<address>tel:+19585550101</address>

<name>Bob</name>

<status>Disconnected</status>

<yourown>false</yourown>

 <link rel="ParticipantInformation"

 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002"/>
</participant>

</chat:participantStatusNotification>

6.20.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.20.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.21 Resource: Client notification containing incoming messages
Instruction for editor: When incorporating this CR, move this section and the following one after the sending of a Chat message. This will ensure the most important resources for the developer to be at the beginning. Remove this note after doing the edit.

This resource is a callback URL provided by the client for notifications about incoming messages. The actual messages are inlined in the notifications.

The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.20.5.

6.21.1 Request URL variables

Client provided if any.
6.21.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.21.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.21.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.21.5 POST
This operation is used to notify the client about incoming messages, and to deliver these messages to the client.
6.21.5.1 Example: Notify a client about incoming messages
(Informative)
6.21.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="ChatMessage"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001"/>
<senderAddress>tel:+19585550102</senderAddress>

<senderName>Ted</senderName>

<chatMessage>

<text>Hello Alice</text>

<reportRequest>Displayed</reportRequest>

<resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001</resourceURL>

</chatMessage>

<dateTime>2001-12-17T09:30:47Z</dateTime>

</chat:messageNotification>

6.21.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.21.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.22 Resource: Client notification about message delivery status
This resource is a callback URL provided by the client for notifications about message status such as “Delivered”, “Failed”, “Displayed”.
The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.20.5.

6.22.1 Request URL variables

Client provided if any.
6.22.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.22.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.22.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.22.5 POST
This operation is used to notify the client about incoming messages, and to deliver these messages to the client.
6.22.5.1 Example: Notify a client about message delivery status
(Informative)
6.22.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageDeliveryStatusNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="ChatMessage"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/messages/msg001"/>
<link rel="ParticipantInformation"
 href="http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002"/>

<status>Displayed</status>

</chat:messageDeliveryStatusNotification>

6.22.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.22.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
7. Fault definitions

7.1 Service Exceptions

7.1.1 SVC0yyy: Session-based 1-1 chats not supported
	Name

	Description

	MessageID
	SVC0yyy

	Text
	Session-based 1-1 chats are not supported.

	Variables
	none

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _Chat-V1_0
	28 Apr 2011
	All
	TS skeleton created

	
	31 May 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0020R05-CR_Chat_API_basic_design implemented.

	
	07 Jul 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0124R03-CR_Chat_API_resource_and_datatype_alignment_with_new_resource_model implemented.

	
	27 Jul 2011
	2.1

5.1

5.2.2.x

5.2.3.x

	Implemented CRs

· OMA-ARC-REST-NetAPI-2011-0156-CR_Chat_alignment_with_FT_IS_VS

· OMA-ARC-REST-NetAPI-2011-0157R01-CR_Chat_small_fix

	
	02 Aug 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0173R01-CR_Chat_section_6_structure_with_tel_URI_fixes_and_Notif_channel_changes implemented

	
	08 Sep 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0197R01-CR_Chat_Appendix_C

· OMA-ARC-REST-NetAPI-2011-0093R03-CR_Chat_Flows
· OMA-ARC-REST-NetAPI-2011-0220-CR_Separating_originator_and_tParticipant_1_1_chat^

· OMA-ARC-REST-NetAPI-2011-0227R02-CR_Chat_Long_Polling_fix

	
	26 Sep 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0238R02-CR_ACR_Chat

· OMA-ARC-REST-NetAPI-2011-0250-CR_ChatEventNotification_fix

	
	17 Oct 2011
	5.2.3.3, 5.2.2.11, 5.2.2.12
	CR implemented: OMA-ARC-REST-NetAPI-2011-0275R01-CR_Chat_status_enum_fix

	
	11 Nov 2011
	Many
	CRs implemented:

· OMA-ARC-REST-NetAPI-2011-0284R02-CR_Simplifying_1_1_chat_sessions

· OMA-ARC-REST-NetAPI-2011-0237R02-CR_Chat_examples

Note that CR 284 implements a fundamental change in the approach to 1-1 chats. Rather than exposing session-based 1-1 chats only, this now supports both session-based and session-less 1-1 chats. The new mode greatly simplifies the API, and makes it closer to today’s chat APIs in the Internet. Session-based oneToOne chats are supposed to be optional.

	
	18 Nov 2011
	Many
	CR OMA-ARC-REST-NetAPI-2011-0375-CR_Chat_actions_and_editorials implemented

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.Chat Server

	Item
	Function
	Reference
	Requirement

	REST-Chat-SUPPORT-S-001-M
	Support for the RESTful Chat API
	[section(s)]
	

	REST- Chat-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-Chat-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST-Chat-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.Chat.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This section defines a format for the RESTful Chat API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for all Chat REST operations which are based on POST requests, except Notifications.
C.1 Creating a new subscription to chat notifications
This operation is used to create a new subscription to chat notifications. See section 6.1.5.

The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	notifyURL
	xsd:anyURI
	No
	Notification endpoint definition.

	callbackData
	xsd:string
	Yes
	Data the application can register with the server when subscribing to notifications, and that are passed back unchanged in each of the related notifications.

	notificationFormat
	common:NotificationFormat
	Yes
	Default: XML

Application can specify format of the resource representation in notifications that are related to this subscription. The choice is between {XML, JSON}

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.1.1 Example

(Informative)

C.1.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

notifyURL=http%3A%2F%2Fapplication.example.com%2Fchat%2Fnotifications%2F77777&

callbackData=abcd&

notificationFormat=XML&

clientCorrelator=12345

C.1.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">
 <callbackReference>

 <notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

 </callbackReference>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http:// exampleAPI/chat/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chat:chatNotificationSubscription>

C.2 Accepting/Declining a chat session invitation
This operation is used to accept/decline a one-to-one chat session invitation, see section 6.7.5, or a group chat session invitation, see section 6.7.5.1.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	status
	xsd:string
	No
	Status of the participant.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”.

To indicate that the user declines the session invitation, this element MUST be set to “Disconnected”.

If the operation was successful, it returns an HTTP Status of “200 OK”.

Note that the resource URL differs, depending on whether the operation is performed on a 1-1 chat session, or a group chat session. The example below illustrates accepting a 1-1 chat session invitation.
C.2.1 Example

(Informative)

C.2.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/sessionInfo/status
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

status=Connected

C.2.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <status>Connected</status>

</chat:participantSessionStatus>

C.3 Extending a 1-1 chat to a group chat session
This operation is used to extend a one-to-one chat session to a group chat session. See section 6.8.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the originator

	originatorName
	xsd:string
	Yes
	Human readable name of the originator

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user)

If the operation was successful, it returns an HTTP Status of “303 See Other”.

It is FFS whether the originator and existing terminating participant needs to be supplied here, or only the additional tParticipants.

C.3.1 Example

(Informative)

C.3.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550100/sessionInfo/extend
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

originatorAddress= tel%3A%2B19585550100&

originatorName=Alice&

tParticipantAddress= tel%3A%2B19585550101&

tParticipantName=Bob&

tParticipantAddress= tel%3A%2B19585550102&

tParticipantName=Ted

C.3.1.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/groupSessions/sess001

Content-Length: nnnn

Date: Mon, 28 Jun 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/groupSessions/sess001</resourceURL>

</common:resourceReference>

C.4 Creating a chat message
This operation is used to create a chat message in a 1-1 chat, see section 6.3.5, or in a group chat session, see section 6.14.5.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	text
	xsd:string
	No
	Text content of a chat message.

	reportRequest
	MessageStatus[0..unbounded]
	Yes
	Request message delivery status reports (i.e. the receiver of the message should report message delivery / disposition status)

Note that the underlying system might not support reporting

If the operation was successful, it returns an HTTP Status of “201 Created”, and MUST return either a common:resourceReference root element or a chat:chatMessage root element, where using the first option is RECOMMENDED.

C.4.1 Example 1: using tel URI and returning the location of the created resource

(Informative)
Note that the example assumes a 1-1 chat. Posting a chat message to a group chat session looks the same, apart from using a different resource URL.

Further note that alternatively, a copy of the created resource can be returned.
C.4.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

text=How%20are%20you%3F&

reportRequest=Displayed

C.4.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common ="urn:oma:xml:rest:netapi:common:1">
 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages/msg001
 </resourceURL>
</common:resourceReference>

C.4.2 Example 2: using ACR and returning a copy of the created resource

(Informative)
Note that the example assumes a 1-1 chat. Posting a chat message to a group chat session looks the same, apart from using a different resource URL.
C.4.2.1 Request

	POST /exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

text=How%20are%20you%3F&

reportRequest=Displayed

C.4.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <text>How are you?</text>

 <reportRequest>Displayed</reportRequest>
 <resourceURL>
 http://example.com/exampleAPI/chat/v1/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
 </resourceURL>
</chat:chatMessage >

C.5 Creating a new group chat session
This operation is used to create a new group chat session. See section 6.9.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	subject
	xsd:string
	No
	Initial message to the invited participants

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator

	originatorName
	xsd:string
	Yes
	Human readable name of the originator

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user)

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.5.1 Example

(Informative)

C.5.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

subject=Hello%20friends&

originatorAddress=tel%3A%2B19585550100&

originatorName=Alice&

tParticipantAddress=tel%3A%2B19585550101&

tParticipantName=Bob&

tParticipantAddress=tel%3A%2B19585550102&

tParticipantName=Ted&

clientCorrelator=12345

C.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello friends</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001</resourceURL>
</chat:groupChatSessionInformation >

C.6 Adding participant(s) to a group chat session, or (re)joining a group chat session
This operation is used to add one or more participants to a group chat session. See section 6.11.5.

It is also used to join or to re-join a group chat session, in which case the number of additional participants is limited to one.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. SIP URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user). Number of entries MUST either be zero, or equal to the number of entries in tParticipantAddress.

	clientCorrelator
	xsd:string[0..unbounded]
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created” in case there was just one tParticipantAddress instance passed, or “200 OK” if there were multiple instances passed. Further, in case there was just one tParticipantAddress instance passed, the response entity body contains either a “resourceReference” or a “participant” root element. In case there were multiple tParticipantAddress instances passed, the response entity body contains a “participantList” root element.
In other words, adding one participant corresponds to the creation of a new participant resource in the list of participants and is consistent with the resource creation design pattern used throughout the OMA RESTful Network APIs, whereas the addition of multiple participants corresponds to an update operation of the list of participants.
C.6.1 Example 1: Adding one participant to a group chat, or joining/re-joining a group chat

(Informative)

C.6.1.1 Request
	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

tParticipantAddress=tel%3A%2B19585550103&

tParticipantName=John&

clientCorrelator=12345

C.6.1.2 Response

	 HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
</chat:participantInformation>

C.6.2 Example 2: Adding multiple participants to a group chat

(Informative)

C.6.2.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

tParticipantAddress= tel%3A%2B19585550103&

tParticipantAddress= tel%3A%2B19585550104&

tParticipantName=John&

tParticipantName=Peter&

clientCorrelator=12345&

clientCorrelator=67890&

C.6.2.2 Response

	 HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>
 </participant>
 <participant>

 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550104</address>

 <name>Peter</name>
<status>Invited</status>

 <clientCorrelator>67890</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants/part005
 </resourceURL>
 </participant>
 <resourceURL>
 http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

C.7 Reporting message status
This operation is used to report message status in a 1-1 chat. See section 6.5.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	status
	MessageStatus
	No
	Indicates the delivery status of the message.

	userId
	xsd:anyURI
	No
	Indicates the participantId of the user that sucessfully received the message

If the operation was successful, it returns an HTTP Status of “200 OK”.

C.7.1 Example

(Informative)

C.7.1.1 Request

	POST /exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/messages/msg001/status
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

status=Displayed&

userId=tel%3A%2B19585550101

C.7.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Location: http://example.com/exampleAPI/chat/v1/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/messages/msg001/status
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageDeliveryStatus xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <status>Displayed</status>

 <userId>tel:+19585550101</userId>

</chat:messageDeliveryStatus>

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)

As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources for Chat
(Informative)

The following table lists all Chat data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

/group

//{serverRoot}/chat/{apiVersion}/{userId}

/{sessionId}

/participants

/{participantId}

/subscriptions

/{subscriptionId}

/messages

/{messageId}

/status

/status

/oneToOne/{otherUserId}

/messages

/{messageId}

/status

sessionInfo

/status

/extend

/group

//{serverRoot}/{apiVersion}

/chat/{userId}

/{sessionId}

/participants

/{participantId}

/subscriptions

/{subscriptionId}

/messages

/{messageId}

/status

/status

/oneToOne/{otherUserId}

/messages

/{messageId}

/status

sessionInfo

/status

/extend

� The underlying network layers may need to set up a session but this is not exposed at the API.

�It is FFS whether the App or the hop before the App generates this event.

�FFS. This is in OMA SIMPLE IM but not in RCS. Suggestion: for later version of the API. TBC before dropping whether this is in RCSe.

�It is FFS whether the App or the hop before the App generates this event.

�Editor to fix this one and the subsequent references marked in red.

�To be set in subscription example

�To be set in subscription example

�To be set in subscription example

�To be set in subscription example

�To be set in subscription example

�FFS - See Ed Note under Table 1

�FFS - See Ed Note under Table 1

�To be set in subscription example

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1376169101.vsd
�

�

�

Chat Server

Notif Server

Application

MessageNotification

POST MessageDeliveryStatus

success=true

Response

create a message

delivery success report

_1376169104.vsd
�

�

�

Chat Server

Application

DELETE participant resource

with participantId

Originator leaves

group chat session

Response

group chat

session ended

ParticipantStatusNotification

Participant is deleted

Session is deleted

Status=disconnected

SessionEnded

Notif Server

ChatEventNotification

_1376169105.vsd
�

�

�

Chat Server

Application

DELETE participant resource

with participantId

Leave a group chat session

Response

POST ParticipantInformation

with new participantId

Re-join chat session

Response

Participant is deleted

Participant is created

ParticipantStatusNotification

status=disconnected

status=connected

Notif Server

ParticipantStatusNotification

_1376169102.vsd
�

�

�

Application

Chat Server

Notif Server

POST ChatMessage

Response

messageId

MessageDeliveryNotification

successReport=true

create a new

chat message

message for participant

delivered successful

_1376168942.vsd
�

�

�

Application

Chat Server

Notif Server

POST GroupChatSessionInformation

Response

ParticipantStatusNotification

create a new

group chat session

user accepts or declines

session invitation

_1376169004.vsd
�

�

�

Chat Server

Notif Server

Application

GroupSessionInvitationNotification

POST ParticipantSessionStatus

status=connected

Accept invitation to group chat session

Participant status is

changed to connected

Response

ParticipantStatusNotification

Participant connected

to group chat

connected

_1376169018.vsd
�

�

�

Chat Server

Notif Server

Application

GroupSessionInvitationNotification

DELETE participant resource

Decline group chat invitation

Participant is deleted

Response

with participantId

_1376168885.vsd
�

�

�

Application

Chat Server

POST ChatNotificationSubscription

Response

subscriptionID

Incl. callbackURL

DELETE ChatNotificationSubscription

Response

delete the

subscription

create a new

subscription

Notif Server

