 STYLEREF ZDID * MERGEFORMAT
Page 90 V(104)

	[image: image1.jpg]
	

	RESTful Network API for Chat

	Draft Version 1.0 – 22 Aug 2011

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_Chat-V1_0-20110822-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

101.
Scope

2.
References
11
2.1
Normative References
11
2.2
Informative References
11
3.
Terminology and Conventions
13
3.1
Conventions
13
3.2
Definitions
13
3.3
Abbreviations
13
4.
Introduction
15
4.1
Version 1.0
15
5.
Chat API definition
16
5.1
Resources Summary
16
5.2
Data Types
26
5.2.1
XML Namespaces
26
5.2.2
Structures
27
5.2.2.1
Type: ChatSubscriptionList
27
5.2.2.2
Type: ChatNotificationSubscription
28
5.2.2.3
Type: ChatEventNotification
28
5.2.2.4
Type: SessionInvitationNotification
29
5.2.2.5
Type: GroupSessionInvitationNotification
29
5.2.2.6
Type: MessageNotification
30
5.2.2.7
Type: ParticipantStatusNotification
31
5.2.2.8
Type: ParticipantStatusEntry
32
5.2.2.9
Type: MessageDeliveryStatusNotification
32
5.2.2.10
Type: ChatMessage
33
5.2.2.11
Type: MessageDeliveryStatus
33
5.2.2.12
Type: ParticipantSessionStatus
33
5.2.2.13
Type: ChatSessionInformation
34
5.2.2.14
Type: GroupChatSessionInformation
34
5.2.2.15
Type: ParticipantList
35
5.2.2.16
Type: BasicParticipantInformation
35
5.2.2.17
Type: ParticipantInformation
36
5.2.2.18
Type: IsComposing
36
5.2.3
Enumerations
37
5.2.3.1
Enumeration: ParticipantStatus
37
5.2.3.2
Enumeration: EventType
37
5.2.3.3
Enumeration: MessageStatus
37
5.2.4
Values of the Link “rel” attribute
38
5.3
Sequence Diagrams
39
5.3.1
[Title of flow scenario]
39
6.
Detailed specification of the resources
41
6.1
Resource: All subscriptions to chat event notifications
41
6.1.1
Request URL variables
41
6.1.2
Response Codes and Error Handling
42
6.1.3
GET
42
6.1.3.1
Example: Reading all active chat notification subscriptions (Informative)
42
6.1.3.1.1
Request
42
6.1.3.1.2
Response
42
6.1.4
PUT
42
6.1.5
POST
42
6.1.5.1
Example 1: Creating a new subscription to chat notifications, response with copy of created resource (Informative)
42
6.1.5.1.1
Request
42
6.1.5.1.2
Response
43
6.1.5.2
Example 2: Creating a new subscription to chat notifications, response with location of created resource (Informative)
43
6.1.5.2.1
Request
43
6.1.5.2.2
Response
43
6.1.6
DELETE
43
6.2
Resource: Individual subscription to chat event notifications
44
6.2.1
Request URL variables
44
6.2.2
Response Codes and Error Handling
44
6.2.3
GET
44
6.2.3.1
Example: Reading an individual subscription (Informative)
44
6.2.3.1.1
Request
44
6.2.3.1.2
Response
44
6.2.4
PUT
45
6.2.5
POST
45
6.2.6
DELETE
45
6.2.6.1
Example: Cancelling a subscription (Informative)
45
6.2.6.1.1
Request
45
6.2.6.1.2
Response
45
6.3
Resource: All 1-1 chat sessions
45
6.3.1
Request URL variables
46
6.3.2
Response Codes and Error Handling
46
6.3.3
GET
46
6.3.4
PUT
46
6.3.5
POST
46
6.3.5.1
Example: Creating a new 1-1 chat session (Informative)
46
6.3.5.1.1
Request
46
6.3.5.1.2
Response
47
6.3.6
DELETE
47
6.4
Resource: Individual 1-1 chat session
47
6.4.1
Request URL variables
47
6.4.2
Response Codes and Error Handling
48
6.4.3
GET
48
6.4.3.1
Example 1: Retrieving chat session information (Informative)
48
6.4.3.1.1
Request
48
6.4.3.1.2
Response
48
6.4.3.2
Example 2: Retrieving chat session information of a 1-1 session that was previously extended to a group chat session (Informative)
48
6.4.3.2.1
Request
48
6.4.3.2.2
Response
48
6.4.4
PUT
49
6.4.5
POST
49
6.4.6
DELETE
49
6.4.6.1
Example: Terminating a chat session (Informative)
49
6.4.6.1.1
Request
49
6.4.6.1.2
Response
49
6.5
Resource: 1-1 chat session status
49
6.5.1
Request URL variables
50
6.5.2
Response Codes and Error Handling
50
6.5.3
GET
50
6.5.4
PUT
50
6.5.5
POST
51
6.5.5.1
Example 1: Accepting a group chat invitation (Informative)
51
6.5.5.1.1
Request
51
6.5.5.1.2
Response
51
6.5.5.2
Example 2: Declining a group chat invitation (Informative)
51
6.5.5.2.1
Request
51
6.5.5.2.2
Response
51
6.5.6
DELETE
52
6.6
Resource: Extend a 1-1 chat to a group chat session
52
6.6.1
Request URL variables
52
6.6.2
Response Codes and Error Handling
52
6.6.3
GET
52
6.6.4
PUT
52
6.6.5
POST
53
6.6.5.1
Example: Extending a 1-1 chat to a group chat session (Informative)
53
6.6.5.1.1
Request
53
6.6.5.1.2
Response
53
6.6.6
DELETE
53
6.7
Resource: All group chat sessions
53
6.7.1
Request URL variables
54
6.7.2
Response Codes and Error Handling
54
6.7.3
GET
54
6.7.4
PUT
54
6.7.5
POST
54
6.7.5.1
Example: Creating a new group chat session (Informative)
54
6.7.5.1.1
Request
54
6.7.5.1.2
Response
55
6.7.6
DELETE
55
6.8
Resource: Individual group chat session
55
6.8.1
Request URL variables
55
6.8.2
Response Codes and Error Handling
56
6.8.3
GET
56
6.8.3.1
Example 1: Retrieving group chat session information (Informative)
56
6.8.3.1.1
Request
56
6.8.3.1.2
Response
56
6.8.3.2
Example 2: Retrieving group chat session information when being disconnected (Informative)
56
6.8.3.2.1
Request
56
6.8.3.2.2
Response
57
6.8.4
PUT
57
6.8.5
POST
57
6.8.6
DELETE
57
6.8.6.1
Example: Terminating a group chat session (Informative)
57
6.8.6.1.1
Request
57
6.8.6.1.2
Response
57
6.9
Resource: All Participants in a group chat session
58
6.9.1
Request URL variables
58
6.9.2
Response Codes and Error Handling
58
6.9.3
GET
58
6.9.3.1
Example 1: Retrieving the list of participants in a group chat session (Informative)
58
6.9.3.1.1
Request
59
6.9.3.1.2
Response
59
6.9.3.2
Example 2: Retrieving the list of participants in a group chat session when being disconnected (Informative)
59
6.9.3.2.1
Request
59
6.9.3.2.2
Response
59
6.9.3.3
Example 3: Retrieving the list of participants in a group chat session when not having access rights (Informative)
59
6.9.3.3.1
Request
59
6.9.3.3.2
Response
59
6.9.4
PUT
60
6.9.5
POST
60
6.9.5.1
Example 1: Adding participants to a group chat (Informative)
60
6.9.5.1.1
Request
60
6.9.5.1.2
Response
60
6.9.5.2
Example 2: Joining or re-joining a group chat (Informative)
61
6.9.5.2.1
Request
61
6.9.5.2.2
Response
61
6.9.5.3
Example 3: Error situation when trying to (re)join a group chat session (Informative)
61
6.9.5.3.1
Request
61
6.9.5.3.2
Response
61
6.9.6
DELETE
62
6.10
Resource: Individual participant in a group chat session
62
6.10.1
Request URL variables
62
6.10.2
Response Codes and Error Handling
62
6.10.3
GET
62
6.10.3.1
Example: Retrieving information about an individual group chat participant (Informative)
63
6.10.3.1.1
Request
63
6.10.3.1.2
Response
63
6.10.4
PUT
63
6.10.5
POST
63
6.10.6
DELETE
63
6.10.6.1
Example: Leaving a group chat session (Informative)
64
6.10.6.1.1
Request
64
6.10.6.1.2
Response
64
6.11
Resource: Individual group chat session participant status
64
6.11.1
Request URL variables
64
6.11.2
Response Codes and Error Handling
64
6.11.3
GET
65
6.11.4
PUT
65
6.11.5
POST
66
6.11.5.1
Example 1: Accepting a group chat invitation (Informative)
66
6.11.5.1.1
Request
66
6.11.5.1.2
Response
66
6.11.5.2
Example 2: Declining a group chat invitation (Informative)
66
6.11.5.2.1
Request
66
6.11.5.2.2
Response
66
6.11.6
DELETE
67
6.12
Resource: Chat messages in a 1-1 chat session
67
6.12.1
Request URL variables
67
6.12.2
Response Codes and Error Handling
67
6.12.3
GET
67
6.12.4
PUT
68
6.12.5
POST
68
6.12.5.1
Example: Creating a chat message (Informative)
68
6.12.5.1.1
Request
68
6.12.5.1.2
Response
68
6.12.6
DELETE
68
6.13
Resource: Individual chat message in a 1-1 chat session
68
6.13.1
Request URL variables
69
6.13.2
Response Codes and Error Handling
69
6.13.3
GET
69
6.13.3.1
Example 1: [Example title] (Informative)
70
6.13.3.1.1
Request
70
6.13.3.1.2
Response
70
6.13.3.2
Example 2: [Example title] (Informative)
70
6.13.3.2.1
Request
70
6.13.3.2.2
Response
70
6.13.4
PUT
70
6.13.4.1
Example 1: [Example title] (Informative)
71
6.13.4.1.1
Request
71
6.13.4.1.2
Response
71
6.13.4.2
Example 2: [Example title] (Informative)
71
6.13.4.2.1
Request
71
6.13.4.2.2
Response
71
6.13.5
POST
71
6.13.5.1
Example 1: [Example title] (Informative)
72
6.13.5.1.1
Request
72
6.13.5.1.2
Response
72
6.13.5.2
Example 2: [Example title] (Informative)
72
6.13.5.2.1
Request
72
6.13.5.2.2
Response
72
6.13.6
DELETE
72
6.13.6.1
Example 1: [Example title] (Informative)
73
6.13.6.1.1
Request
73
6.13.6.1.2
Response
73
6.13.6.2
Example 2: [Example title] (Informative)
73
6.13.6.2.1
Request
73
6.13.6.2.2
Response
73
6.14
Resource: Individual message delivery status in a 1-1 chat session
73
6.14.1
Request URL variables
74
6.14.2
Response Codes and Error Handling
74
6.14.3
GET
74
6.14.4
PUT
74
6.14.5
POST
74
6.14.5.1
Example: Reporting the status of a message (Informative)
74
6.14.5.1.1
Request
74
6.14.5.1.2
Response
75
6.14.6
DELETE
75
6.15
Resource: Group chat messages
75
6.15.1
Request URL variables
75
6.15.2
Response Codes and Error Handling
75
6.15.3
GET
75
6.15.4
PUT
76
6.15.5
POST
76
6.15.6
DELETE
76
6.16
Resource: Individual group chat message
76
6.16.1
Request URL variables
76
6.16.2
Response Codes and Error Handling
76
6.16.3
GET
76
6.16.4
PUT
76
6.16.5
POST
76
6.16.6
DELETE
77
6.17
Individual group chat message delivery status
77
6.17.1
Request URL variables
77
6.17.2
Response Codes and Error Handling
77
6.17.3
GET
77
6.17.4
PUT
77
6.17.5
POST
77
6.17.6
DELETE
77
6.18
Resource: Client notification about chat session invitations
78
6.18.1
Request URL variables
78
6.18.2
Response Codes and Error Handling
78
6.18.3
GET
78
6.18.4
PUT
78
6.18.5
POST
78
6.18.5.1
Example: Notify a client about chat invitations (Informative)
78
6.18.5.1.1
Request
78
6.18.5.1.2
Response
79
6.18.6
DELETE
79
6.19
Resource: Client notification about chat session invitations
79
6.19.1
Request URL variables
79
6.19.2
Response Codes and Error Handling
79
6.19.3
GET
79
6.19.4
PUT
79
6.19.5
POST
80
6.19.5.1
Example: Notify a client about chat session invitations (Informative)
80
6.19.5.1.1
Request
80
6.19.5.1.2
Response
80
6.19.6
DELETE
80
6.20
Resource: Client notification about chat session events
80
6.20.1
Request URL variables
80
6.20.2
Response Codes and Error Handling
80
6.20.3
GET
81
6.20.4
PUT
81
6.20.5
POST
81
6.20.5.1
Example: Notify a client about chat session events (Informative)
81
6.20.5.1.1
Request
81
6.20.5.1.2
Response
81
6.20.6
DELETE
81
6.21
Resource: Client notification about changes of participant status
82
6.21.1
Request URL variables
82
6.21.2
Response Codes and Error Handling
82
6.21.3
GET
82
6.21.4
PUT
82
6.21.5
POST
82
6.21.5.1
Example: Notify a client about participant status changes (Informative)
82
6.21.5.1.1
Request
82
6.21.5.1.2
Response
83
6.21.6
DELETE
83
6.22
Resource: Client notification containing incoming messages
83
6.22.1
Request URL variables
83
6.22.2
Response Codes and Error Handling
83
6.22.3
GET
83
6.22.4
PUT
84
6.22.5
POST
84
6.22.5.1
Example: Notify a client about incoming messages (Informative)
84
6.22.5.1.1
Request
84
6.22.5.1.2
Response
84
6.22.6
DELETE
84
Appendix A.
Change History (Informative)
85
A.1
Approved Version History
85
A.2
Draft/Candidate Version 1.0 History
85
Appendix B.
Static Conformance Requirements (Normative)
86
B.1
SCR for REST.Chat Server
86
B.1.1
SCR for REST.Chat.FUNCTION Server
86
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
87
C.1
Creating a new subscription to chat notifications
87
C.1.1
Example (Informative)
88
C.1.1.1
Request
88
C.1.1.2
Response
88
C.2
Creating a new 1-1 chat session
88
C.2.1
Example (Informative)
89
C.2.1.1
Request
89
C.2.1.2
Response
89
C.3
Accepting/Declining a chat session invitation
90
C.3.1
Example (Informative)
90
C.3.1.1
Request
90
C.3.1.2
Response
90
C.4
Extending a 1-1 chat to a group chat session
90
C.4.1
Example (Informative)
91
C.4.1.1
Request
91
C.4.1.2
Response
91
C.5
Creating a new group chat session
91
C.5.1
Example (Informative)
92
C.5.1.1
Request
92
C.5.1.2
Response
92
C.6
Adding participant(s) to a group chat session, or (re)joining a group chat session
93
C.6.1
Example (Informative)
94
C.6.1.1
Request
94
C.6.1.2
Response
94
C.7
Creating a chat message
95
C.7.1
Example (Informative)
95
C.7.1.1
Request
95
C.7.1.2
Response
95
C.8
Reporting message status
96
C.8.1
Example (Informative)
96
C.8.1.1
Request
96
C.8.1.2
Response
96
Appendix D.
JSON examples (Informative)
98
D.1
[Example Title] (section [section number cross reference])
98
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
99
Appendix F.
Light-weight resources for Chat (Informative)
100
Appendix G.
Authorization aspects (Normative)
101

Figures

2Figure 1 Resource structure defined by this specification

2Figure 2 [Caption of this flow]

Tables

2Table 1: 1-1 chat notifications

2Table 2: Group chat notifications

1. Scope

This specification defines a RESTful API for Chat using HTTP protocol bindings.
2. References

2.1 Normative References

	
	

	[RC API RD]
	APIs for Rich Communications Requirements, OMA-RD-RC_API-V1_0, Open Mobile Alliance, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_Chat]
	“XML schema for the RESTful Network API for Chat”, Open Mobile Alliance™, OMA-SUP-XSD-rest_netapi_chat-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL: http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H. Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC4975]
	“The Message Session Relay Protocol (MSRP)”, B. Campbell et. al, September 2007, URL: http://www.ietf.org/rfc/rfc4975.txt

	[RFC5438]
	“Instant Message Disposition Notification (IMDN)”, E. Burger and H. Khartabil, September 2007, URL: http://www.ietf.org/rfc/rfc5438.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1 [only needed if www-form-urlencoding (Appendix C) is supported]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL: http://www.openmobilealliance.org/

	[RFC3994]
	„Indication of Message Composition for Instant Messaging“, H. Schulzrinne, January 2005, URL: http://www.ietf.org/rfc/rfc3994.txt

	[RFC4575]
	“A Session Initiation Protocol (SIP) Event Package for Conference State”, J. Rosenberg et. al, August 2006, URL: http://www.ietf.org/rfc/rfc3994.txt

	[SIMPLE IM]
	“Instant Messaging using SIMPLE ”, Open Mobile Alliance™, OMA-TS-SIMPLE_IM-V1_0, URL: http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Originator
	The party that initiates a chat session.

	Participant
	A party that participates in a chat session, including the Originator.

	Terminating Participant
	A participant in a chat session that is not the Originator.

	Sender
	The party that sends a chat message

	Recipient
	A party that receives a chat message or notification.

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. It is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

Additionally, all definitions from the OMA Dictionary apply [OMADICT].

3.3
Abbreviations
	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Chat contains HTTP protocol bindings for Chat (also known as Instant Messaging), using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

5. Chat API definition
This section is organized to support a comprehensive understanding of the Chat API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.Appendix F provides a list of all lightweight resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Chat.
The "apiVersion" URL variable SHALL have the value "1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

[image: image2]
Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Note: 1-1 chat sessions and group chat sessions represent different approaches and are therefore treated differently. In a 1-1 session, Originator and Terminating Participant interact direct. In a group chat session, a “conference focus” (chat server) is involved in the communication that filters and aggregates the traffic. This results in different handling of many of the events, and also in different sets of events available. In order to provide a clean separation of these different feature sets, 1-1 chat and group chat are modeled as different sets of resources. A 1-1 chat can incorporate exactly 2 parties (the Originator and the Terminating Participant), whereas a group chat can incorporate one Originator and one or more Terminating Participants. A 1-1 session can be upgraded into a group session.
FFS: 1) removal of userId below chat from the resourceURL? Needs to be consistent cross-API.

Ed. Note: Remove the “OPTIONAL” in the method columns once this information has been reflected in SCRs.

Purpose: managing subscriptions for chat notifications
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/chat/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to chat event notifications
	/subscriptions

	ChatSubscriptionList
 (used for GET)

ChatNotificationSubscription
(used for POST)
common:ResourceReference (OPTIONAL alternative for POST response)
	Read the list of active chat notification subscriptions (OPTIONAL)
	no
	Create new subscription for chat notifications
	no

	Individual subscription to chat event notifications
	/subscriptions/{subscriptionId}
	ChatNotificationSubscription

	Read an individual subscription (OPTIONAL)
	no
	no
	Cancel subscription and stop corresponding notifications

Ed. note: it is FFS whether we want an expiration notification for the subscription (cf. TerminalLocation).

Purpose: handling 1 to 1 chat sessions
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/chat/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All 1-1 chat sessions
	/sessions

	ChatSessionInformation
(used for POST)
common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create a new 1-1 chat session
	no

	Individual 1-1 chat session
	/sessions/{sessionId}
	ChatSessionInformation

	Retrieve chat session information (OPTIONAL)
	no
	no
	Cancel invitation (Originator)
Decline invitation (Terminating Participant)
Terminate session

	1-1 chat session status
	/sessions/{sessionId}/status
	ParticipantSessionStatus

	no
	no
	Accept 1-1 chat invitation
	no

	Extend 1-1 chat to a group chat session
	/sessions/{sessionId}/extend
	ParticipantList

	no
	no
	Extend 1-1 chat to a group chat session
	no

Purpose: handling group chat sessions
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/chat/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All group chat sessions
	/groupSessions

	GroupChatSessionInformation
(used for POST)
common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create a new group chat session
	no

	Individual group chat session
	/groupSessions/{sessionId}
	GroupChatSessionInformation

	Retrieve chat session information (OPTIONAL)
	no
	no
	Cancel invitation (Originator)
Terminate session (Originator)

Purpose: handling group chat participants
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Participants in a group chat session
	/participants

	ParticipantList
(used for GET)
ParticipantList or
ParticipantInformation
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Retrieve a list of chat Participants (OPTIONAL)
	no
	Add one or more chat Participant(s) (Originator)
(Re-)Join session (Participant)

	no

	Individual group chat session Participant
	/participants/{participantId}
	ParticipantInformation
	Retrieve information about an individual group chat Participant (OPTIONAL)
	no
	no
	Remove Participant from chat session
(Originator)
Decline invitation (Terminating Participant)
Leave session (Participant)

	Individual group chat session Participant status
	/participants/{participantId}/status
	ParticipantSessionStatus
	Retrieve information about an individual chat Participant status (OPTIONAL)
	no
	Accept group chat session invitation
	no

Purpose: handling 1-1 chat messages
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Chat messages in a 1-1 chat session
	/messages

	ChatMessage
(used for POST)
common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create a chat message
	no

	Individual chat message
	/messages/{messageID}
	(none in this version of the specification)
Ed. Note: possible place for offline msg. Remove if at CONR start there is no method defined.
	no
	no
	no
	no

	Individual message delivery status
	/messages/{messageId}/status
	MessageDeliveryStatus
	no
	no
	Report status of message delivery
	no

Purpose: handling group chat messages
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Chat messages in a group chat session
	/messages

	ChatMessage
(used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no
	Create a chat message
	no

	Individual chat message
	/messages/{messageID}

Ed. Note: possible place for offline msg. Remove if at CONR start there is no method defined
	(none in this version of the specification)
	no
	no
	no
	no

	Individual message delivery status
	/messages/{messageId}/status
	MessageDeliveryStatus
	no
	no
	Report status of message delivery
	no

Purpose: handling of chat notifications

	Resource
	URL
Base URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about chat session invitations
	Specified by client when subscription is created or provisioned
	SessionInvitationNotification
	no
	no

	Notify client about incoming chat invitation
	no

	Client notification about chat session events
	Specified by client when subscription is created or provisioned
	ChatEventNotification
	no
	no

	Notify client about chat events
	no

	Client notification about changes of Participant status
	Specified by client when subscription is created or provisioned
	ParticipantStatusNotification
	no
	no
	Notify client about Participant status changes
	no

	Client notification containing incoming messages
	Specified by client when subscription is created or provisioned
	MessageNotification
	no
	no
	Notify client about incoming chat message
	no

Ed. Note: for “Individual chat message”, the behaviour needs to be specified. In this version of the specification, this resource is only intended for correlating a chat message and the related success/failure report. No state is created on the server (this would mean to have a message store feature available which needs further elaboration). HTTP response is 404 (or, possibly, 403) if any operation is attempted.

Ed. Note: FFS: once the individual notification resources have been defined in section 6.x, move these tables there. Align with the way this is done in Presence.

The following table gives an overview of the different types of notifications. It is also outlined which chat session Participants receive notifications of a particular type, whether a response is needed, and which resources a notification links to via the <link> element.

In the “Receiver” column, the following values can occur:
· Originator: the Originator of the chat session

· Terminating Participant: one individual Terminating Participant of the chat session at a time
· Terminating Participants: all Terminating Participants of the chat session at once
· all: all Participants of the chat session including the Originator at once
· sender: the sender of a chat message

Table 1: 1-1 chat notifications
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href
Base URL: //{serverRoot}/{apiVersion}/chat/{userId}/sessions

	n/a
	SessionInvitationNotification
	Terminating Participant
	decline
accept
	ChatSessionInformation

ParticipantSessionStatus
	/{sessionId}

/{sessionId}/status

	Accepted
	ChatEventNotification
	Originator
	n/a
	ChatSessionInformation
	/{sessionId}

	Declined
	ChatEventNotification
	Originator
	n/a
	ChatSessionInformation
	/{sessionId}

	MessageSuccess
	ChatEventNotification
	Originator
	n/a
	ChatMessage
	/{sessionId}/messages/{messageId}

	MessageFailure
	ChatEventNotification
	Originator
	n/a
	ChatMessage
	/{sessionId}/messages/{messageId}

	SessionCancelled
	ChatEventNotification
	all
	n/a
	ChatSessionInformation
	/{sessionId}

	SessionEnded
	ChatEventNotification
	all
	n/a
	ChatSessionInformation
	/{sessionId}

	n/a
	MessageNotification
	all 1)
	success

	ChatMessage
	/{sessionId}/messages/{messageId}

Ed. note: The role of instant message disposition notification (RFC5438) must be clarified. Is it used in RCSe?
Table 2: Group chat notifications
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href
Base URL: //{serverRoot}/{apiVersion}/chat/{userId}/groupSessions

	n/a
	GroupSessionInvitationNotification
	Terminating Participants
	decline
accept

	ParticipantInformation
ParticipantSessionStatus
	/{sessionId}/participants/{participantId}/
/{sessionId}/participants/{participantId}/status

	SessionCancelled
	ChatEventNotification
	all
	n/a
	GroupChatSessionInformation
	/{sessionId}

	SessionEnded
	ChatEventNotification
	all
	n/a
	GroupChatSessionInformation
	/{sessionId}

	n/a
	MessageDeliveryStatusNotification
	sender
	n/a
	ChatMessage
ParticipantInformation
	/{sessionId}/messages/{messageId}
/{sessionId}/participants/{participantId}

	n/a
	ParticipantStatusNotification
	all
	n/a
	GroupChatSessionInformation
ParticipantList
	/{sessionId}
/{sessionId}/participants

	n/a
	MessageNotification
	all 1)
	success

	ChatMessage
	/{sessionId}/messages/{messageId}/stat

(1) The MessageNotification also needs to be sent to the message sender, otherwise multiple clients per user will not work.
Ed. Note: when specifying the resources, add a statement that the “The duration for which the Server stores information about a chat message is defined by service provider policies”.

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Chat data types is:

urn:oma:xml:rest:netapi:chat:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_Chat].
5.2.2 Structures

<< Intro in case the document does not use the concept of light-weight resources. Pick one alternative and DELETE this comment >>

The subsections of this section define the data structures used in the Chat API.
Some of the structures can be instantiated as so-called root elements.

<< Intro in case the document does use the concept of light-weight resources. Pick one alternative and DELETE this comment >>

The subsections of this section define the data structures used in the Chat API.
Some of the structures can be instantiated as so-called root elements, i.e. they define the type of a representation of a so-called heavy-weight resource.

The column [ResourceRelPath] in the tables below, if used, includes relative resource paths for light-weight resource URLs that are used to access individual elements in the data structure (so-called light-weight resources). A string from this column needs to be appended to the corresponding heavy-weight resource URL in order to create light-weight resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath].

5.2.2.1 Type: ChatSubscriptionList

List of all active chat notification subscriptions. In order to be able to receive notifications, the client needs to create a subscription first.

	Element
	Type
	Optional
	Description

	chatNotificationSubscription
	ChatNotificationSubscription
[0..unbounded]
	Yes
	Array of chat notification subscriptions

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named chatSubscriptionList of type ChatSubscriptionList is allowed in request and/or response bodies.
Editors Note: Handling a client leaving a session with multiple clients for the same user needs to be defined. I.e. a client is terminated it needs to be ensured that only this client leaves the session not the others.
5.2.2.2 Type: ChatNotificationSubscription

Subscription to chat related event notifications, i.e. all notifications of type ChatEventNotification, SessionInvitationNotification, ParticipantStatusNotification, and MessageNotification related to a particular user.
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named chatNotificationSubscription of type ChatNotificationSubscription is allowed in request and/or response bodies.
5.2.2.3 Type: ChatEventNotification

This is the notification type for those chat events that only need to convey the type of event which occurred. More specific notification types are defined below.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	eventType
	EventType
	No
	Type of event

	eventDescription
	xsd:string
	Yes
	Textual description of the event

	
	
	
	

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
Depending on the value of eventType, the server MUST include links as defined in Error! Reference source not found. and Table 2 for ChatEventNotification.
Further, the server SHOULD include a link to the related subscription.

A root element named chatEventNotification of type ChatEventNotification is allowed in notification request bodies.
5.2.2.4 Type: SessionInvitationNotification

This describes the notification for a 1-1 chat session invitation.

	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Error! Reference source not found. for SessionInvitationNotification.
Further, the server SHOULD include a link to the related subscription.

	subject
	xsd:string
	No
	Subject of the chat session

	participant
	BasicParticipantInformation[2]
	No
	The Participants of this session. The first entry represents the Originator.

A root element named sessionInvitationNotification of type SessionInvitationNotification is allowed in notification request bodies.
The recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=”ParticipantSessionStatus”.
This is typically:
http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}/status
The recipient can decline the request by sending a DELETE request to one the URL passed in the “href” attribute of the “link” element with rel=”ChatSessionInformation”.

Typically, this is http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}
If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a 1-1 session, this means that the session will terminate. Ed. Note: Todo: define an example for such timeout.

5.2.2.5 Type: GroupSessionInvitationNotification

This describes the notification for a group chat session invitation.

	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Error! Reference source not found. for SessionInvitationNotification.

Further, the server SHOULD include a link to the related subscription.

	subject
	xsd:string
	No
	Subject of the chat session

	participant
	ParticipantInformation
[2..unbounded]
	No
	Contains the list of Participants of the session. The first entry represents the Originator.

A root element named groupSessionInvitationNotification of type GroupSessionInvitationNotification is allowed in notification request bodies.
Each recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=”ParticipantSessionStatus”.

This is typically:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/participants/{participantId}/status
The recipient can decline the request by sending a DELETE request to the URL passed in the “href” attribute of the “link” element with rel=”ParticipantInformation”.
Typically, this is http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/participants/{participantId}
If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a group session, this means that this recipient will not be mentioned in any ParticipantStatusNotification.

5.2.2.6 Type: MessageNotification

This describes the notification delivering an incoming chat message.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Error! Reference source not found. for MessageNotification.
Further, the server SHOULD include a link to the related subscription.

	senderAdress
	xsd:anyURI
	No
	Identifier of the Participant that sent the message

	senderName
	xsd:string
	Yes
	Name of the sender

	chatMessage
	ChatMessage
	Choice
	The actual message

	isComposing
	IsComposing
	Choice
	“isComposing” message

A root element named messageNotification of type MessageNotification is allowed in notification request bodies.
In case the “chatMessage” element contains the element “reportRequest”, the recipient MUST acknowledge the requested events (such as ‘Delivered’, ‘Displayed’) by sending a POST request with a “MessageDeliveryStatus” root element in the body to the URL passed in the “href” attribute of the “link” element with rel=”MessageDeliveryStatus”.

For 1-1 chat sessions this is typically:

http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}/messages/{messageId}/status.
For group chat sessions this is typically:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/messages/{messageId}/status.
5.2.2.7 Type: ParticipantStatusNotification
This type defines the participant status notification to inform about participant status changes in a group chat.
The notification is sent by the server to all subscribed Participants in the chat session triggered by Participants joining or leaving the chat.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Table 2 for ParticipantStatusNotification.
Further, the server SHOULD include a link to the related subscription.

	participant
	ParticipantStatusEntry
[1..unbounded]
	No
	Contains the list of Participants. At least those that changed status since the last notification MUST be included.

A root element named participantStatusNotification of type ParticipantStatusNotification is allowed in notification request bodies.
Note: This notification is not sent in 1-1 chat sessions.
5.2.2.8 Type: ParticipantStatusEntry
This type defines the Participant status.
	Element
	Type
	Optional
	Description

	adress
	xsd:anyURI
	No
	The address (e.g. SIP URI) of the Participant

	name
	xsd:string
	Yes
	Human readable name of the Participant.

	status
	ParticipantStatus
	Yes
	Connection status of the Participant.

	yourown
	xsd:boolean
	Yes
	If present and set to true, this indicates that the status entry represents the Participant to which this data structure is sent in a message.

	link
	common:Link [0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server SHOULD include a link to the resource representing the Participant in the chat session.

5.2.2.9 Type: MessageDeliveryStatusNotification
This type represents a notification about the delivery status of a chat message.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related chat session).
The server MUST include links as defined in Error! Reference source not found. for ParticipantStatusNotification.

Further, the server SHOULD include a link to the related subscription.

	status
	MessageStatus
	No
	Indicates the status of the message.

	errorCode
	xsd:string
	Yes
	Code of the error, if any.

	description
	xsd:string
	Yes
	Description of the error, if any.

A root element named messageDeliveryStatusNotification of type MessageDeliveryStatusNotification is allowed in notification request bodies.
Note: This notification is not sent in group chat sessions.
5.2.2.10 Type: ChatMessage

This type represents a chat message.
	Element
	Type
	Optional
	Description

	text
	xsd:string
	No
	Text content of a chat message.

	reportRequest
	MessageStatus
[0..unbounded]
	Yes
	List of delivery status events to report. Note that the underlying system might not support reporting (e.g in multiparty chats, reporting is rarely supported), or might only support a limited set of values.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.
Note that in this version of the specification, the resourceURL is only used for correlation purposes, as there is no HTTP method defined for this URL.

A root element named chatMessage of type ChatMessage is allowed in request bodies.
5.2.2.11 Type: MessageDeliveryStatus
This type represents a response to a chat message notification. It is only needed if the chat message includes an indication that the sender wishes to receive a report about successful delivery.
	Element
	Type
	Optional
	
	Description

	status
	MessageStatus
	No
	Indicates the delivery status of the message.

	userId
	xsd:anyURI
	No
	
	Indicates the identifier of the user that sucessfully received the message

A root element named messageDeliveryStatus of type MessageDeliveryStatus is allowed in request bodies.
5.2.2.12 Type: ParticipantSessionStatus
This type represents the status of a Participant in the chat session.
	Element
	Type
	Optional
	Description

	status
	ParticipantStatus
	No
	Status of the Participant.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”

A root element named participantSessionStatus of type ParticipantSessionStatus is allowed in request and response bodies.
Ed. Note: Harmonization with IS/FT/VS: some of these specifications might use an extended version of this data structure to signal media type information.
5.2.2.13 Type: ChatSessionInformation
This type describes a 1-1 chat session.
	Element
	Type
	Optional
	Description

	subject
	xsd:string
	No
	Initial message to the Participant(s)

	participant
	BasicParticipantInformation[2]
	No
	The Participants of this session. The first entry represents the Originator.

	status
	ParticipantStatus
	Yes
	Connection status of the Participant. Set by the server. SHALL NOT be present in request bodies during resource creation.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named chatSessionInformation of type ChatSessionInformation is allowed in request and/or response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. The specification [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.
5.2.2.14 Type: GroupChatSessionInformation

This type describes a chat session.

	Element
	Type
	Optional
	Description

	subject
	xsd:string
	No
	Initial message to the Participant(s)

	participant
	ParticipantInformation
[1..unbounded]
	No
	The Participant(s) active in this chat session. The first entry represents the Originator.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named groupChatSessionInformation of type groupChatSessionInformation is allowed in request and/or response bodies.
Regarding the clientCorrelator field, the note in section 5.2.2.2 applies.

5.2.2.15 Type: ParticipantList

This type describes a list of chat Participants.
Ed. Note: This information is based on resource-list of RFC5366 / RFC 4826 that defines entries of user adresses that should be invited to a conference session. The list is attached as XML in the SIP INVITE.
This note is provided for understanding during the discussion of the design. Remove prior to CONR.

	Element
	Type
	Optional
	Description

	participant

	ParticipantInformation
[1..unbounded]
	No
	List of chat Participants

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named participantList of type ParticipantList is allowed in request and/or response bodies.
5.2.2.16 Type: BasicParticipantInformation

This type describes a chat Participant in a 1-1 session.

It is based on the [RFC4575] as defined in [SIMPLE IM] chapter 7.2.1.12.
	Element
	Type
	Optional
	Description

	address

	xsd:anyURI
	No
	The address (e.g. SIP URI) of the Participant

	name
	xsd:string
	Yes
	Human readable name

	isOriginator
	xsd:boolean
	Yes
	If the Participant represented by this data structure is the Originator of a call session, this element MUST be present and set to “true”. It MUST be either absent or set to “false” otherwise. Default: “false”.

A root element named basicParticipantInformation of type BasicParticipantInformation is allowed in request and/or response bodies.
5.2.2.17 Type: ParticipantInformation
This type describes a chat Participant.
It is based on the [RFC4575] as defined in [SIMPLE IM] chapter 7.2.1.12.
	Element
	Type
	Optional
	Description

	address

	xsd:anyURI
	No
	The address (e.g. SIP URI) of the Participant

	name
	xsd:string
	Yes
	Human readable name

	isOriginator
	xsd:boolean
	Yes
	If the Participant represented by this data structure is the Originator of a call session, this element MUST be present and set to “true”. It MUST be either absent or set to “false” otherwise. Default: “false”.

	status
	ParticipantStatus
	Yes
	Connection status of the Participant. Set by the server. SHALL NOT be present in request bodies during resource creation.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named participantInformation of type ParticipantInformation is allowed in request and/or response bodies.
Regarding the clientCorrelator field, the note in section 5.2.2.2 applies.

5.2.2.18 Type: IsComposing

This type represents a message indicates to the recipient that the sender is editing (composing) a message. The structure of this message is aligned with [RFC3994].
	Element
	Type
	Optional
	Description

	state
	xsd:string
	No
	Composer state, as defined in [RFC3994]. One of “idle”, “active”.

	lastactive
	xsd:dateTime
	Yes
	Time of last activity, as defined in [RFC3994].

	contenttype
	xsd:string
	Yes
	Type of message being created, as defined in [RFC3994]. Either a MIME media type, or a combination of media type and subtype.

	refresh
	xsd:positiveInteger
	Yes
	Time interval in seconds after which the receiver can expect an update from the composer, as defined in [RFC3994].

	(any)
	any[0..unbounded]
	Yes
	Any element from another namespace, as defined in [RFC3994].

A root element named isComposing of type IsComposing is allowed in request and/or response bodies.
Ed. Note: This is now a copy of the IETF structure under the OMA Chat namespace (as this has been done in Presence API). Alternative way would be to just reference the type. To be decided.
5.2.3 Enumerations

The subsections of this section define the enumerations used in the Chat API.
5.2.3.1 Enumeration: ParticipantStatus

This enumeration defines the possible values for chat participant status. Based on [OMA SIMPLE IM] chapter 7.2.2.10 only the following two values are defined, plus an indication of a “pending” status i.e. “Invited”:
	Enumeration
	Description

	Invited
	User was invited to the session

	Connected
	User is connected to the session

	Disconnected
	User is disconnected from the session

5.2.3.2 Enumeration: EventType

This enumeration is used in notifications to describe the type of event which the notification is about.
	Enumeration
	Description

	SessionCancelled
	The Originator has cancelled the chat session during the invite phase

	SessionEnded
	The session has ended

	Declined
	The Participant has declined the chat session invite (only in 1-1 chat)

	Accepted
	The Participant has accepted the chat invite (only in 1-1 chat)

	MessageSuccess
	Message was successful delivered (only in 1-1 chat)

	MessageFailure
	Message delivery failed (only in 1-1 chat)

5.2.3.3 Enumeration: MessageStatus

This enumeration defines the possible values for the message delivery status. The following values are defined:
	Enumeration
	Description

	Delivered
	Message was delivered to the user.

Maps to “delivered” according to [RFC5438] or to “success=yes” according to [RFC4975].

	Displayed
	Message was displayed to the user. Maps to “displayed” according to [RFC5438].

	Failed
	Message was not delivered to the user. Only used in notifications from the server, but not in POST requests from the client.
Maps to “success=no” according to [RFC4975].

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

· ChatSubscriptionList
· ChatNotificationSubscription

· ChatEventNotification

· SessionInvitationNotification
· GroupSessionInvitationNotification
· MessageNotification
· ParticipantStatusNotification
· MessageDeliveryStatusNotification
· ChatMessage
· MessageDeliveryStatus
· ParticipantSessionStatus
· ChatSessionInformation
· GroupChatSessionInformation
· ParticipantList
· ParticipantInformation
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.

5.3.1 [Title of flow scenario]
This figure below shows a scenario for [description of scenario].

The resources:

· To [description of operation], [create/read/update/delete] resource under [resource URL]
· To [description of operation], [create/read/update/delete] resource under [resource URL]
<< Include a flow diagram, and add a figure caption

Use solid lines for requests

Use dotted lines for responses

Use numbers if you want to reference in the text

If multiple servers are involved, name them (e.g. Foo Server, Bar Server), otherwise do not name the server

An editable PPT versions of the figure is provided below, as editing the embedded figure is problematic

[image: image3.emf]example-flow.zip

example-flow.zip

>>

[image: image4.emf]3. Remove a callparticipant(includingresourceURLwithparticipantId) fromthesessionApplicationServer1. POST CallSessionInformationResponse withcreatedcallsessionresourceincl. callSessionId2. POST CallParticipantInformationtoresourceURLofnewcallsessionResponse withinformationabout addedcallParticipantincl. resourceURLwithparticipantId

Create a newcallsessionAdd participanttosession

4. GET participantlistforcallSessionIdResponse withinformationabout eachparticipantincl. theirstatus

Fetch participants

5. TerminatethecallsessionResponse orerrormessage

TerminatecallsessionRequest removalofparticipant

Response whetherremovalwas successful

Delete participantfromsession

Figure 2 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]
3. [High-level description of 1 or more steps in the flow diagram]
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, x-www-form-urlencoded):

· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100) and the use of characters other than digits SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].
6.1 Resource: All subscriptions to chat event notifications
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/subscriptions

This resource is used to manage subscriptions to chat event notifications. Note that there is one subscription per client instance.

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.1.3 GET
This operation is used for reading the list of active chat notification subscriptions.

6.1.3.1 Example: Reading all active chat notification subscriptions
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used to create a new subscription for chat notifications.
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: Creating a new subscription to chat notifications, response with copy of created resource
(Informative)
6.1.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/tel%3A%2B19585550100/chat/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

6.1.5.2 Example 2: Creating a new subscription to chat notifications, response with location of created resource
(Informative)
6.1.5.2.1 Request

	POST /exampleAPI/1/tel%3A%2B19585550100/chat/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.1.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</common:resourceReference>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: Individual subscription to chat event notifications
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/subscriptions/{subscriptionId}
This resource represents an individual subscription to chat notifications.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	subscriptionId
	identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.2.3 GET
This operation is used for reading an individual subscription.

6.2.3.1 Example: Reading an individual subscription
(Informative)
This example shows also an alternative way to indicate desired content type in response from the server, by using URL query parameter “?resFormat” which is described in [REST_NetAPI_Common].
6.2.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001?resFormat=XML HTTP/1.1
Host: example.com

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.2.6.1 Example: Cancelling a subscription
(Informative)
6.2.6.1.1 Request

	DELETE /exampleAPI/1/tel%3A%2B19585550100/chat/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jun 2010 17:51:59 GMT

6.3 Resource: All 1-1 chat sessions
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/sessions
This resource represents the active 1-1 chat sessions for a particular user.

6.3.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.5 POST
This operation is used to create a new 1-1 chat session.
6.3.5.1 Example: Creating a new 1-1 chat session
(Informative)
6.3.5.1.1 Request

	POST /exampleAPI/1/tel%3A%2B19585550100/chat/sessions HTTP/1.1

Content-Length: nnnn
Content-Type: application/xml

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>
[XML request (if applicable, starting with <?xml]

6.3.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.4 Resource: Individual 1-1 chat session
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}
This resource represents a 1-1 chat session.

A 1-1 chat session MAY be extended to a group chat session as described in section 6.6. These are represented using different resources because the feature sets of both types of sessions are different. In case a 1-1 session has been successfully extended into a group chat session, the 1-1 session is closed. For a certain period of time after extending the session, it is RECOMMENDED to redirect all accesses to a 1-1 session resource or its offspring resources to the resource representing the corresponding group chat session. Section 6.4.3.2 provides an example for such redirection.

6.4.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.4.3 GET
This operation is used to retrieve chat session information.

6.4.3.1 Example 1: Retrieving chat session information
(Informative)
6.4.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.4.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.4.3.2 Example 2: Retrieving chat session information of a 1-1 session that was previously extended to a group chat session
(Informative)
6.4.3.2.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.4.3.2.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001</resourceURL>

</common:resourceReference>

6.4.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.4.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.4.6 DELETE

This operation ends the chat session.

It is used in the following contexts:

· by the Originator to cancel a pending invitation before the Terminating Participant has accepted the invitation, which will cause the session to end
· by the Terminating Participant to decline an invitation to a chat session, which will cause the session to end
· by any Participant to terminate the chat session.

6.4.6.1 Example: Terminating a chat session
(Informative)
6.4.6.1.1 Request

	DELETE /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.4.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.5 Resource: 1-1 chat session status
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}/status
This resource represents the status of the session and is used for accepting a 1-1 chat invitation, by means of updating the status.

6.5.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.5.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.5.5 POST
This operation is used is used for accepting a 1-1 chat invitation, by means of updating the status.

6.5.5.1 Example 1: Accepting a group chat invitation
(Informative)
6.5.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.5.5.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

6.5.5.2 Example 2: Declining a group chat invitation
(Informative)
6.5.5.2.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.5.5.2.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.6 Resource: Extend a 1-1 chat to a group chat session
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}/extend
This resource is used to extend 1-1 chat to a group chat session.
6.6.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.6.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.6.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.6.5 POST
This operation is used to extend 1-1 chat to a group chat session.
In case of successful operation, “303 See Other” SHALL be returned, providing a Location header and a resourceReference root element with the location representing the new group chat session in which the Originator is already a Participant. All Participants given in the body of the HTTP request are invited to the group chat session.

On behalf of the Terminating Participant in the original 1-1 session, the API server SHALL end the original 1-1 chat session once the Terminating Participant in the original 1-1 session has accepted or declined the invitation to the group chat, or once that invitation has timed out.

6.6.5.1 Example: Extending a 1-1 chat to a group chat session
(Informative)
6.6.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001/extend HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.6.5.1.2 Response

	HTTP/1.1 303 See Other
Content-Type: application/xml

Location: /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001
Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001</resourceURL>

</common:resourceReference>

6.6.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.7 Resource: All group chat sessions
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions
This resource represents the active group chat sessions for a particular user.

6.7.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.7.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.7.5 POST
This operation is used to create a new group chat session.
6.7.5.1 Example: Creating a new group chat session
(Informative)
6.7.5.1.1 Request

	POST /exampleAPI/1/tel%3A%2B19585550100/chat/groupSessions HTTP/1.1

Content-Length: nnnn
Content-Type: application/xml

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>
[XML request (if applicable, starting with <?xml]

6.7.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.8 Resource: Individual group chat session
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}
This resource represents a group chat session.

For a limited time after a Participant has left a group chat session, the API server still exposes the resource URL of a chat session to the client that has left for the purpose of re-joining. The time how long this is exposed is controlled by operator policies. Also, the API server MAY choose based on policies to expose this resource also to other clients, allowing them to join the chat. In case the client is not a Participant of the chat session but the resource URL representing the session is exposed to him, the response to the GET method SHALL be “204 No Content”. Note that the reason for this is the fact that it is implementation-specific whether or not a disconnected Participant gets notifications about session progress from the underlying protocol layers.

6.8.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.8.3 GET
This operation is used to retrieve chat session information.

6.8.3.1 Example 1: Retrieving group chat session information
(Informative)
6.8.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.8.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.8.3.2 Example 2: Retrieving group chat session information when being disconnected
(Informative)
This example illustrates the case that the client reads information about a group chat session on behalf of a user who is currently not participating in the session, but who is allowed to join.
6.8.3.2.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.8.3.2.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.8.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.8.6 DELETE

Ed. Note: It is FFS whether this feature can be realized using the underlying protocol layer. If it cannot, the DELETE method will be removed.

This operation ends the group chat session.

It is used in the following contexts:

· by the Originator to cancel a pending invitation before the Terminating Participant has accepted the invitation, which will cause the session to end

· by any Participant to terminate the chat session.

6.8.6.1 Example: Terminating a group chat session
(Informative)
6.8.6.1.1 Request

	DELETE /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.8.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.9 Resource: All Participants in a group chat session
http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/participants
This resource represents the set of Participants in a group chat session.

For a limited time after a Participant has left a group chat session, the API server still exposes the resource URL of a chat session and the ‘participants’ node to the client that has left, for the purpose of re-joining. The time how long this is exposed is controlled by operator policies. During the time this resource is still available, the client can re-join by executing the POST method as described below. Also, the API server MAY choose based on policies to expose this resource also to other clients, allowing them to join the chat by executing the POST method. In case the client is not a Participant of the chat session but the resource URL representing the session is exposed to him, the response to the GET method SHALL be “204 No Content”. Note that the reason for this is the fact that it is implementation-specific whether or not a disconnected Participant gets notifications about session progress from the underlying protocol layers.
6.9.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.9.3 GET
This operation is used to retrieve the list of Participants in a group chat session.

6.9.3.1 Example 1: Retrieving the list of participants in a group chat session
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently participating in the session.
6.9.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.9.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable), starting with <?xml]

6.9.3.2 Example 2: Retrieving the list of participants in a group chat session when being disconnected
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently not participating in the session, but who is allowed to join.
6.9.3.2.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.9.3.2.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.9.3.3 Example 3: Retrieving the list of participants in a group chat session when not having access rights
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently not participating in the session, and who is not allowed to join. In fact, from the API server point of view, there is no difference between a client not being allowed to access, and the session not existing.
6.9.3.3.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.9.3.3.2 Response

	HTTP/1.1 404 No Found
Date: Mon, 28 Jul 2011 17:51:59 GMT
[TODO: add entity body / exception]

6.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.9.5 POST
This operation is used to add Participants to a group chat:
· The Originator executes this method to add Participants to a group chat.

· A Participant executes this method to join or re-join a group chat.

As joining a session can take some time, the response to this request is 202 Accepted; and the completion of the actual joining of the session is later indicated by a ParticipantStatusNotification. In case the Participant(s) is/are accepted immediately into the session, implementations that support GET access to the list of Participants SHOULD return 200 OK instead, with the new list of Participants in the response body.

Note that for a Participant re-joining a chat session, the {participantId} resource URL variable is not guaranteed to have the same value as in the previous participation of the Participant in the session.

6.9.5.1 Example 1: Adding participants to a group chat
(Informative)
6.9.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001/participants HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.9.5.1.2 Response

	HTTP/1.1 202 Accepted
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.9.5.2 Example 2: Joining or re-joining a group chat
(Informative)
6.9.5.2.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001/participants HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml)

List with one user only]

6.9.5.2.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml)

New List of participants

6.9.5.3 Example 3: Error situation when trying to (re)join a group chat session
(Informative)
This example illustrates the case that the client is not allowed anymore to (re)join a group chat session, or tries to join a group chat session for which he has no permission, or which does not exist.
6.9.5.3.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.9.5.3.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

[TODO: add entity body / exception]

6.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.10 Resource: Individual participant in a group chat session
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/participants/{participantId}
This resource represents a Participant in a group chat session.

6.10.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

	participantId
	identifier of the Participant

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.10.3 GET
This operation is used to retrieve information about an individual group chat Participant .

6.10.3.1 Example: Retrieving information about an individual group chat participant
(Informative)
6.10.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001/participants/part001 HTTP/1.1

Accept: application/xml

Host: example.com

6.10.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable), starting with <?xml]

6.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.10.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.10.6 DELETE

This operation ends the participation of a Participant in the group chat session, i.e. disconnects the Participant from the session.
It is used in the following contexts:

· by the Originator to remove a Participant from the chat session

· by the Terminating Participant to decline an invitation to a chat session

· by any Participant to leave the chat session.

Note that a Participant who has left the session can rejoin (if allowed by policies) using the mechanism defined in section 6.9.5.

As a result of performing the DELETE operation, the server SHALL remove the {participantId} node of the removed Participant from the resource tree, but SHALL keep the {sessionId} node and its {participants} sub-node available for a certain period of time that is controlled by policies. As it is not guaranteed that the server will receive information regarding the further session progress after leaving the session, GET access to these resources on behalf of a disconnected Participant SHALL return ‘204 No Content’.

Ed. note: it is FFS whether and how the Originator can remove a Participant from the session. If this is not possible, this feature may become optional (i.e. to be implemented by each vendor using proprietary means), or will be removed.
6.10.6.1 Example: Leaving a group chat session
(Informative)
6.10.6.1.1 Request

	DELETE /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001/participants/part001 HTTP/1.1

Accept: application/xml

Host: example.com

6.10.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.11 Resource: Individual group chat session participant status
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/participants/{participantId}/status
This resource represents the status of a participant in a group chat session and is used for accepting a group chat invitation, by means of updating the status.

6.11.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

	participantId
	identifier of the Participant

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.11.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.11.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.11.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.11.5 POST
This operation is used is used for accepting a group chat invitation, by means of updating the status.

6.11.5.1 Example 1: Accepting a group chat invitation
(Informative)
6.11.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001/participants/part001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.11.5.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

6.11.5.2 Example 2: Declining a group chat invitation
(Informative)
6.11.5.2.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001/participants/part001//status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.11.5.2.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

6.11.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.12 Resource: Chat messages in a 1-1 chat session
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}/messages
This resource represents all chat messages in a chat session. In the current version of the specification, it is a “send-only” resource (i.e. chat messages cannot be read back).

6.12.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.12.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.12.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.12.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.12.5 POST
This operation is used to create a chat message.
6.12.5.1 Example: Creating a chat message
(Informative)
6.12.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml)]

6.12.5.1.2 Response

	HTTP/1.1 201 Created
Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml)

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.12.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.13 Resource: Individual chat message in a 1-1 chat session
Ed. note: currently there is no method defined for this resource. This may change when support for offline messageing, as needed in RCS-e, will be added. In case this section has not been filled by the start of CONR, remove it.
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}/messages/{messageId}
This resource is used for [descriptive explanation of the resource].

6.13.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

	messageId
	identifier of the message

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.13.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.13.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT, POST, DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

When using query parameters the following conventions apply: >>

· Query parameters are appended to the resource URL starting with a question mark “?” character and then followed by query parameter name – value pairs.

· Multiple query parameter name-value pairs are separated by an ampersand "&" character. Example: ?par1=par1Val&par2=par2Val&..

· Multiple values for the same query parameters are specified as a list of name-value pairs using the same name, separated by an ampersand “&” character. Example: ?par1=par1Val1&par1=par1Val2&...

6.13.3.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.13.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.13.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.13.3.2 Example 2: [Example title]
(Informative)
6.13.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.13.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.13.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, POST, DELETE]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.13.4.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.13.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.13.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.13.4.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.13.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.13.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.13.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, PUT, DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]). [Delete this paragraph unless used in creation of subscription]
6.13.5.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.13.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.13.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.13.5.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.13.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.13.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.13.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, PUT, POST]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.13.6.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.13.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.13.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.13.6.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.13.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.13.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.14 Resource: Individual message delivery status in a 1-1 chat session
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/sessions/{sessionId}/messages/{messageId}/status
This resource represents the delivery status of a message.
6.14.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user

	sessionId
	identifier of the session

	messageId
	identifier of the message

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.14.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.14.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

Ed. note: FFS: it may be necessary to enabler read access here, at least as option.
6.14.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.14.5 POST
This operation is used for reporting the status of a message. The client SHALL execute this method if a received message indicates that a status report is requested, by including the element ‘reportRequest’ in the message.
6.14.5.1 Example: Reporting the status of a message
(Informative)
6.14.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/sessions/sess001/messages/msg001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.14.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.14.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.15 Resource: Group chat messages
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/messages
This resource represents the set of messages in a group chat session.
In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.
6.15.1 Request URL variables

See section 6.12.1.
6.15.2 Response Codes and Error Handling
See section 6.12.2.
6.15.3 GET
See section 6.12.3, with the change that the resourceURL structure defined in section 6.15 applies.

6.15.4 PUT

See section 6.12.4, with the change that the resourceURL structure defined in section 6.15 applies.
6.15.5 POST
See section 6.12.5, with the change that the resourceURL structure defined in section 6.15 applies.
6.15.6 DELETE

See section 6.12.5, with the change that the resourceURL structure defined in section 6.15 applies.
6.16 Resource: Individual group chat message
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/messages/{messageId}
This resource represents an individual message in a group chat session.

In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.

6.16.1 Request URL variables

See section 6.13.1.

6.16.2 Response Codes and Error Handling
See section 6.13.2.

6.16.3 GET
See section 6.13.3, with the change that the resourceURL structure defined in section 6.16 applies.

6.16.4 PUT

See section 6.13.4, with the change that the resourceURL structure defined in section 6.16 applies.

6.16.5 POST
See section 6.13.5, with the change that the resourceURL structure defined in section 6.16 applies.

6.16.6 DELETE

See section 6.13.6, with the change that the resourceURL structure defined in section 6.16 applies.

6.17 Individual group chat message delivery status
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/groupSessions/{sessionId}/messages/{messageId}/status
This resource represents the delivery status of a group chat message.

6.17.1 Request URL variables

See section 6.14.1.

6.17.2 Response Codes and Error Handling
See section 6.14.2.

6.17.3 GET
See section 6.14.3, with the change that the resourceURL structure defined in section 6.17 applies.

6.17.4 PUT

See section 6.14.4, with the change that the resourceURL structure defined in section 6.17 applies.

6.17.5 POST
See section 6.14.5, with the change that the resourceURL structure defined in section 6.17 applies.

6.17.6 DELETE

See section 6.14.6, with the change that the resourceURL structure defined in section 6.17 applies.

6.18 Resource: Client notification about chat session invitations
This resource is a callback URL provided by the client for notification about chat session invitations. This specification does not make any assumption about the structure of this URL, or whether this is a Client-side Notification URL or Server-side Notification URL. The server will POST notifications to this URL.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.18.5.
6.18.1 Request URL variables

Client provided if any.
6.18.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.18.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18.5 POST
This operation is used to notify the client about chat session invitations.
6.18.5.1 Example: Notify a client about chat invitations
(Informative)
6.18.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com:80

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.18.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.18.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.19 Resource: Client notification about chat session invitations
This resource is a callback URL provided by the client for notification about chat session invitations. This specification does not make any assumption about the structure of this URL, or whether this is a Client-side Notification URL or Server-side Notification URL. The server will POST notifications to this URL.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.19.5.
6.19.1 Request URL variables

Client provided if any.
6.19.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.19.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.19.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.19.5 POST
This operation is used to notify the client about chat session invitations.
6.19.5.1 Example: Notify a client about chat session invitations
(Informative)
6.19.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com:80

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.19.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.19.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.20 Resource: Client notification about chat session events
This resource is a callback URL provided by the client for notification about various chat session events. This specification does not make any assumption about the structure of this URL, or whether this is a Client-side Notification URL or Server-side Notification URL. The server will POST notifications to this URL.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.20.5.
6.20.1 Request URL variables

Client provided if any.
6.20.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.20.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.20.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.20.5 POST
This operation is used to notify the client about chat session invitations.
6.20.5.1 Example: Notify a client about chat session events
(Informative)
6.20.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com:80

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.20.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.20.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.21 Resource: Client notification about changes of participant status
This resource is a callback URL provided by the client for notification about changes of participant status. This specification does not make any assumption about the structure of this URL, or whether this is a Client-side Notification URL or Server-side Notification URL. The server will POST notifications to this URL.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.21.5.

This resource is not relevant in 1-1 chat sessions.
6.21.1 Request URL variables

Client provided if any.
6.21.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.21.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.21.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.21.5 POST
This operation is used to notify the client about changes of participant status.
6.21.5.1 Example: Notify a client about participant status changes
(Informative)
6.21.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com:80

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.21.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.21.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.22 Resource: Client notification containing incoming messages
This resource is a callback URL provided by the client for notifications about incoming messages. The actual messages are inlined in the notifications.

This specification does not make any assumption about the structure of this URL, or whether this is a Client-side Notification URL or Server-side Notification URL. The server will POST notifications to this URL.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.21.5.

6.22.1 Request URL variables

Client provided if any.
6.22.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.22.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.22.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.22.5 POST
This operation is used to notify the client about incoming messages, and to deliver these messages to the client.
6.22.5.1 Example: Notify a client about incoming messages
(Informative)
6.22.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com:80

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.22.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.22.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _Chat-V1_0
	28 Apr 2011
	All
	TS skeleton created

	
	31 May 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0020R05-CR_Chat_API_basic_design implemented.

	
	07 Jul 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0124R03-CR_Chat_API_resource_and_datatype_alignment_with_new_resource_model implemented.

	
	27 Jul 2011
	2.1

5.1

5.2.2.x

5.2.3.x

	Implemented CRs

· OMA-ARC-REST-NetAPI-2011-0156-CR_Chat_alignment_with_FT_IS_VS

· OMA-ARC-REST-NetAPI-2011-0157R01-CR_Chat_small_fix

	
	02 Aug 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0173R01-CR_Chat_section_6_structure_with_tel_URI_fixes_and_Notif_channel_changes implemented

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.Chat Server

	Item
	Function
	Reference
	Requirement

	REST-Chat-SUPPORT-S-001-M
	Support for the RESTful Chat API
	[section(s)]
	

	REST- Chat-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-Chat-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST-Chat-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.Chat.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)

This section defines a format for the RESTful Chat API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for all Chat REST operations which are based on POST requests, except Notifications.

C.1 Creating a new subscription to chat notifications
This operation is used to create a new subscription to chat notifications. See section 6.1.5.
The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	notifyURL
	xsd:anyURI
	No
	Notification endpoint definition.

	callbackData
	xsd:string
	Yes
	Data the application can register with the server when subscribing to notifications, and that are passed back unchanged in each of the related notifications.

	notificationFormat
	common:NotificationFormat
	Yes
	Default: XML

Application can specify format of the resource representation in notifications that are related to this subscription. The choice is between {XML, JSON}

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.1.1 Example

(Informative)

C.1.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550151/subscriptions
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

notifyURL=http%3A%2F%2Fapplication.example.com%2Fnotifications%2FChatNotificationURL&

callbackData=abcd&

notificationFormat=XML&

clientCorrelator=12345

C.1.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://exampleAPI/1/chat/tel%3A%2B19585550151/subscriptions /sub001

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">
 <callbackReference>

 <notifyURL>http://application.example.com/notifications/ChatNotificationURL</notifyURL>

 </callbackReference>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http:// exampleAPI/1/chat/tel%3A%2B19585550151/subscriptions /sub001</resourceURL>

</chat:chatNotificationSubscription>

C.2 Creating a new 1-1 chat session
This operation is used to create a new one-to-one chat session. See section 6.3.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	subject
	xsd:string
	No
	Initial message to the participant

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. SIP URI) of the originator

	originatorName
	xsd:string
	Yes
	Human readable name of the originator

	tParticipantAddress
	xsd:anyURI
	No
	The address (e.g. SIP URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string
	Yes
	Human readable name of the terminating participant (i.e. invited user)

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.2.1 Example

(Informative)

C.2.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550151/sessions
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

subject=Hello%20friends&

originatorAddress= tel%3A%2B19585550151&

originatorName=Alice&

tParticipantAddress= tel%3A%2B19585550152&

tParticipantName=Bob&

clientCorrelator=12345

C.2.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http:// exampleAPI/1/chat/tel%3A%2B19585550151/sessions/sess001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello friends</subject>

 <originatorAddress>tel:+19585550151</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550152</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/sessions /sess001</resourceURL>
</chat:chatSessionInformation>

C.3 Accepting/Declining a chat session invitation
This operation is used to accept/decline a one-to-one chat session invitation, see section 6.5.5, or a group chat session invitation, see section 6.5.5.1.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	status
	xsd:string
	No
	Status of the participant.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”.

To indicate that the user declines the session invitation, this element MUST be set to “Disconnected”.

If the operation was successful, it returns an HTTP Status of “200 OK”.

Note that the resource URL differs, depending on whether the operation is performed on a 1-1 chat session, or a group chat session. The example below illustrates accepting a 1-1 chat session invitation.
C.3.1 Example

(Informative)

C.3.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550152/sessions/sess001/status
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

status=Connected

C.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Location: http:// exampleAPI/1/chat/tel%3A%2B19585550152/sessions/sess001/status
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <status>Connected</status>

</chat:participantSessionStatus>

C.4 Extending a 1-1 chat to a group chat session
This operation is used to extend a one-to-one chat session to a group chat session. See section 6.6.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. SIP URI) of the originator

	originatorName
	xsd:string
	Yes
	Human readable name of the originator

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. SIP URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user)

If the operation was successful, it returns an HTTP Status of “303 See Other”.
It is FFS whether the originator and existing terminating participant needs to be supplied here, or only the additional tParticipants.
C.4.1 Example

(Informative)

C.4.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550151/sessions/sess001/extend
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

originatorAddress= tel%3A%2B19585550151&

originatorName=Alice&

tParticipantAddress= tel%3A%2B19585550152&

tParticipantName=Bob&

tParticipantAddress= tel%3A%2B19585550153&

tParticipantName=Ted

C.4.1.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: /exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001

Content-Length: nnnn

Date: Mon, 28 Jun 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001</resourceURL>

</common:resourceReference>

C.5 Creating a new group chat session
This operation is used to create a new group chat session. See section 6.7.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	subject
	xsd:string
	No
	Initial message to the invited participants

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. SIP URI) of the originator

	originatorName
	xsd:string
	Yes
	Human readable name of the originator

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. SIP URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user)

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.5.1 Example

(Informative)

C.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

subject=Hello%20friends&

originatorAddress= tel%3A%2B19585550151&

originatorName=Alice&

tParticipantAddress= tel%3A%2B19585550152&

tParticipantName=Bob&

tParticipantAddress= tel%3A%2B19585550153&

tParticipantName=Ted&

clientCorrelator=12345

C.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/sess001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello</subject>

 <participant>

 <address>tel:+19585550151</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/sess001/part001</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550152</address>

 <name>Bob</name>
 <status>Invited</status>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/sess001/part002</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550153</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/sess001/part003</resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/sess001</resourceURL>
</chat:groupChatSessionInformation >

C.6 Adding participant(s) to a group chat session, or (re)joining a group chat session
This operation is used to add one or more participants to a group chat session. See section 6.9.5.
It is also used to join or to re-join a group chat session, in which case the number of additional participants is limited to one.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. SIP URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user). Number of entries MUST either be zero, or equal to the number of entries in tParticipantAddress.

	clientCorrelator
	xsd:string[0..unbounded]
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created” in case there was just one tParticipantAddress instance passed, or “200 OK” if there were multiple instances passed. Further, in case there was just one tParticipantAddress instance passed, the response entity body contains either a “resourceReference” or a “participant” root element. In case there were multiple tParticipantAddress instances passed, the response entity body contains a “participantList” root element.
In other words, adding one participant corresponds to the creation of a new participant resource in the list of participants and is consistent with the resource creation design pattern used throughout the OMA RESTful Network APIs, whereas the addition of multiple participants corresponds to an update operation of the list of participants.
C.6.1 Example: One participant added

(Informative)

C.6.1.1 Request
	POST /exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

tParticipantAddress= tel%3A%2B19585550154&

tParticipantName=John&

clientCorrelator=12345

C.6.1.2 Response

	 HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants/part004
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participant xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">

 <address>tel:+19585550154</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants/part004</resourceURL>

</chat:participant>

C.6.2 Example: Multiple participants added

(Informative)

C.6.2.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

tParticipantAddress= tel%3A%2B19585550154&

tParticipantAddress= tel%3A%2B19585550155&

tParticipantName=John&

tParticipantName=Peter&

clientCorrelator=12345&

clientCorrelator=67890&

C.6.2.2 Response

	 HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550151</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants/part001</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550152</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants/part002</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550153</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants/part003</resourceURL>
 </participant>
 <participant>

 <address>tel:+19585550154</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants/part004</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550155</address>

 <name>Peter</name>
<status>Invited</status>

 <clientCorrelator>67890</clientCorrelator>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants/part005</resourceURL>
 </participant>
 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/groupSessions/gs001/participants</resourceURL>
</chat:participantList>

C.7 Creating a chat message
This operation is used to create a chat message in a 1-1 chat session, see section 6.12.5, or in a group chat session, see section 6.15.5.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	text
	xsd:string
	No
	Text content of a chat message.

	reportRequest
	MessageStatus[0..unbounded]
	Yes
	Request message delivery status reports (i.e. the receiver of the message should report message delivery / disposition status)

Note that the underlying system might not support reporting

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.7.1 Example

(Informative)
Note that the example assum,es a 1-1 chat session. Posting a chat message to a group chat session looks the same, apart from using a different resource URL.
C.7.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550151/sessions/sess001/messages

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

text= How%20are%20you%3F&

reportRequest=Displayed

C.7.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://exampleAPI/1/chat/tel%3A%2B19585550151/sessions/sess001/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <text>How are you?</text>

 <reportRequest>Displayed</reportRequest>

 <resourceURL>http://exampleAPI/1/chat/tel%3A%2B19585550151/sessions/sess001/messages/msg001</resourceURL>
</chat:chatMessage >

C.8 Reporting message status
This operation is used to report message status in a 1-1 chat session. See section 6.14.5.

It is FFS whether we want to support status reports in group chat in this API version. RCS does not request it.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	status
	MessageStatus
	No
	Indicates the delivery status of the message.

	userId
	xsd:anyURI
	No
	Indicates the participantId of the user that sucessfully received the message

If the operation was successful, it returns an HTTP Status of “200 OK”.

C.8.1 Example

(Informative)

C.8.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550152/sessions/sess001/messages/msg001/status
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

status=Displayed&

userId=tel%3A%2B19585550152

C.8.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Location: http://exampleAPI/1/chat/tel%3A%2B19585550152/sessions/sess001/messages/msg001/status
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageDeliveryStatus xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <status>Displayed</status>

 <userId>tel:+19585550152</userId>

</chat:messageDeliveryStatus>

C.9

	
	
	
	

	
	
	
	

	

	
	
	
	

	

C.9.1
C.9.1.1
	

C.9.1.2
	

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)

As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources for Chat
(Informative)

The following table lists all Chat data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

/groupSessions

//{serverRoot}/{apiVersion}

/chat/{userId}

/{sessionId}

/participants

/{participantId}

/subscriptions

/{subscriptionId}

/messages

/{messageId}

/status

/status

/sessions

/{sessionId}

/status

/messages

/{messageId}

/status

/extend

�FFS. This is in OMA SIMPLE IM but not in RCS. Suggestion: for later version of the API. TBC before dropping whether this is in RCSe.

�This needs to be re-worked, as this explicit statement means that the underlying network topology is exposed to the API user. Editor, pls keep this note until the issue is resolved.

�To be set in subscription example

�This needs to be re-worked, as this explicit statement means that the underlying network topology is exposed to the API user. Editor, pls keep this note until the issue is resolved.

�To be set in subscription example

�This needs to be re-worked, as this explicit statement means that the underlying network topology is exposed to the API user. Editor, pls keep this note until the issue is resolved.

�To be set in subscription example

�This needs to be re-worked, as this explicit statement means that the underlying network topology is exposed to the API user. Editor, pls keep this note until the issue is resolved.

�To be set in subscription example

�This needs to be re-worked, as this explicit statement means that the underlying network topology is exposed to the API user. Editor, pls keep this note until the issue is resolved.

�To be set in subscription example

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1357634611/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

