 STYLEREF ZDID * MERGEFORMAT
Page 17 V(84)

	[image: image1.jpg]
	

	RESTful Network API for Chat

	Draft Version 1.0 – 18 Oct 2011

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_Chat-V1_0-20111018-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

91.
Scope

2.
References
10
2.1
Normative References
10
2.2
Informative References
10
3.
Terminology and Conventions
12
3.1
Conventions
12
3.2
Definitions
12
3.3
Abbreviations
12
4.
Introduction
14
4.1
Version 1.0
14
5.
Chat API definition
15
5.1
Resources Summary
15
5.2
Data Types
23
5.2.1
XML Namespaces
23
5.2.2
Structures
24
5.2.2.1
Type: ChatSubscriptionList
24
5.2.2.2
Type: ChatNotificationSubscription
24
5.2.2.3
Type: ChatEventNotification
25
5.2.2.4
Type: GroupSessionInvitationNotification
25
5.2.2.5
Type: MessageNotification
26
5.2.2.6
Type: ParticipantStatusNotification
27
5.2.2.7
Type: ParticipantStatusEntry
28
5.2.2.8
Type: MessageDeliveryStatusNotification
28
5.2.2.9
Type: ChatMessage
29
5.2.2.10
Type: MessageDeliveryStatus
29
5.2.2.11
Type: ParticipantSessionStatus
29
5.2.2.12
Type: GroupChatSessionInformation
30
5.2.2.13
Type: ParticipantList
30
5.2.2.14
Type: ParticipantInformation
31
5.2.2.15
Type: IsComposing
31
5.2.3
Enumerations
32
5.2.3.1
Enumeration: ParticipantStatus
32
5.2.3.2
Enumeration: EventType
32
5.2.3.3
Enumeration: MessageStatus
32
5.2.4
Values of the Link “rel” attribute
33
5.3
Sequence Diagrams
33
5.3.1
Subscribing to and unsubscribing from chat notifications
33
5.3.2
Sending a chat message
34
5.3.3
Receiving a chat message and confirming message delivery success
35
5.3.4
Starting a group chat
36
5.3.5
Accepting or declining a group chat session invitation
37
5.3.5.1
Accepting a group chat session invitation
37
5.3.5.2
Declining a group chat session invitation
38
5.3.6
Leaving and re-joining a group chat session
39
6.
Detailed specification of the resources
42
6.1
Resource: All subscriptions to chat event notifications
42
6.1.1
Request URL variables
42
6.1.2
Response Codes and Error Handling
43
6.1.3
GET
43
6.1.3.1
Example: Reading all active chat notification subscriptions (Informative)
43
6.1.3.1.1
Request
43
6.1.3.1.2
Response
43
6.1.4
PUT
43
6.1.5
POST
44
6.1.5.1
Example 1: Creating a new subscription to chat notifications, response with copy of created resource (Informative)
44
6.1.5.1.1
Request
44
6.1.5.1.2
Response
44
6.1.5.2
Example 2: Creating a new subscription to chat notifications, response with location of created resource (Informative)
45
6.1.5.2.1
Request
45
6.1.5.2.2
Response
45
6.1.6
DELETE
45
6.2
Resource: Individual subscription to chat event notifications
45
6.2.1
Request URL variables
45
6.2.2
Response Codes and Error Handling
46
6.2.3
GET
46
6.2.3.1
Example: Reading an individual subscription (Informative)
46
6.2.3.1.1
Request
46
6.2.3.1.2
Response
46
6.2.4
PUT
47
6.2.5
POST
47
6.2.6
DELETE
47
6.2.6.1
Example: Cancelling a subscription (Informative)
47
6.2.6.1.1
Request
47
6.2.6.1.2
Response
47
6.3
Resource: Chat messages in a 1-1 chat
47
6.3.1
Request URL variables
47
6.3.2
Response Codes and Error Handling
48
6.3.3
GET
48
6.3.4
PUT
48
6.3.5
POST
48
6.3.5.1
Example 1: Creating a chat message, using tel URI and returning the location of the created resource (Informative)
48
6.3.5.1.1
Request
48
6.3.5.1.2
Response
49
6.3.5.2
Example 2: Creating a chat message, using ACR and returning a copy of the created resource (Informative)
49
6.3.5.2.1
Request
49
6.3.5.2.2
Response
49
6.3.6
DELETE
50
6.4
Resource: Individual chat message in a 1-1 chat
50
6.4.1
Request URL variables
50
6.4.2
Response Codes and Error Handling
50
6.4.3
GET
50
6.4.3.1
Example 1: [Example title] (Informative)
51
6.4.3.1.1
Request
51
6.4.3.1.2
Response
51
6.4.3.2
Example 2: [Example title] (Informative)
52
6.4.3.2.1
Request
52
6.4.3.2.2
Response
52
6.4.4
PUT
52
6.4.4.1
Example 1: [Example title] (Informative)
52
6.4.4.1.1
Request
52
6.4.4.1.2
Response
52
6.4.4.2
Example 2: [Example title] (Informative)
52
6.4.4.2.1
Request
53
6.4.4.2.2
Response
53
6.4.5
POST
53
6.4.5.1
Example 1: [Example title] (Informative)
53
6.4.5.1.1
Request
53
6.4.5.1.2
Response
53
6.4.5.2
Example 2: [Example title] (Informative)
53
6.4.5.2.1
Request
54
6.4.5.2.2
Response
54
6.4.6
DELETE
54
6.4.6.1
Example 1: [Example title] (Informative)
54
6.4.6.1.1
Request
54
6.4.6.1.2
Response
54
6.4.6.2
Example 2: [Example title] (Informative)
54
6.4.6.2.1
Request
54
6.4.6.2.2
Response
55
6.5
Resource: Individual message delivery status in a 1-1 chat
55
6.5.1
Request URL variables
55
6.5.2
Response Codes and Error Handling
55
6.5.3
GET
55
6.5.4
PUT
56
6.5.5
POST
56
6.5.5.1
Example: Reporting the status of a message (Informative)
56
6.5.5.1.1
Request
56
6.5.5.1.2
Response
56
6.5.6
DELETE
56
6.6
Resource: All group chat sessions
56
6.6.1
Request URL variables
57
6.6.2
Response Codes and Error Handling
57
6.6.3
GET
57
6.6.4
PUT
57
6.6.5
POST
57
6.6.5.1
Example: Creating a new group chat session (Informative)
57
6.6.5.1.1
Request
57
6.6.5.1.2
Response
58
6.6.6
DELETE
59
6.7
Resource: Individual group chat session
59
6.7.1
Request URL variables
59
6.7.2
Response Codes and Error Handling
60
6.7.3
GET
60
6.7.3.1
Example 1: Retrieving group chat session information (Informative)
60
6.7.3.1.1
Request
60
6.7.3.1.2
Response
60
6.7.3.2
Example 2: Retrieving group chat session information when being disconnected (Informative)
61
6.7.3.2.1
Request
61
6.7.3.2.2
Response
61
6.7.4
PUT
61
6.7.5
POST
61
6.7.6
DELETE
61
6.7.6.1
Example: Terminating a group chat session (Informative)
62
6.7.6.1.1
Request
62
6.7.6.1.2
Response
62
6.8
Resource: All Participants in a group chat session
62
6.8.1
Request URL variables
62
6.8.2
Response Codes and Error Handling
63
6.8.3
GET
63
6.8.3.1
Example 1: Retrieving the list of participants in a group chat session (Informative)
63
6.8.3.1.1
Request
63
6.8.3.1.2
Response
63
6.8.3.2
Example 2: Retrieving the list of participants in a group chat session when being disconnected (Informative)
64
6.8.3.2.1
Request
64
6.8.3.2.2
Response
64
6.8.3.3
Example 3: Retrieving the list of participants in a group chat session when not having access rights (Informative)
64
6.8.3.3.1
Request
64
6.8.3.3.2
Response
64
6.8.4
PUT
65
6.8.5
POST
65
6.8.5.1
Example 1: Adding one participant to a group chat, or joining/re-joining a group chat (Informative)
65
6.8.5.1.1
Request
65
6.8.5.1.2
Response
66
6.8.5.2
Example 2: Adding multiple participants to a group chat (Informative)
66
6.8.5.2.1
Request
66
6.8.5.2.2
Response
66
6.8.5.3
Example 3: Error situation when trying to (re)join a group chat session (Informative)
68
6.8.5.3.1
Request
68
6.8.5.3.2
Response
68
6.8.6
DELETE
68
6.9
Resource: Individual participant in a group chat session
68
6.9.1
Request URL variables
68
6.9.2
Response Codes and Error Handling
69
6.9.3
GET
69
6.9.3.1
Example: Retrieving information about an individual group chat participant (Informative)
69
6.9.3.1.1
Request
69
6.9.3.1.2
Response
69
6.9.4
PUT
70
6.9.5
POST
70
6.9.6
DELETE
70
6.9.6.1
Example: Leaving a group chat session (Informative)
70
6.9.6.1.1
Request
70
6.9.6.1.2
Response
70
6.10
Resource: Individual group chat session participant status
71
6.10.1
Request URL variables
71
6.10.2
Response Codes and Error Handling
71
6.10.3
GET
71
6.10.4
PUT
71
6.10.5
POST
72
6.10.5.1
Example 1: Accepting a group chat invitation (Informative)
72
6.10.5.1.1
Request
72
6.10.5.1.2
Response
72
6.10.6
DELETE
72
6.11
Resource: Group chat messages
72
6.11.1
Request URL variables
73
6.11.2
Response Codes and Error Handling
73
6.11.3
GET
73
6.11.4
PUT
73
6.11.5
POST
73
6.11.6
DELETE
73
6.12
Resource: Individual group chat message
73
6.12.1
Request URL variables
73
6.12.2
Response Codes and Error Handling
74
6.12.3
GET
74
6.12.4
PUT
74
6.12.5
POST
74
6.12.6
DELETE
74
6.13
Individual group chat message delivery status
74
6.13.1
Request URL variables
74
6.13.2
Response Codes and Error Handling
74
6.13.3
GET
74
6.13.4
PUT
75
6.13.5
POST
75
6.13.6
DELETE
75
6.14
Resource: Client notification about group chat session invitations
75
6.14.1
Request URL variables
75
6.14.2
Response Codes and Error Handling
75
6.14.3
GET
75
6.14.4
PUT
76
6.14.5
POST
76
6.14.5.1
Example: Notify a client about group chat session invitations (Informative)
76
6.14.5.1.1
Request
76
6.14.5.1.2
Response
77
6.14.6
DELETE
77
6.15
Resource: Client notification about chat session events
77
6.15.1
Request URL variables
77
6.15.2
Response Codes and Error Handling
77
6.15.3
GET
77
6.15.4
PUT
78
6.15.5
POST
78
6.15.5.1
Example: Notify a client about chat session events (Informative)
78
6.15.5.1.1
Request
78
6.15.5.1.2
Response
78
6.15.6
DELETE
78
6.16
Resource: Client notification about changes of participant status
78
6.16.1
Request URL variables
79
6.16.2
Response Codes and Error Handling
79
6.16.3
GET
79
6.16.4
PUT
79
6.16.5
POST
79
6.16.5.1
Example: Notify a client about participant status changes (Informative)
79
6.16.5.1.1
Request
79
6.16.5.1.2
Response
80
6.16.6
DELETE
80
6.17
Resource: Client notification containing incoming messages
80
6.17.1
Request URL variables
81
6.17.2
Response Codes and Error Handling
81
6.17.3
GET
81
6.17.4
PUT
81
6.17.5
POST
81
6.17.5.1
Example: Notify a client about incoming messages (Informative)
81
6.17.5.1.1
Request
81
6.17.5.1.2
Response
82
6.17.6
DELETE
82
6.18
Resource: Client notification about message delivery status
82
6.18.1
Request URL variables
82
6.18.2
Response Codes and Error Handling
82
6.18.3
GET
82
6.18.4
PUT
82
6.18.5
POST
83
6.18.5.1
Example: Notify a client about message delivery status (Informative)
83
6.18.5.1.1
Request
83
6.18.5.1.2
Response
83
6.18.6
DELETE
83
Appendix A.
Change History (Informative)
84
A.1
Approved Version History
84
A.2
Draft/Candidate Version 1.0 History
84
Appendix B.
Static Conformance Requirements (Normative)
85
B.1
SCR for REST.Chat Server
85
B.1.1
SCR for REST.Chat.FUNCTION Server
85
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
86
C.1
Creating a new subscription to chat notifications
86
C.1.1
Example (Informative)
87
C.1.1.1
Request
87
C.1.1.2
Response
87
C.2
Creating a chat message
87
C.2.1
Example 1: using tel URI and returning the location of the created resource (Informative)
88
C.2.1.1
Request
88
C.2.1.2
Response
88
C.2.2
Example 2: using ACR and returning a copy of the created resource (Informative)
88
C.2.2.1
Request
88
C.2.2.2
Response
89
C.3
Creating a new group chat session
89
C.3.1
Example (Informative)
90
C.3.1.1
Request
90
C.3.1.2
Response
90
C.4
Adding participant(s) to a group chat session, or (re)joining a group chat session
91
C.4.1
Example 1: Adding one participant to a group chat, or joining/re-joining a group chat (Informative)
92
C.4.1.1
Request
92
C.4.1.2
Response
92
C.4.2
Example 2: Adding multiple participants to a group chat (Informative)
92
C.4.2.1
Request
92
C.4.2.2
Response
93
C.5
Reporting message status
94
C.5.1
Example (Informative)
94
C.5.1.1
Request
94
C.5.1.2
Response
94
Appendix D.
JSON examples (Informative)
96
D.1
[Example Title] (section [section number cross reference])
96
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
97
Appendix F.
Light-weight resources for Chat (Informative)
98
Appendix G.
Authorization aspects (Normative)
99

Figures

16Figure 1 Resource structure defined by this specification

34Figure 2 Subscribe to and unsubscribe from chat notifications

35Figure 3 Starting a group chat

37Figure 5 Accepting a group chat session invitation

38Figure 6 Declining a group chat session invitation

39Figure 7 Leaving and re-joining a group chat session

40Figure 8 Originator leaves group chat and session is ended

41Figure 9 Sending a chat message

42Figure 10 Receiving a chat message and confirming successful message delivery

Tables

24Table 1: 1-1 chat notifications

24Table 2: Group chat notifications

1. Scope

This specification defines a RESTful API for Chat using HTTP protocol bindings.
2. References

3. Terminology and Conventions

4. Introduction

The Technical Specification of the RESTful Network API for Chat contains HTTP protocol bindings for Chat (also known as Instant Messaging), using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

5. Chat API definition
ed. note: no changes to section 5 (copy it in from agreed revision of cr 284).
6. Detailed specification of the resources
ed. note: this section is based on CR 284R01, with all changes accepted, and examples added on top, change-tracked.

The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, x-www-form-urlencoded):

· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].
6.1 Resource: All subscriptions to chat event notifications
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/subscriptions

This resource is used to manage subscriptions to chat event notifications. Note that there is one subscription per client instance.

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.1.3 GET
This operation is used for reading the list of active chat notification subscriptions.

6.1.3.1 Example: Reading all active chat notification subscriptions
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatSubscriptionList xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<chatNotificationSubscription>

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chatNotificationSubscription>

<resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions</resourceURL>

</chat:chatSubscriptionList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used to create a new subscription for chat notifications.
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: Creating a new subscription to chat notifications, response with copy of created resource
(Informative)
6.1.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

</chat:chatNotificationSubscription>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/chat/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

 <callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>
 </callbackReference>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chat:chatNotificationSubscription>

6.1.5.2 Example 2: Creating a new subscription to chat notifications, response with location of created resource
(Informative)
6.1.5.2.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/chat/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference>

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

</chat:chatNotificationSubscription>

6.1.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</common:resourceReference>

6.1.5.2.3 Example 3: Creating a new subscription to chat notifications, requiring session-based 1-1 chat support which the server does not support
(Informative)
6.1.5.2.4 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/chat/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml (include the oneToOneSessionsRequired Flag]

6.1.5.2.5 Response

	HTTP/1.1 400 Bad Request
Content-Type: application/xml

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[Exception Payload]

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: Individual subscription to chat event notifications
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/subscriptions/{subscriptionId}
This resource represents an individual subscription to chat notifications.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	subscriptionId
	identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.2.3 GET
This operation is used for reading an individual subscription.

6.2.3.1 Example: Reading an individual subscription
(Informative)
This example shows also an alternative way to indicate desired content type in response from the server, by using URL query parameter “?resFormat” which is described in [REST_NetAPI_Common].
6.2.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001?resFormat=XML HTTP/1.1
Accept: application/xml
Host: example.com

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

<notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

<notificationFormat>XML</notificationFormat>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chat:chatNotificationSubscription>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.2.6.1 Example: Cancelling a subscription
(Informative)
6.2.6.1.1 Request

	DELETE /exampleAPI/1/chat/tel%3A%2B19585550100/chat/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jun 2010 17:51:59 GMT

6.3 Resource: Chat messages in a 1-1 chat
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/oneToOne/{otherUserId}/messages
This resource represents all chat messages in a chat session. In the current version of the specification, it is a “send-only” resource (i.e. chat messages cannot be read back).

6.3.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.5 POST
This operation is used to create a chat message. This method MUST return either a common:resourceReference root element or a chat:chatMessage root element, where using the first option is RECOMMENDED.
6.3.5.1 Example 1: Creating a chat message, using tel URI and returning the location of the created resource
(Informative)
6.3.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

</chat:chatMessage>

6.3.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>
 http://example.com/exampleAPI/1/chat/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
 </resourceURL>

</common:resourceReference>

Note that alternatively, a copy of the created resource can be returned, as illustrated in section 6.3.5.2.2.

6.3.5.2 Example 2: Creating a chat message, using ACR and returning a copy of the created resource
(Informative)
6.3.5.2.1 Request

	POST /exampleAPI/1/chat/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

</chat:chatMessage>

6.3.5.2.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/1/chat/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<text>How are you?</text>

<reportRequest>Displayed</reportRequest>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
 </resourceURL>
</chat:chatMessage>

Note that alternatively, a the location of the created resource can be returned, as illustrated in section 6.3.5.1.2.
6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.4 Resource: Individual chat message in a 1-1 chat
Ed. note: currently there is no method defined for this resource. This may change when support for offline messageing, as needed in RCS-e, will be added. In case this section has not been filled by the start of CONR, remove it.

The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/oneToOne/{otherUserId}/messages/{messageId}
This resource is used for [descriptive explanation of the resource].

6.4.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

	messageId
	identifier of the message

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.4.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT, POST, DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

When using query parameters the following conventions apply: >>

· Query parameters are appended to the resource URL starting with a question mark “?” character and then followed by query parameter name – value pairs.

· Multiple query parameter name-value pairs are separated by an ampersand "&" character. Example: ?par1=par1Val&par2=par2Val&..

· Multiple values for the same query parameters are specified as a list of name-value pairs using the same name, separated by an ampersand “&” character. Example: ?par1=par1Val1&par1=par1Val2&...

6.4.3.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.4.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.4.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.4.3.2 Example 2: [Example title]
(Informative)
6.4.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.4.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.4.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, POST, DELETE]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.4.4.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.4.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.4.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.4.4.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.4.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.4.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.4.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, PUT, DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]). [Delete this paragraph unless used in creation of subscription]
6.4.5.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.4.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.4.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.4.5.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.4.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.4.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.4.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET, PUT, POST]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.4.6.1 Example 1: [Example title]
(Informative)
If there is only one example, remove the sequence number from the title heading >>

6.4.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.4.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.4.6.2 Example 2: [Example title]
(Informative)
If there is only one example, remove this section >>

6.4.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.4.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.5 Resource: Individual message delivery status in a 1-1 chat
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/oneToOne/{otherUserId}/messages/{messageId}/status
This resource represents the delivery status of a message.

6.5.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

	messageId
	identifier of the message

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.5.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

Ed. note: FFS: it may be necessary to enabler read access here, at least as option.
6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.5.5 POST
This operation is used for reporting the status of a message. The client SHALL execute this method if a received message indicates that a status report is requested, by including the element ‘reportRequest’ in the message.

Ed. note: it is FFS whether the “Delivered” notification is generated by the API client. This may depend on the actual notification mechanism used, and on the underlying layers. See also the latest input from RCS-e.
6.5.5.1 Example: Reporting the status of a message
(Informative)
6.5.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages/msg001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageDeliveryStatus xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Displayed</status>

<userId>tel%3A%2B19585550101</userId>

</chat:messageDeliveryStatus>

6.5.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.6 1-1 chat session information

The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/oneToOne/{otheruserId}/sessionInfo

This resource represents session information in a session-based 1-1 chat.

A 1-1 chat session MAY be extended to a group chat session as described in section 6.8. These are represented using different resources because the feature sets of both types of sessions are different. In case a 1-1 session has been successfully extended into a group chat session, the 1-1 session is closed. For a certain period of time after extending the session, it is RECOMMENDED to redirect all accesses to a 1-1 session resource or its offspring resources to the resource representing the corresponding group chat session. Section 6.4.3.2 provides an example for such redirection.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].

6.6.3 GET

This operation is used to retrieve chat session information.

6.6.3.1 Example 1: Retrieving chat session information
(Informative)

6.6.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo HTTP/1.1
Accept: application/xml
Host: example.com

6.6.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.6.3.2 Example 2: Retrieving chat session information of a 1-1 session that was previously extended to a group chat session
(Informative)

6.6.3.2.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo HTTP/1.1
Accept: application/xml
Host: example.com

6.6.3.2.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001</resourceURL>

</common:resourceReference>

6.6.4 PUT

This operation is used to create a 1-1 chat session with the user represented by {userId} as originator and the one represented by {otherUserId} as terminating participant.

6.6.4.1 Example 1: Creating a 1-1 chat session
(Informative)

6.6.4.1.1 Request

	PUT /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo HTTP/1.1
Accept: application/xml
Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.6.4.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo
<?xml version="1.0" encoding="UTF-8"?>
[XML response (if applicable), starting with <?xml]

6.6.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.6.6 DELETE

This operation ends the chat session.

It is used in the following contexts:

· by the Originator to cancel a pending invitation before the Terminating Participant has accepted the invitation, which will cause the session to end

· by the Terminating Participant to decline an invitation to a chat session, which will cause the session to end

· by any Participant to terminate the chat session.

6.6.6.1 Example: Terminating a 1-1 chat session
(Informative)

6.6.6.1.1 Request

	DELETE /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/sessionInfo/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.6.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.7 Resource: 1-1 chat session status

The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/oneToOne/{otherUserId}/status

This resource represents the status of the session and is used for accepting a 1-1 chat invitation, by means of updating the status.

6.7.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].

6.7.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.7.5 POST

This operation is used is used for accepting a 1-1 chat invitation, by means of updating the status.

6.7.5.1 Example 1: Accepting a 1-1 chat invitation
(Informative)

6.7.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550101/oneToOne/{otherUserId}/sessionInfo/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.7.5.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

[XML response (if applicable, starting with <?xml]

6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.8 Resource: Extend a session-based 1-1 chat to a group chat session

The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/oneToOne/{otherUserId}/extend

This resource is used to extend a session-based 1-1 chat to a group chat session.

6.8.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].

6.8.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.8.5 POST

This operation is used to extend a session-based 1-1 chat to a group chat session.

In case of successful operation, “303 See Other” SHALL be returned, providing a Location header and a resourceReference root element with the location representing the new group chat session in which the Originator is already a Participant. All Participants given in the body of the HTTP request are invited to the group chat session.

On behalf of the Terminating Participant in the original 1-1 session, the API server SHALL end the original 1-1 chat session once the Terminating Participant in the original 1-1 session has accepted or declined the invitation to the group chat, or once that invitation has timed out.

6.8.5.1 Example: Extending a 1-1 chat to a group chat session
(Informative)

6.8.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/{otherUserId}/sessionsInfo/extend HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.8.5.1.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001
Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001</resourceURL>

</common:resourceReference>

6.8.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9 Resource: All group chat sessions
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/group
This resource represents the active group chat sessions for a particular user.

6.9.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.9.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9.5 POST
This operation is used to create a new group chat session.
6.9.5.1 Example: Creating a new group chat session
(Informative)
6.9.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/chat/group HTTP/1.1

Content-Length: nnnn
Content-Type: application/xml

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>
 <isOriginator>true</isOriginator>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
</chat:groupChatSessionInformation>

6.9.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001</resourceURL>
</chat:groupChatSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.10 Resource: Individual group chat session
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/group/{sessionId}
This resource represents a group chat session.

For a limited time after a Participant has left a group chat session, the API server still exposes the resource URL of a chat session to the client that has left for the purpose of re-joining. The time how long this is exposed is controlled by operator policies. Also, the API server MAY choose based on policies to expose this resource also to other clients, allowing them to join the chat. In case the client is not a Participant of the chat session but the resource URL representing the session is exposed to him, the response to the GET method SHALL be “204 No Content”. Note that the reason for this is the fact that it is implementation-specific whether or not a disconnected Participant gets notifications about session progress from the underlying protocol layers.

6.10.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.10.3 GET
This operation is used to retrieve chat session information.

6.10.3.1 Example 1: Retrieving group chat session information
(Informative)
6.10.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.10.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>
<resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001
</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Invited</status>

<resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002
</resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>
<resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part003
</resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001</resourceURL>
</chat:groupChatSessionInformation>

6.10.3.2 Example 2: Retrieving group chat session information when being disconnected
(Informative)
This example illustrates the case that the client reads information about a group chat session on behalf of a user who is currently not participating in the session, but who is allowed to join.
6.10.3.2.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.10.3.2.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.10.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.10.6 DELETE

Ed. Note: It is FFS whether this feature can be realized using the underlying protocol layer. If it cannot, the DELETE method will be removed. It is also FFS whether this can only be done by the originator, or also by a tParticipant.
This operation ends the group chat session.

It is used to terminate the chat session.

6.10.6.1 Example: Terminating a group chat session
(Informative)
6.10.6.1.1 Request

	DELETE /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.10.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.11 Resource: All Participants in a group chat session
http://{serverRoot}/{apiVersion}/chat/{userId}/group/{sessionId}/participants
This resource represents the set of Participants in a group chat session.

For a limited time after a Participant has left a group chat session, the API server still exposes the resource URL of a chat session and the ‘participants’ node to the client that has left, for the purpose of re-joining. The time how long this is exposed is controlled by operator policies. During the time this resource is still available, the client can re-join by executing the POST method as described below. Also, the API server MAY choose based on policies to expose this resource also to other clients, allowing them to join the chat by executing the POST method. In case the client is not a Participant of the chat session but the resource URL representing the session is exposed to him, the response to the GET method SHALL be “204 No Content”. Note that the reason for this is the fact that it is implementation-specific whether or not a disconnected Participant gets notifications about session progress from the underlying protocol layers.
6.11.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.11.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.11.3 GET
This operation is used to retrieve the list of Participants in a group chat session.

6.11.3.1 Example 1: Retrieving the list of participants in a group chat session
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently participating in the session.
6.11.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part003

 </resourceURL>
 </participant>
 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

6.11.3.2 Example 2: Retrieving the list of participants in a group chat session when being disconnected
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently not participating in the session, but who is allowed to join.
6.11.3.2.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.2.2 Response

	HTTP/1.1 204 No Content
Date: Mon, 28 Jul 2011 17:51:59 GMT

6.11.3.3 Example 3: Retrieving the list of participants in a group chat session when not having access rights
(Informative)
This example illustrates the case that the client reads the list of Participants on behalf of a user who is currently not participating in the session, and who is not allowed to join. In fact, from the API server point of view, there is no difference between a client not being allowed to access, and the session not existing.
6.11.3.3.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.3.3.2 Response

	HTTP/1.1 403 Forbidden
Date: Mon, 28 Jul 2011 17:51:59 GMT
[TODO: add entity body / exception. Related to error framework discussions.]

6.11.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.11.5 POST
This operation is used to add Participants to a group chat:
· The Originator executes this method to add one or more Participants to a group chat.

· A Participant executes this method to join or re-join a group chat.

Note that for a Participant re-joining a chat session, the {participantId} resource URL variable is not guaranteed to have the same value as in the previous participation of the Participant in the session.

If the operation was successful, it returns an HTTP Status of “201 Created” in case there was just one tParticipantAddress instance passed, or “200 OK” if there were multiple instances passed. Further, in case there was just one tParticipantAddress instance passed, the response entity body contains either a “resourceReference” or a “participant” root element. In case there were multiple tParticipantAddress instances passed, the response entity body contains a “participantList” root element.

In other words, adding one participant corresponds to the creation of a new participant resource in the list of participants and is consistent with the resource creation design pattern used throughout the OMA RESTful Network APIs, whereas the addition of multiple participants corresponds to an update operation of the list of participants.
6.11.5.1 Example 1: Adding one participant to a group chat, or joining/re-joining a group chat
(Informative)
This example illustrates the following three cases for which the same request syntax is being used:

· one participant added to a group chat by the originator

· one participant joining a chat for which she/he has permissions

· one participant re-joining a chat which she/he has left earlier

6.11.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <clientCorrelator>12345</clientCorrelator>

</chat:participantInformation>

6.11.5.1.2
	

6.11.5.1.3 Response

	

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
</chat:participantInformation>

6.11.5.2 Example 2: Adding multiple participants to a group chat
(Informative)
6.11.5.2.1 Request
	POST /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>
<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550103</address>

 <name>John</name>
 <clientCorrelator>12345</clientCorrelator>

 </participant>

 <participant>

 <address>tel:+19585550104</address>

 <name>Peter</name>
 <clientCorrelator>67890</clientCorrelator>

 </participant>
 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

6.11.5.2.2
	

6.11.5.2.3 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants
Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part003

 </resourceURL>
 </participant>
 <participant>

 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part004

 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550104</address>

 <name>Peter</name>
<status>Invited</status>

 <clientCorrelator>67890</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part005

 </resourceURL>
 </participant>
 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

6.11.5.3 Example 3: Error situation when trying to (re)join a group chat session
(Informative)
This example illustrates the case that the client is not allowed anymore to (re)join a group chat session, or tries to join a group chat session for which he has no permission, or which does not exist. Either error code 404 (for non-existing sessions) or 403 (for sessions to which the client has no access) are returned.
6.11.5.3.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants HTTP/1.1

Accept: application/xml

Host: example.com

6.11.5.3.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Mon, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

[TODO: add entity body / exception. Related to error framework discussions.]

6.11.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.12 Resource: Individual participant in a group chat session
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/group/{sessionId}/participants/{participantId}
This resource represents a Participant in a group chat session.

6.12.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

	participantId
	identifier of the Participant. Note that this Id is assigned by the server upon resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.12.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.12.3 GET
This operation is used to retrieve information about an individual group chat Participant .

6.12.3.1 Example: Retrieving information about an individual group chat participant
(Informative)
6.12.3.1.1 Request

	GET /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part004 HTTP/1.1

Accept: application/xml

Host: example.com

6.12.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
</chat:participantInformation>

6.12.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.12.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.12.6 DELETE

This operation ends the participation of a Participant in the group chat session, i.e. disconnects the Participant from the session.
It is used in the following contexts:

· by the Originator to remove a Participant from the chat session

· by the Terminating Participant to decline an invitation to a chat session

· by any Participant to leave the chat session.

Note that a Participant who has left the session can rejoin (if allowed by policies) using the mechanism defined in section 6.8.5.

As a result of performing the DELETE operation, the server SHALL remove the {participantId} node of the removed Participant from the resource tree, but SHALL keep the {sessionId} node and its {participants} sub-node available for a certain period of time that is controlled by policies. As it is not guaranteed that the server will receive information regarding the further session progress after leaving the session, GET access to these resources on behalf of a disconnected Participant SHALL return ‘204 No Content’.

Ed. note: it is FFS whether and how the Originator can remove a Participant from the session. If this is not possible, this feature may become optional (i.e. to be implemented by each vendor using proprietary means), or will be removed.
6.12.6.1 Example: Leaving a group chat session
(Informative)
6.12.6.1.1 Request

	DELETE /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001 HTTP/1.1

Accept: application/xml

Host: example.com

6.12.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.13 Resource: Individual group chat session participant status
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/group/{sessionId}/participants/{participantId}/status
This resource represents the status of a participant in a group chat session and is used for accepting a group chat invitation, by means of updating the status.

6.13.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

	participantId
	identifier of the Participant. Note that this Id is assigned by the server upon resource creation.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.13.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.13.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.13.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.13.5 POST
This operation is used is used for accepting a group chat invitation, by means of updating the status. As this is a POST request that leads to an update rather than to a child resource creation, the response code on success is 200 OK.
6.13.5.1 Example 1: Accepting a group chat invitation
(Informative)
6.13.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001/status HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Connected</status>

</chat:participantSessionStatus>

6.13.5.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<status>Connected</status>

</chat:participantSessionStatus>

6.13.5.2
6.13.5.2.1
	

6.13.5.2.2
	

Note that the pendant operation, i.e. declining a group chat invitation, is the same as leaving a group chat session. For an example see section 6.9.6.1
6.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.14 Resource: Group chat messages
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/group/{sessionId}/messages
This resource represents the set of messages in a group chat session.
In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.
6.14.1 Request URL variables

See section 1.1
.
6.14.2 Response Codes and Error Handling
See section 1.1.
6.14.3 GET
See section 1.1
6.14.4
, with the change that the resourceURL structure defined in section 6.11 applies.

6.14.5
6.14.6 PUT

See section 1.1, with the change that the resourceURL structure defined in section 6.11 applies.
6.14.7 POST
See section 1.1, with the change that the resourceURL structure defined in section 6.11 applies.
6.14.8 DELETE

See section 1.1, with the change that the resourceURL structure defined in section 6.11 applies.
6.15 Resource: Individual group chat message
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/group/{sessionId}/messages/{messageId}
This resource represents an individual message in a group chat session.

In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.

6.15.1 Request URL variables

See section 6.4.1.

6.15.2 Response Codes and Error Handling
See section 6.4.2.
6.15.3 GET
See section 6.4.3, with the change that the resourceURL structure defined in section 6.12 applies.

6.15.4 PUT

See section 6.4.4, with the change that the resourceURL structure defined in section 6.12 applies.

6.15.5 POST
See section 6.4.5, with the change that the resourceURL structure defined in section 6.12 applies.

6.15.6 DELETE

See section 6.4.6, with the change that the resourceURL structure defined in section 6.12 applies.

6.16 Individual group chat message delivery status
The resource used is:

http://{serverRoot}/{apiVersion}/chat/{userId}/group/{sessionId}/messages/{messageId}/status
This resource represents the delivery status of a group chat message.

In the current version of the specification, there is no difference between the chat messages resource tree in 1-1 and group chat scenarios, apart from the structure of the resource URL.
6.16.1 Request URL variables

See section 6.5.1.

6.16.2 Response Codes and Error Handling
See section 6.5.2.

6.16.3 GET
See section 6.5.3, with the change that the resourceURL structure defined in section 6.13 applies.

6.16.4 PUT

See section 6.5.4, with the change that the resourceURL structure defined in section 6.13 applies.

6.16.5 POST
See section 6.5.5, with the change that the resourceURL structure defined in section 6.13 applies.

6.16.6 DELETE

See section 6.5.6, with the change that the resourceURL structure defined in section 6.13 applies.

6.17 Resource: Client notification about 1-1 chat session invitations
This resource is a callback URL provided by the client for notification about chat session invitations. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.18.5.
6.17.1 Request URL variables

Client provided if any.
6.17.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.17.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.17.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.17.5 POST
This operation is used to notify the client about chat session invitations.
6.17.5.1 Example: Notify a client about 1-1 chat session invitations
(Informative)
6.17.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com:80

<?xml version="1.0" encoding="UTF-8"?>

[XML request (if applicable, starting with <?xml]

6.17.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.17.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.18 Resource: Client notification about group chat session invitations
This resource is a callback URL provided by the client for notification about chat session invitations. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.14.5.
6.18.1 Request URL variables

Client provided if any.
6.18.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.18.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18.5 POST
This operation is used to notify the client about chat session invitations.
6.18.5.1 Example: Notify a client about group chat session invitations
(Informative)
This example notification is triggered by the request in example 6.6.5.1. Note that the {userId} resourceURL variable represents the userId of the user on whose behalf the application acts, not the one of the originator.
6.18.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupSessionInvitationNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href=" http://example.com/exampleAPI/1/chat/tel%3A%2B19585550102/group/sess001"/>
<link rel=" ParticipantInformation"
 href=" http://example.com/exampleAPI/1/chat/tel%3A%2B19585550102/group/sess001/participants/part003"/>
<subject>Hello</subject>

<participant>

<address>tel:+19585550100</address>

<name>Alice</name>

<isOriginator>true</isOriginator>

<status>Connected</status>

<resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>

</participant>

<participant>

<address>tel:+19585550101</address>

<name>Bob</name>

<status>Invited</status>

<resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>

</participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>

 </participant>
</chat:groupSessionInvitationNotification>

6.18.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.18.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.19 Resource: Client notification about chat session events
This resource is a callback URL provided by the client for notification about various chat session events. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.15.5.
6.19.1 Request URL variables

Client provided if any.
6.19.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.19.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.19.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.19.5 POST
This operation is used to notify the client about chat session invitations.
6.19.5.1 Example: Notify a client about chat session events
(Informative)
6.19.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatEventNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001"/>

<link rel="ChatNotificationSubscription"
 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001"/>
<eventType>SessionEnded</eventType>

<eventDescription>The session has ended.</eventDescription>

</chat:chatEventNotification>

6.19.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.19.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.20 Resource: Client notification about changes of participant status
This resource is a callback URL provided by the client for notification about changes of participant status. The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.17.5.

This resource is not relevant in 1-1 chats.
6.20.1 Request URL variables

Client provided if any.
6.20.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.20.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.20.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.20.5 POST
This operation is used to notify the client about changes of participant status.
6.20.5.1 Example: Notify a client about participant status changes
(Informative)
6.20.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantStatusNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="GroupChatSessionInformation"
 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001"/>
<link rel="ChatNotificationSubscription"
 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001"/>
<participant>

<address>tel:+19585550100</address>

<name>Alice</name>

<status>Connected</status>

<yourown>true</yourown>

 <link rel="ParticipantInformation"

 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001"/>
</participant>
<participant>

<address>tel:+19585550101</address>

<name>Bob</name>

<status>Disconnected</status>

<yourown>false</yourown>

 <link rel="ParticipantInformation"

 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002"/>
</participant>

</chat:participantStatusNotification>

6.20.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.20.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.21 Resource: Client notification containing incoming messages
Instruction for editor: When incorporating this CR, move this section and the following one after the sending of a Chat message. This will ensure the most important resources for the developer to be at the beginning. Remove this note after doing the edit.

This resource is a callback URL provided by the client for notifications about incoming messages. The actual messages are inlined in the notifications.

The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.17.5.

6.21.1 Request URL variables

Client provided if any.
6.21.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.21.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.21.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.21.5 POST
This operation is used to notify the client about incoming messages, and to deliver these messages to the client.
6.21.5.1 Example: Notify a client about incoming messages
(Informative)
6.21.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="ChatMessage"
 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/messages/msg001"/>

<senderAddress>tel:+19585550102</senderAddress>

<senderName>Ted</senderName>

<chatMessage>

<text>Hello Alice</text>

<reportRequest>Displayed</reportRequest>

<resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/messages/msg001
</resourceURL>

</chatMessage>

<dateTime>2001-12-17T09:30:47Z</dateTime>

</chat:messageNotification>

6.21.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.21.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.22 Resource: Client notification about message delivery status
This resource is a callback URL provided by the client for notifications about message status such as “Delivered”, “Failed”, “Displayed”.
The RESTful Chat API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.17.5.

6.22.1 Request URL variables

Client provided if any.
6.22.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Chat, see [tbd].
6.22.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.22.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.22.5 POST
This operation is used to notify the client about incoming messages, and to deliver these messages to the client.
6.22.5.1 Example: Notify a client about message delivery status
(Informative)
6.22.5.1.1 Request

	POST /chat/notifications/77777
 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageDeliveryStatusNotification xmlns:chat="urn:oma:xml:rest:netapi:chat:1">

<callbackData>abcd</callbackData>

<link rel="ChatMessage"
 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/messages/msg001"/>
<link rel="ParticipantInformation"
 href="http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002"/>

<status>Displayed</status>

</chat:messageDeliveryStatusNotification>

6.22.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.22.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
7. Fault definitions

7.1 Service Exceptions

7.1.1 SVC0yyy: Session-based 1-1 chats not supported
	Name

	Description

	MessageID
	SVC0yyy

	Text
	Session-based 1-1 chats are not supported.

	Variables
	none

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _Chat-V1_0
	28 Apr 2011
	All
	TS skeleton created

	
	31 May 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0020R05-CR_Chat_API_basic_design implemented.

	
	07 Jul 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0124R03-CR_Chat_API_resource_and_datatype_alignment_with_new_resource_model implemented.

	
	27 Jul 2011
	2.1

5.1

5.2.2.x

5.2.3.x

	Implemented CRs

· OMA-ARC-REST-NetAPI-2011-0156-CR_Chat_alignment_with_FT_IS_VS

· OMA-ARC-REST-NetAPI-2011-0157R01-CR_Chat_small_fix

	
	02 Aug 2011
	Many
	OMA-ARC-REST-NetAPI-2011-0173R01-CR_Chat_section_6_structure_with_tel_URI_fixes_and_Notif_channel_changes implemented

	
	08 Sep 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0197R01-CR_Chat_Appendix_C

· OMA-ARC-REST-NetAPI-2011-0093R03-CR_Chat_Flows
· OMA-ARC-REST-NetAPI-2011-0220-CR_Separating_originator_and_tParticipant_1_1_chat^

· OMA-ARC-REST-NetAPI-2011-0227R02-CR_Chat_Long_Polling_fix

	
	26 Sep 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0238R02-CR_ACR_Chat

· OMA-ARC-REST-NetAPI-2011-0250-CR_ChatEventNotification_fix

	
	17 Oct 2011
	5.2.3.3, 5.2.2.11, 5.2.2.12
	CR implemented: OMA-ARC-REST-NetAPI-2011-0275R01-CR_Chat_status_enum_fix

	
	18 Oct 2011
	Many
	CR implemented:

· OMA-ARC-REST-NetAPI-2011-0284-CR_Simplifying_1_1_chat_sessions

Note that this CR implements a fundamental change in the approach to 1-1 chats. Rather than exposing session management for 1-1 sessions, a 1-1 session is now modelled as a “conversation” which has no start or end, but exists in the API as a possibility. This greatly simplifies the API, and makes it closer to today’s chat APIs in the Internet.

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.Chat Server

	Item
	Function
	Reference
	Requirement

	REST-Chat-SUPPORT-S-001-M
	Support for the RESTful Chat API
	[section(s)]
	

	REST- Chat-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-Chat-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST-Chat-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.Chat.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This section defines a format for the RESTful Chat API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for all Chat REST operations which are based on POST requests, except Notifications.
C.1 Creating a new subscription to chat notifications
This operation is used to create a new subscription to chat notifications. See section 6.1.5.

The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	notifyURL
	xsd:anyURI
	No
	Notification endpoint definition.

	callbackData
	xsd:string
	Yes
	Data the application can register with the server when subscribing to notifications, and that are passed back unchanged in each of the related notifications.

	notificationFormat
	common:NotificationFormat
	Yes
	Default: XML

Application can specify format of the resource representation in notifications that are related to this subscription. The choice is between {XML, JSON}

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.1.1 Example

(Informative)

C.1.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

notifyURL=http%3A%2F%2Fapplication.example.com%2Fchat%2Fnotifications%2F77777&

callbackData=abcd&

notificationFormat=XML&

clientCorrelator=12345

C.1.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatNotificationSubscription xmlns:chat="urn:oma:xml:rest:netapi:chat:1">
 <callbackReference>

 <notifyURL>http://application.example.com/chat/notifications/77777</notifyURL>

 </callbackReference>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http:// exampleAPI/1/chat/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</chat:chatNotificationSubscription>

C.2 Accepting/Declining a chat session invitation
This operation is used to accept/decline a one-to-one chat session invitation, see section 6.5.5, or a group chat session invitation, see section 6.5.5.1.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	status
	xsd:string
	No
	Status of the participant.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”.

To indicate that the user declines the session invitation, this element MUST be set to “Disconnected”.

If the operation was successful, it returns an HTTP Status of “200 OK”.

Note that the resource URL differs, depending on whether the operation is performed on a 1-1 chat session, or a group chat session. The example below illustrates accepting a 1-1 chat session invitation.
C.2.1 Example

(Informative)

C.2.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/sessionInfo/status
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

status=Connected

C.2.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantSessionStatus xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <status>Connected</status>

</chat:participantSessionStatus>

C.3 Extending a 1-1 chat to a group chat session
This operation is used to extend a one-to-one chat session to a group chat session. See section 6.6.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the originator

	originatorName
	xsd:string
	Yes
	Human readable name of the originator

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user)

If the operation was successful, it returns an HTTP Status of “303 See Other”.

It is FFS whether the originator and existing terminating participant needs to be supplied here, or only the additional tParticipants.

C.3.1 Example

(Informative)

C.3.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550100/sessionInfo/extend
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

originatorAddress= tel%3A%2B19585550100&

originatorName=Alice&

tParticipantAddress= tel%3A%2B19585550101&

tParticipantName=Bob&

tParticipantAddress= tel%3A%2B19585550102&

tParticipantName=Ted

C.3.1.2 Response

	HTTP/1.1 303 See Other

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001

Content-Length: nnnn

Date: Mon, 28 Jun 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/groupSessions/sess001</resourceURL>

</common:resourceReference>

C.4 Creating a chat message
This operation is used to create a chat message in a 1-1 chat, see section 6.3.5, or in a group chat session, see section 6.11.5.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	text
	xsd:string
	No
	Text content of a chat message.

	reportRequest
	MessageStatus[0..unbounded]
	Yes
	Request message delivery status reports (i.e. the receiver of the message should report message delivery / disposition status)

Note that the underlying system might not support reporting

If the operation was successful, it returns an HTTP Status of “201 Created”, and MUST return either a common:resourceReference root element or a chat:chatMessage root element, where using the first option is RECOMMENDED.
C.4.1 Example 1: using tel URI and returning the location of the created resource

(Informative)
Note that the example assumes a 1-1 chat. Posting a chat message to a group chat session looks the same, apart from using a different resource URL.

Further note that alternatively, a copy of the created resource can be returned.
C.4.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

text=How%20are%20you%3F&

reportRequest=Displayed

C.4.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common ="urn:oma:xml:rest:netapi:common:1">
 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/oneToOne/tel%3A%2B19585550101/messages/msg001
 </resourceURL>
</common:resourceReference>

C.4.2 Example 2: using ACR and returning a copy of the created resource

(Informative)

C.4.2.1
	

C.4.2.2
	

C.4.3
Note that the example assumes a 1-1 chat. Posting a chat message to a group chat session looks the same, apart from using a different resource URL.
C.4.3.1 Request

	POST /exampleAPI/1/chat/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

text=How%20are%20you%3F&

reportRequest=Displayed

C.4.3.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:chatMessage xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <text>How are you?</text>

 <reportRequest>Displayed</reportRequest>
 <resourceURL>

 http://example.com/exampleAPI/1/chat/acr%3Apseudonym123/oneToOne/acr%3Apseudonym456/messages/msg001
 </resourceURL>
</chat:chatMessage >

C.5 Creating a new group chat session
This operation is used to create a new group chat session. See section 6.6.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	subject
	xsd:string
	No
	Initial message to the invited participants

	originatorAddress
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator

	originatorName
	xsd:string
	Yes
	Human readable name of the originator

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user)

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.5.1 Example

(Informative)

C.5.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/group/
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

subject=Hello%20friends&

originatorAddress=tel%3A%2B19585550100&

originatorName=Alice&

tParticipantAddress=tel%3A%2B19585550101&

tParticipantName=Bob&

tParticipantAddress=tel%3A%2B19585550102&

tParticipantName=Ted&

clientCorrelator=12345

C.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:groupChatSessionInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <subject>Hello friends</subject>

 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Invited</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>
 </participant>
 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001</resourceURL>
</chat:groupChatSessionInformation >

C.6 Adding participant(s) to a group chat session, or (re)joining a group chat session
This operation is used to add one or more participants to a group chat session. See section 6.8.5.

It is also used to join or to re-join a group chat session, in which case the number of additional participants is limited to one.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	tParticipantAddress
	xsd:anyURI [1..unbounded]
	No
	The address (e.g. SIP URI) of the terminating participant (i.e. invited user)

	tParticipantName
	xsd:string [0..unbounded]
	Yes
	Human readable name of the terminating participant (i.e. invited user). Number of entries MUST either be zero, or equal to the number of entries in tParticipantAddress.

	clientCorrelator
	xsd:string[0..unbounded]
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created” in case there was just one tParticipantAddress instance passed, or “200 OK” if there were multiple instances passed. Further, in case there was just one tParticipantAddress instance passed, the response entity body contains either a “resourceReference” or a “participant” root element. In case there were multiple tParticipantAddress instances passed, the response entity body contains a “participantList” root element.
In other words, adding one participant corresponds to the creation of a new participant resource in the list of participants and is consistent with the resource creation design pattern used throughout the OMA RESTful Network APIs, whereas the addition of multiple participants corresponds to an update operation of the list of participants.
C.6.1 Example 1: Adding one participant to a group chat, or joining/re-joining a group chat

(Informative)

C.6.1.1 Request
	POST /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

tParticipantAddress=tel%3A%2B19585550103&

tParticipantName=John&

clientCorrelator=12345

C.6.1.2 Response

	 HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part004
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantInformation xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
</chat:participantInformation>

C.6.2 Example 2: Adding multiple participants to a group chat

(Informative)

C.6.2.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

tParticipantAddress= tel%3A%2B19585550103&

tParticipantAddress= tel%3A%2B19585550104&

tParticipantName=John&

tParticipantName=Peter&

clientCorrelator=12345&

clientCorrelator=67890&

C.6.2.2 Response

	 HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:participantList xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <participant>

 <address>tel:+19585550100</address>

 <name>Alice</name>

 <isOriginator>true</isOriginator>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part001
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550101</address>

 <name>Bob</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part002
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550102</address>

 <name>Ted</name>
 <status>Connected</status>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part003
 </resourceURL>
 </participant>
 <participant>

 <address>tel:+19585550103</address>

 <name>John</name>
 <status>Invited</status>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part004
 </resourceURL>
 </participant>

 <participant>

 <address>tel:+19585550104</address>

 <name>Peter</name>
<status>Invited</status>

 <clientCorrelator>67890</clientCorrelator>

 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants/part005
 </resourceURL>
 </participant>
 <resourceURL>
 http://example.com/exampleAPI/1/chat/tel%3A%2B19585550100/group/sess001/participants
 </resourceURL>
</chat:participantList>

C.7 Reporting message status
This operation is used to report message status in a 1-1 chat. See section 6.5.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	status
	MessageStatus
	No
	Indicates the delivery status of the message.

	userId
	xsd:anyURI
	No
	Indicates the participantId of the user that sucessfully received the message

If the operation was successful, it returns an HTTP Status of “200 OK”.

C.7.1 Example

(Informative)

C.7.1.1 Request

	POST /exampleAPI/1/chat/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/messages/msg001/status
Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

status=Displayed&

userId=tel%3A%2B19585550101

C.7.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Location: http://example.com/exampleAPI/1/chat/tel%3A%2B19585550101/oneToOne/tel%3A%2B19585550100/messages/msg001/status
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<chat:messageDeliveryStatus xmlns:chat ="urn:oma:xml:rest:netapi:chat:1">
 <status>Displayed</status>

 <userId>tel:+19585550101</userId>

</chat:messageDeliveryStatus>

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)

As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources for Chat
(Informative)

The following table lists all Chat data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

�Editor to fix this one and the subsequent references marked in red.

�To be set in subscription example

�To be set in subscription example

�To be set in subscription example

�To be set in subscription example

�To be set in subscription example

�FFS - See Ed Note under Table 1

�FFS - See Ed Note under Table 1

�To be set in subscription example

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

