Doc# OMA-ARC-REST-NetAPI-2011-0344R02-CR_FileTransfer_Sequence_Diagrams_update[image: image18.jpg]
Change Request

Doc# OMA-ARC-REST-NetAPI-2011-0344R02-CR_FileTransfer_Sequence_Diagrams_update
Change Request

 Change Request

	Title:
	FileTransfer_Sequence_Diagrams_update
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_FileTransfer-V1_0-20111031-D

	Submission Date:
	 Nov 2011

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	WeiXiang Shao, ZTE Corporation, shao.weixiang@zte.com.cn

	Replaces:
	n/a

1 Reason for Change

1. Action REST-NetAPI-2011-A185 to remove Notification Server from the flows
2. Combine the sequence diagrams to several end to end flows.
R01
Update according to discussion
R02

Put the optional step 5 in 5.3.2 to be in a separate diagram
Editorial change
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommendation is to agree with the proposed changes.
6 Detailed Change Proposal
Change 1: Add section 5.3

5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
5.3.1 Subscribe and unsubscribe to filetransfer notifications
The figure below shows a scenario for an application subscribing to filetransfer notifications.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.

The resources:

· To subscribe to filetransfer notifications, create a new resource under http://{serverRoot}/{apiVersion}/filetransfer/{userId}/subscriptions
· To cancel subscription to filetransfer notifications, delete the resource under http://{serverRoot}/{apiVersion}/filetransfer/{userId}/subscriptions/{subscriptionId}

[image: image2.emf]ApplicationServer

1. POST FileTransferSubscription

Response

Delete the

subscription

Create a new

subscription

with resourceURL containing subscriptionId

with callback URL

2. DELETE FileTransferSubscription

Response

Figure 1 Subscribe to and unsubscribe from filetransfer notifications
Outline of the flows:

1. An application subscribes to filetransfer notifications using POST containing a FiletransferSubscription structure to the resource all subscriptions and receives the result resource URL containing the subscriptionId
2. The application stops receiving notifications using DELETE with a resource URL containing the subscriptionId
5.3.2 File Transfer with successful result

The figure below shows a scenario for a file transfer session with successful result, the initial API call can either include the actual file content or just external file repository URL, the application can also send actual file content by the send file API operation(refer to 5.3.4).The file transfer APIs support to transfer multi-files in one session.
The resources:

· To start a file transfer session, create a new resource with the FileTransferSessionInformation structure under http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions
· To accept a file transfer session invitation update the receiver session status resource http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}/status
·
· To end a file transfer session delete the resource
http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}
· To notify the applications about the incoming file transfer session invitation, POST a SessionInvitationNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the receiver acceptance, POST a ReceiverAcceptanceNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the file URL link to actual file content for subsequent retrieval, POST a FileNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the status of the session and the status of the file transfer , POST an FileTransferEventNotification to the applications supplied Notification URL during notification subscription.

[image: image5.emf]Application

(Originator)

Server

(Receiver)

 Server

(Originator)

1. POST

FileTransferSessionInformation

Response created session

4. POST

ReceiverAcceptanceNotification

Receiver accepted

Start a new file

transfer session

with sessionId &

FileTransferSessionInformation

Application

(Receiver)

2. POST

SessionInvitationNotification

3. POST ReceiverSessionStatus

status=connected

File transfer session

invitation accepted

status=connected

with fileURL or file content in

the request body

file transfer started

5. POST

FileNotification

with fileURL

file transfer finished

6.POST

FileTransferEventNotification

eventType=Successful

7. POST

FileTransferEventNotification

eventType=Successful

File transfer session

invitation notification

received

with sessionId

8. DELETE

FileTransferSessionInformation

eventType-SessionEnded

9. POST

FileTransferEventNotification

Response

File transfer successfully

completed

File transfer successfully

completed

Response

Response

Response

Response

ResponseResponse

Response

End the file transfer

session

File transfer session

termination notification

received

fileURL received and

the file can be

downloaded

with sessionId

Create a new 1-1 file

transfer session

Terminate file transfer

session

Figure 2 File Transfer session with successful result

Outline of the flows:

1. An application of the Originator starts a file transfer session using the POST method to submit the FileTransferSessionInformation structure to the resource containing all file transfer sessions. Thereby the creation of a new file transfer session resource is triggered and the application of the Originator receives the resulting resource URL containing the sessionId. The request can include actual file content within MIME multipart entity bodies or the external repository file URL. And the application of the Originator can also use send file operation (refer to 5.3.4) to transfer file content.
2.
3. An application of the Receiver receives a file transfer session invitation notification.
4. The application of the Receiver accepts the file transfer session invitation using the POST method to submit the ReceiverSessionStatus structure to the resource containing the session status and accepted files. The status MUST be set to “Connected”.
5. The application of the Originator receives a notification with ReceiverAcceptanceNotification structure indicating the Receiver has accepted the invitation. The application of the Originator starts to transfer the file.
6.

7. After the file is ready for retrieval, the server of the Receiver notifies the application of the Receiver using FileNotification containing the fileURL which link to actual file content. The application of the Receiver can start downloading the file using the file URL received.
Note: Depending on the implementations, the notification of the URL can be sent after the first chunk of data is received or when the complete file has been received (i.e. after step 7).
Note: How the application retrieves the file using the URL is out of scope.

8. After the file transfer is completed, the server of the Originator notifies the application of the Originator about the successful of the file transfer using POST FileTransferEventNotification containing the eventType which is set to “Successful”.
9. The server of the Receiver notifies the application of the Receiver about the successful of the file transfer using POST FileTransferEventNotification containging the eventType which is set to “Successful” .
10. The application of the Originator ends the file transfer session using DELETE method on the resource URL of the session with sessionId
Note: Both the application (originator client) and application (receiver client) can initiate ending the file transfer session.

11. The application of the Receiver receives a FileTransfertNotification structure indicating the session has been ended.
Note: In case of the application (receiver client) ends the file transfer session, the application (originator client) receives a FileTransferEventNotification structure indicating the session has been ended.

5.3.3

·

12.
13.
5.3.4

·

1.
2.
5.3.5 File transfer session failure

There are different causes which may lead to file transfer session failed, following are some options (not exclusive list):

a. The application of the Originator cancels the file transfer session.
b. The application of the Receiver reject or decline the file transfer session invitation

c. The file transfer failed due to the underlining network problem

d. The application of the Originator aborts the file transfer,

5.3.6 Canceling a filetransfer invitation

The figure below shows a scenario for an application(originator client) to cancel a filetransfer session invitation.

The resources:

· To cancel a 1-1 filetransfer session invitation, delete the session resource http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}

[image: image9.emf]Application

(Originator)

Server

(Receiver)

 Server

(Originator)

Application

(Receiver)

1. DELETE

FileTransferSessionInformation

Response

with sessionId

Cancel the file

transfer session

eventType-SessionCancelled

2. POST

FileTransferEventNotification

Response

File transfer session

cancelled notification

received

Terminate the file

transfer session

Figure 3 Cancelling a filetransfer invitation
Outline of the flows:
An application of the Originator has created a file transfer session resource triggering a file transfer invitation sent to the application of the Receiver (Refer to step 1 and step 2 in 5.3.2). Subsequently:

1. The application of the Originator can cancel a file transfer session invitation using the DELETE method on the resource URL of the session with sessionId and receives a response whether the request was successfully initiated.
2. A FileTransferEventNotification is sent to the application of the Receiver when the file transfer session has been cancelled, then the session is torn down.
Note that cancelling a session only works before the receiver has accepted the filetransfer invitation.

5.3.7

a.
b.
c.

5.3.7.1

·

1.
2.
3.
5.3.7.2 Declining a 1-1 filetransfer sesssion invitation

The figure below shows a scenario for an application to decline a 1-1 filetransfer session invitation.

The resources:

· To decline a 1-1 filetransfer session invitation, delete the session resource http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}

[image: image12.emf]Application

(Originator)

Server

(Receiver)

 Server

(Originator)

Application

(Receiver)

Response

File transfer session

declined notification

received

Response

1. DELETE

FileTransferSessionInformation

with sessionId

Decline the

session invitation

2.POST

FileTransferEventNotification

eventType=Declined

Figure 4 Declining a 1-1 filetransfer session invitation
Outline of the flows:
An application of the Originator has created a file transfer session resource triggering a file transfer invitation sent to the application of the Receiver (Refer to step 1 and step 2 in 5.3.2). Subsequently:
1. The application of the Receiver declines the file transfer session invitation using the DELETE method on the session resource including the sessionId.
2. The application of the Originator receives a FileTransferEventNotification structure indicating the Receiver has declined the invitation, then the session is torn down.
5.3.7.3 File transfer failed

The figure below shows a scenario for file transfer failed.

The resources:

· To notify the applications about file transfer failure, POST a FileTransferEventNotification to the applications supplied Notification URL during notification subscription.

[image: image13.emf]Application

(Originator)

Server

(Receiver)

 Server

(Originator)

Application

(Receiver)

Response

1.POST

FileTransferEventNotification

eventType=Failed

eventType=Failed

2. POST

FileTransferEventNotification

Response

File transfer failed

notification received

File transfer error occurs

File transfer failed

notification received

Figure 5 File transfer failed
Outline of the flows:
After an application of the Originator creates a file transfer session resource and the application of the Receiver accepts the file transfer session invitation (Refer to step 1 to step 4 in 5.3.2), the file transfer is started, subsequently:
1. When error occurs during file transfer, the server of the Originator notifies the application of the Originator using POST FileTransferEventNotification containing the eventType which is set to “Failed”.
2. The server of the Receiver also notifies the application of the Receiver using POST POST FileTransferEventNotification containing the eventType which is set to “Failed”
Note: When error occurs during the file transfer, the application (receiver client) may already received the file URL and started to fetch the file, the server of the Receiver should cancel any HTTP request downloading the file using the file URL and disable the file URL. How the server implements this is out of scope.

5.3.7.4 File transfer aborted

The figure below shows a scenario for file transfer aborted.

The resources:

· To notify the application about file transfer abortion , POST a FileTransferEventNotification to the applications supplied Notification URL during notification subscription.

[image: image14.emf]Application

(Originator)

Server

(Receiver)

 Server

(Originator)

Application

(Receiver)

eventType=Aborted

2. POST

FileTransferEventNotification

Response

File transfer session

aborted notification

received

with sessionId

1. DELETE

FileTransferSessionInformation

Response

Abort the file transfer

session

Figure 6 file transfer aborted
Outline of the flows:
After an application of the Originator creates a file transfer session resource and the application of the Receiver accepts the file transfer session invitation (Refer to step 1 to step 4 in 5.3.2), the file transfer is started, subsequently:
1. The application of the Originator can abort the file transfer using DELETE method on the resource URL of the session with sessionId.
2. The application of the Receiver receives a FileTransferEventNotification structure indicating the file transfer has been aborted and the session is torn down.
Note that aborting the file transfer only works before the file has been completely transferred. After that, the DELETE method leads to a normal ending of the session.
Note: When the file transfer has been aborted, the application (receiver client) may already received the file URL and started to fetch the file, the server of the Receiver should cancel any HTTP request downloading the file using the file URL and disable the file URL. How the server implements this is out of scope.

5.3.8 Send file
The figure below shows a scenario for an application to send file content.

The resources:

· To send file content, create a new resource at http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}/files

1.
2.

[image: image16.emf]Application

(Originator)

Server

(Receiver)

 Server

(Originator)

Application

(Receiver)

with MIME content

1. POST

FileInformation

Response

Send file

Create new file

content

 Following refer to 5.3.2 step 5~9

file transfer started

Figure 7 file transfer aborted
Outline of the flows:
After an application (originator client) creates a file transfer session resource and the application (receiver client) accepts the file transfer session invitation (Refer to step 1 to step 4 in 5.3.2), application (originator client) sends the file actual content:
1. The application (originator client) sends file content using POST containing a FileInformation structure and include actual file content within MIME multipart entity bodies to the resource representing all files in the session.
Then the server of the Originator starts file transfer to the server of the Receiver. Following refer to 5.3.2 step 5~9.
Note: This operation is OPTIONAL.
5.3.9

·
·

1.
2.
POST FileTransferSubscription Incl. callbackURL

Response created resource with subscriptionId

FileTransfer Server

Notification Server

Create resource

Create a new subscription

Application

DELETE FileTransferSubscription

Create resource

Delete the subscription

Response

POST FiletransferSessionInformation

Response created file transfer session

FileTransfer Server

Notification Server

Create resource

Create a new 1-1 file transfer session

Application (originator)

with sessionId & FileTransferSessionInformation

Create resource

Receiver accepted or declined

ReceiverAcceptanceNotification (Accepted)

or FileTransferEventNotification (Declined)

DELETE Filetransfer Session resource with sessionId

Response

FileTransfer Server

Notification Server

Create resource

Terminate file transfer session

Application

FileTransferEventNotification

SessionEnded

DELETE Filetransfer Session resource with sessionId

Response

FileTransfer Server

Notification Server

Create resource

Terminate file transfer session

FileTransferEventNotification

SessionCancelled

Application (originator)

Create resource

originator cancels filetransfer invitation

Filetransfer Session initiated

POST ReceiverSessionStatus

Response

FileTransfer Server

Notification Server

Create resource

Session status is changed to connected

ReceiverAcceptanceNotification

receiverSessionStatus

Application

Create resource

Receiver accept invitation

SessionInvitationNotification

status=connected & fileAcceptance

Create resource

Originator receive ReceiverAcceptanceNotification

DELETE Filetransfer Session resource with sessionId

Response

FileTransfer Server

Notification Server

Create resource

Session is deleted

FileTransferEventNotification

Declined

Application

Create resource

Receiver decline invitation

SessionInvitationNotification

Create resource

originator receive the declined event

POST FileInformation with MIME content & reportRequest

Response with fileId

FileTransfer Server

Notification Server

Create resource

Create new file content

FileDeliveryStatusNotification

Application (originator)

Create resource

originator receive the file delivery status

FileContentNotification

FileTransfer Server

Notification Server

Create resource

Create a file delivery status report

Response

Application (receiver)

POST FileDeliveryStatus

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 18 (of 19)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

_1382366453.vsd

_1382367196.vsd

_1382427098.vsd

_1382427844.vsd

_1382367048.vsd

_1381749157.vsd

_1381750866.vsd

_1381679811.vsd

_1381683395.vsd

