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1 Reason for Change

1. Action REST-NetAPI-2011-A185 to remove Notification Server from the flows 
2. Combine the sequence diagrams to several end to end flows.
R01
Update according to discussion
R02

Put the optional step 5 in 5.3.2 to be in a separate diagram
Editorial change
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommendation is to agree with the proposed changes.
6 Detailed Change Proposal
Change 1:  Add section 5.3

5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
5.3.1 Subscribe and unsubscribe to filetransfer notifications
The figure below shows a scenario for an application subscribing to filetransfer notifications.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling. 

The resources: 

· To subscribe to filetransfer notifications, create a new  resource under http://{serverRoot}/{apiVersion}/filetransfer/{userId}/subscriptions
· To cancel subscription to filetransfer notifications, delete the resource under http://{serverRoot}/{apiVersion}/filetransfer/{userId}/subscriptions/{subscriptionId}
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Figure 1 Subscribe to and unsubscribe from filetransfer notifications
Outline of the flows:

1. An application subscribes to filetransfer notifications using POST containing a FiletransferSubscription structure to the resource all subscriptions and receives the result resource URL containing the subscriptionId 
2. The application stops receiving notifications using DELETE with a resource URL containing the subscriptionId 
5.3.2 File Transfer with successful result

The figure below shows a scenario for a file transfer session with successful result, the initial API call can either include the actual file content or just external file repository URL, the application can also send actual file content by the send file API operation(refer to 5.3.4).The file transfer APIs support to transfer multi-files in one session.
The resources: 

· To start a file transfer session, create a new  resource with the FileTransferSessionInformation structure under http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions
· To accept a file transfer session invitation update the receiver session status resource  http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}/status
· 
· To end a file transfer session delete the resource  
http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}
· To notify the applications about the incoming file transfer session invitation, POST a SessionInvitationNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the receiver acceptance, POST a ReceiverAcceptanceNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the file URL link to actual file content for subsequent retrieval, POST a FileNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the status of the session and the status of the file transfer , POST an FileTransferEventNotification to the applications supplied Notification URL during notification subscription.
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Figure 2 File Transfer session with successful result

Outline of the flows:

1. An application of the Originator starts a file transfer session using the POST method to submit the FileTransferSessionInformation structure to the resource containing all file transfer sessions. Thereby the creation of a new file transfer session resource is triggered and the application of the Originator receives the resulting resource URL containing the sessionId. The request can include actual file content within MIME multipart entity bodies or the external repository file URL. And the application of the Originator can also use send file operation (refer to 5.3.4) to transfer file content.
2. 
3. An application of the Receiver receives a file transfer session invitation notification.
4. The application of the Receiver accepts the file transfer session invitation using the POST method to submit the ReceiverSessionStatus structure to the resource containing the session status and accepted files. The status MUST be set to “Connected”.
5. The application of the Originator receives a notification with ReceiverAcceptanceNotification structure indicating the Receiver has accepted the invitation.  The application of the Originator starts to transfer the file.
6. 

7. After the file is ready for retrieval, the server of the Receiver notifies the application of the Receiver using FileNotification containing the fileURL which link to actual file content. The application of the Receiver can start downloading the file using the file URL received.
Note: Depending on the implementations, the notification of the URL can be sent after the first chunk of data is received or when the complete file has been received (i.e. after step 7).
Note: How the application retrieves the file using the URL is out of scope.

8. After the file transfer is completed, the server of the Originator notifies the application of the Originator about the successful of the file transfer using POST FileTransferEventNotification containing the eventType which is set to “Successful”.
9. The server of the Receiver notifies the application of the Receiver about the successful of the file transfer using POST FileTransferEventNotification containging the eventType which is set to “Successful” .
10. The application of the Originator ends the file transfer session using DELETE method on the resource URL of the session with sessionId
Note: Both the application (originator client) and application (receiver client)  can initiate ending the file transfer session.

11. The application of the Receiver receives a FileTransfertNotification structure indicating the session has been ended.
Note: In case of the application (receiver client) ends the file transfer session, the application (originator client) receives a FileTransferEventNotification structure indicating the session has been ended.  

5.3.3 


· 




12. 
13. 
5.3.4 

· 



1. 
2. 
5.3.5 File transfer session failure

There are different causes  which may lead to file transfer session failed, following are some options (not exclusive list):

a. The application of the Originator cancels the file transfer session. 
b. The application of the Receiver reject or decline the file transfer session invitation 

c. The file transfer failed due to the underlining network problem

d. The application of the Originator aborts the file transfer,

5.3.6 Canceling a filetransfer invitation

The figure below shows a scenario for an application(originator client) to cancel a filetransfer session invitation.


The resources: 

· To cancel a 1-1 filetransfer session invitation, delete the session resource http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}
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Figure 3 Cancelling a filetransfer invitation
Outline of the flows:
An application of the Originator has created a file transfer session resource triggering a file transfer invitation sent to the application of the Receiver (Refer to step 1 and step 2 in 5.3.2). Subsequently: 

1. The application of the Originator can cancel a file transfer session invitation using the DELETE method on the resource URL of the session with sessionId and receives a response whether the request was successfully initiated.
2. A FileTransferEventNotification is sent to the application of the Receiver when the file transfer session has been cancelled, then the session is torn down.
Note that cancelling a session only works before the receiver has accepted the filetransfer invitation. 

5.3.7 

a. 
b. 
c. 

5.3.7.1 

· 



1. 
2. 
3. 
5.3.7.2 Declining a 1-1 filetransfer sesssion invitation

The figure below shows a scenario for an application to decline a 1-1 filetransfer session invitation.

The resources: 

· To decline a 1-1 filetransfer session invitation, delete the session resource  http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}
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Figure 4 Declining a 1-1 filetransfer session invitation
Outline of the flows:
An application of the Originator has created a file transfer session resource triggering a file transfer invitation sent to the application of the Receiver (Refer to step 1 and step 2 in 5.3.2). Subsequently:
1. The application of the Receiver declines the file transfer session invitation using the DELETE method on the session resource including the sessionId.
2. The application of the Originator receives a FileTransferEventNotification structure indicating the Receiver has declined the invitation, then the session is torn down.
5.3.7.3 File transfer failed

The figure below shows a scenario for  file transfer failed.

The resources: 

· To notify the applications about file transfer failure, POST a FileTransferEventNotification to the applications supplied Notification URL during notification subscription.
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Figure 5 File transfer failed 
Outline of the flows:
After an application of the Originator creates a file transfer session resource and the application of the Receiver accepts the file transfer session invitation (Refer to step 1 to step 4 in 5.3.2), the file transfer is started, subsequently:
1. When error occurs during file transfer, the server of the Originator notifies the application of the Originator using POST FileTransferEventNotification containing the eventType which is set to “Failed”.
2. The server of the Receiver also notifies the application of the Receiver using POST   POST FileTransferEventNotification containing the eventType which is set to “Failed”
Note: When error occurs during the file transfer, the application (receiver client)  may already received the file URL and started to fetch the file, the server of the Receiver should cancel any HTTP request downloading the file using the file URL and disable the file URL. How the server implements this is out of scope.

5.3.7.4 File transfer aborted

The figure below shows a scenario for file transfer aborted.

The resources: 

· To notify the application about file transfer abortion , POST a FileTransferEventNotification to the applications supplied Notification URL during notification subscription.
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Figure 6 file transfer aborted 
Outline of the flows:
After an application of the Originator creates a file transfer session resource and the application of the Receiver accepts the file transfer session invitation (Refer to step 1 to step 4 in 5.3.2), the file transfer is started, subsequently:
1. The application of the Originator can abort the file transfer using DELETE method on the resource URL of the session with sessionId.
2. The application of the Receiver receives a FileTransferEventNotification structure indicating the file transfer has been aborted and the session is torn down.
Note that aborting the file transfer only works before the file has been completely transferred. After that, the DELETE method leads to a normal ending of the session.
Note: When the file transfer has been aborted, the application (receiver client) may already received the file URL and started to fetch the file, the server of the Receiver should cancel any HTTP request downloading the file using the file URL and disable the file URL. How the server implements this is out of scope.

5.3.8 Send file
The figure below shows a scenario for an application to send file content.

The resources: 

· To send file content, create a new resource at http://{serverRoot}/{apiVersion}/filetransfer/{userId}/sessions/{sessionId}/files



1. 
2. 
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Figure 7 file transfer aborted
Outline of the flows:
After an application (originator client) creates a file transfer session resource and the application (receiver client)  accepts the file transfer session invitation (Refer to step 1 to step 4 in 5.3.2), application (originator client) sends the file actual content:
1. The application (originator client) sends file content using POST containing a FileInformation structure and include actual file content within MIME multipart entity bodies to the resource representing all files in the session. 
Then the server of the Originator starts file transfer to the server of the Receiver. Following refer to 5.3.2 step 5~9.
Note: This operation is OPTIONAL.
5.3.9 

· 
· 



1. 
2. 
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