Doc# OMA-ARC-REST-NetAPI-2013-0042-INP_Chat_analysis_of_new_requirements.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance




Input Contribution

Doc# OMA-ARC-REST-NetAPI-2011-0017-INP_ApiVersion_in_NetAPI_TSs.doc
Input Contribution



Input Contribution

	Title:
	Analysis of new chat requirements from GSMA RCS 5.1
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	ARC-REST-NetAPI

	Submission Date:
	21 May 2013

	Source:
	Uwe Rauschenbach, NSN, uwe.rauschenbach@nsn.com

	Attachments:
	n/a
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	Replaces:
	 n/a


1 Reason for Contribution

This INP analyses the changes w.r.t. the Chat API requirements in RCS 5.1 against the RCS 5.0 baseline, and suggests a way forward to implement them in the Chat API.
2 Summary of Contribution
This contribution describes the requirements changes between RCS 5.0 API requirements (RCS API requirements document V 2.1) and RCS 5.1 API requirements (RCS API requirements document V 2.3.1).

It outlines the effect of these changes on the Chat API, and proposes a way forward to meet the requirements.
3 Detailed Proposal

Compared V 2.1 of the requirements document which underlies the RCS API 2.0, the new requirements document V 2.3.1 introduces the following changes.
Confirmed 1-1 chat
	Req
	Category
	Description
	Rec

	UNI-CHT-001/001a
	Minor Change
	Distinction between subject and initial message in 1-1 chat session creation
	Already covered(?)

	UNI-CHT-007a
	Minor Change
	Optionally provide initial chat message in chat session invitation notification
	To be added (minor)


Group chat

Biggest addition are “in-chat services” such as file transfer and geolocation push.
	Req
	Category
	Description
	Rec

	UNI-CHT-002b
	Minor Change
	Allow to signal a group chat as “closed”
	To be added (minor)

	UNI-CHT-002b
	Major Change
	Allow to signal additional services such as FT and Geolocation during group chat session creation
	To be added (major addition). May also have impact on FT (UNI-FLT-001) and Location APIs.

	UNI-CHT-004b
	Major Change
	On invitation acceptance notification, also the supported services shall be signalled.
	Major change. Currently the API does not transmit acceptance notifications in a group chat, but uses ParticipantStatus notifications. 

	UNI-CHT-007b
	Minor change
	On invitation notification, also the supported services shall be signalled.
	To be added (minor addition). 

	UNI-CHT-007b
	Minor change
	On invitation notification, also the supported type of chat (closed, regular) shall be signalled.
	To be added (minor addition). 

	UNI-CHT-008b
	Major change
	On accepting an invitation, the API shall enable to signal the supported services (FT, Goelocation)
	Major change.

	UNI-CHT-011
	Minor change
	Added parameter “sessionId” for leaving a group chat.
	Already supported by design.

	UNI-CHT-013
	Minor change
	Add signalling for (regular, closed) to the call extending a 1-1 session to a group session.
	Minor addition.

	UNI-CHT-013
	Minor change
	Added parameter “sessionId” for adding users to a group chat.
	Already supported by design.


Long-lived group chat

This is the biggest addition, it adds a kind of “unconfirmed” mode group chat.

	Req
	Category
	Description
	Rec

	UNI-CHT-030
	New functionality
	Create long-lived group chat
	Add under a new resource subtree

	UNI-CHT-031
	New functionality
	Add user(s)
	Add under a new resource subtree

	UNI-CHT-032
	New functionality
	Notify user when he/she was added to a long-lived group chat
	Add under a new resource subtree

	UNI-CHT-033
	New functionality
	Allow user to leave a long-lived group chat
	Add under a new resource subtree

	UNI-CHT-034
	New functionality
	Get list of long-lived group chats and their subjects
	Add under a new resource subtree

	UNI-CHT-035
	New functionality
	Query info about a long-lived group chat
	Add under a new resource subtree

	UNI-CHT-036
	New functionality
	Notify the application of changes in the participants list in a long-lived group chat
	Add under a new resource subtree

	UNI-CHT-037
	New functionality
	Notify the application of changes in the list of supported services in a long-lived group chat
	Add under a new resource subtree

	UNI-CHT-038
	New functionality
	Notify the application when a long-lived group chat is no longer available
	Add under a new resource subtree

	UNI-CHT-039
	New functionality
	Extend a confirmed 1-1 chat to a long-lived group chat
	Need to update the “extend” resource, or create a sibling “extendLongLived”

	UNI-CHT-040
	New functionality
	Allow user to re-join a long lived group chat
	Add under a new resource subtree


Media
	Req
	Category
	Description
	Rec

	UNI-CHT-018
	Minor change
	Added “failure” to the list of return states of sending a chat message
	This will in some cases be synchronous, in others asynchronus.

Need to elaborate whether the existing notifications and return codes / exceptions cover this.

	UNI-CHT-026
	Major change
	Support sending multimedia chat messages (formally already in V5.0 but not yet supported by API)
	

	UNI-CHT-027
	Major change
	Support receiving multimedia chat messages, i.e. support receiving a notification about multimedia content being available for download (formally already in V5.0 but not yet supported by API)
	


Other APIs affected

FileTransfer
	Req
	Category
	Description
	Rec

	UNI-FLT-001
	Major change
	Add to the FT session information an optional reference to a group chat session (to support in-chat FT).

Introduce a new error message if chat session does not exist.
	Can be added to existing FT API.

	UNI-FLT-001
	Major change
	“File transfer within a group chat is supported only if notified by the RCS enabler.” ( need to expose querying that capability, and possibly setting it. 
	To Be elaborated. Maybe this can just be done by allowing to read the “ft” parameter of the chat session.

	UNI-FLT-005
	Major change
	Add to the FT invitation notification an optional reference to a group chat.

If we add this to the existing FT API, we also need to allow a client to tell the server whether it supports this option and wishes to receive notifications with this addition. This may either be done registering a new capability in the CapDis API, or by passing a flag during the notification subscription process.
	Can be added to existing FT API.


Getting closer to a recommendation
Existing WID?

· (+) Some small changes can be incorporated easily
· (-) Big changes will introduce new resources, their addition to a WID in Candidate may look strange 
· (+) We can re-use the existing infrastructure and champions
· (-) Progress of big changes may be impacted by lack of formal WISPR dates

· (+) Apps can work with one version of the API

New WID?

· (+) Better for adding the big changes

· (-) Need to get commitment of a WID/feature champion
· (-) Apps need to work with two versions of the API

· (+) Provides the tools to manage progress (new WISPR)

Three options

(1) Minor changes to existing WID, major ones to new WID
(2) All changes to new WID

(3) All changes to existing WID
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC-REST is kindly requested to discuss the document, and to agree on a way forward.
Annex
Comparison of the documents RCS API requirements V 2.3.1 against the baseline of V 2.1.
4.7 Chat UNI API requirements

4.7.1 Confirmed One to One Chat
The application is in full control of the session management, requiring an explicit acceptance before the chat session is established. Several parallel sessions between two users inside the application are possible using this model.
EDITOR’s note: Requirements in this section have been rearranged for better understanding and clarity. To avoid impact on external references, requirement numbers have not been changed. As a result, numbering is not consecutive in some cases.
4.7.1.1 Session Management originating side
The operations listed below allow the originating side of a chat to manage the chat session.
	Label
	Description
	Required parameters (not complete list)
	Comment

	UNI-CHT-001
	The Chat API SHALL support starting a 1-to-1 chat.
	oauth_token={access-token}

recipient={contactid}

subject={text} (e.g. “Dinner tonight”)
	Use case: Start a chat.

Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API).

Subject parameter is optional and is the topic of the chat; included when it is provided. 

Ref: [RCS5] ch 3.3 1-to-1 Chat, [RCSR5OMAIMEND] ch 7.1.1 Originating Client Procedures

	UNI-CHT-001a
	The Chat API SHALL
support starting a 1-to-
1 chat with initial message
	oauth_token={access-
token}
recipient={contactid}

subject= {text} (e.g. “Dinner tonight”)

message={text|multimedia content} (e.g. “Hi”)
	Use case: Start a chat.

Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API).

This requirement extends the requirement UNI-CHT-001.

Subject parameter is optional and is the topic of the chat; it is included when provided.

Message parameter is optional and is the first message of the chat; it is included when provided, according to Service Provider policies.

Ref: [RCS5] ch 3.3 1-to-1
Chat, [RCSR5OMAIMEND] ch 7.1.1 Originating Client Procedures

	UNI-CHT-003a
	The Chat API SHALL support cancelling a 1-to-1 chat invitation
	oauth_token={access-token}
	Use case: User cancels a chat invitation. Cancellation is only possible as long as the invitation has not been accepted.

Ref: [RCSR5OMAIMEND] ch 7.1.1 Originating Client Procedures

	UNI-CHT-004a
	The Chat API SHALL support notifications about chat (accepted, cancelled; declined, ended)
	oauth_token={access-token}
	

	UNI-CHT-005
	The Chat API SHALL support ending a 1-to-1 chat session by the originating side
	oauth_token={access-token}
	Use case: User ends 1-to-1 chat.

Ref: [RCSR5OMAIMEND] ch 7.1.1 Originating Client Procedures

	UNI-CHT-006
	VOID
	VOID
	VOID


4.7.1.2 Session Management terminating side
The operations listed below allow the terminating side of a chat to manage its participation in a chat session.
	Label
	Description
	Required parameters (not complete list)
	Comment

	UNI-CHT-007a
	The Chat API SHALL support notifications about incoming chat invite.
	Information about inviting user; subject if provided; and/or first message if provided
	Use case: The user is invited to a chat session.

It might be possible that the inviting user is not in the contact list.

See “Common notification channel” for establishment of notification channel.

Ref: [RCSR5] ch 3.3 1-to-1 chat, [RCSR5OMAIMEND] ch 7.1.2 Terminating Client Procedures

	UNI-CHT-008a
	The Chat API SHALL support accepting a chat invitation.
	oauth_token={access-token}
	Use Case: User accepts chat invitation.

Ref: [RCSR5] ch 3.3 1-to-1 Chat, [RCSR5OMAIMEND] ch 7.1.2 Terminating Client Procedures 

	UNI-CHT-009a
	The Chat API SHALL support declining a chat invitation.
	oauth_token={access-token}
	Use Case: User declines chat invitation.

Ref: [RCSR5] ch 3.3 1-to-1 Chat, [RCSR5OMAIMEND] ch 7.1.2 Terminating Client Procedures 

	UNI-CHT-010
	The Chat API SHALL support ending a 1-to.1 chat by the terminating side.
	oauth_token={access-token}
	Use case: User ends chat.

Ref: [RCSR5] ch 3.3 1-to-1 Chat, [RCSR5OMAIMEND] ch 7.1.2 Terminating Client Procedures 

	UNI-CHT-012a
	The Chat API SHALL support notifications about “chat ended”.
	
	Use case: Remote user ends chat. Application of the terminating user receives a notification about that event.

See “Common notification channel” for establishment of notification channel.

[RCSR5OMAIMEND] ch 7.1.2 Terminating Client Procedures 


4.7.2 Adhoc One to One Chat
In this chat model there is no explicit chat invitation associated to the 1-to-1 chat anymore. From the functional point of view the user sends a message to another user and it is responsibility of the client implementation to open any underlying SIP/MSRP session to deliver that message. This complexity is hidden to the user.
Also from the receiver point of view, the user does not accept or decline a 1-to-1 chat invitation; he just receives a new message from a user. So there is no way that a user is able to accept or reject an SIP/MSRP session from the client application and the establishment mechanism is controlled by the client application according to the MNO rules.

Thus, no functional requirements associated with one to one chat establishment (for either the originating or terminating side) are required by this model. 

Also information regarding the technical establishment or ending of the underlying IM session (i.e., SIP and MSRP session) are out of scope of this API specification.

The only requirements applicable then to the 1-to-1 chat in this model are the ones related to the media and the notifications.

4.7.3 Group chat

The operations listed below allow managing a group chat.
	Label
	Description
	Required parameters (not complete list)
	Comment

	UNI-CHT-002b
	The Chat API SHALL support starting a group chat.
	oauth_token={access-token}

recipient={contact1}, {contact2}, … 

subject={text} (e.g. “Hawaii trip”)
closed={true, false}
gc_services={ft, geopushft}
	Use case: Start a group chat (ad-hoc group).
Subject parameter is optional and is the topic of the group chat; it is included when provided.

Chat session ID must be returned to application.
Closed parameter is optional and specifies whether the group chat is a closed group chat. A group chat is regular by default if the closed parameter is not specified.
A list of all RCS services supported by the application within the group chat shall be provided during group chat setup in related API calls and notifications. Currently, with [RCS5.1] the list may include File Transfer and Geolocation Push. It may be extended later. Without parameter gc_services it is assumed that no further service is supported within group chat.

Ref: [RCSR5] ch 3.4 Group Chat, [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-003b
	The Chat API SHALL support cancelling a group chat invitation.
	oauth_token={access-token}
	Use case: User cancels a chat invitation. Cancellation is possible only as long as the invitation has not been accepted.

Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-004b
	The Chat API SHALL support notifications about group chat (accepted, cancelled; declined, ended) as well as all services supported within group chat.
	If the group chat session is accepted the notification shall also carry the list of supported services within the group chat.
	The list of services supported by the RCS enabler within the group chat shall be considered during related API calls, e.g. UNI-FLT-001.

	UNI-CHT-007b
	The Chat API SHALL support notifications about incoming chat invite as well as  all services supported within group chat.
	Information about inviting user; subject of the chat if provided; group chat type (closed or regular); supported services during group chat; and other invited participants
	Use case: User is invited to a chat session.

The chat may be a closed group chat.
It might be possible that the inviting user is not in the contact list.

The list of services  supported by the RCS enabler within the group chat shall be provided and considered during related API calls, e.g. UNI-FLT-001.
Ref: [RCSR5] ch 3.4 Group Chat, [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-008b
	The Chat API SHALL support accepting a group chat invitation.
	oauth_token={access-token}
gc_services={ft, geopushft}
	Use Case: User accepts a group chat invitation.
The list of services supported by the application within the group chat, Without parameter gc_services it is assumed that no further service is supported within group chat.

Ref: [RCSR5] ch 3.4 Group Chat, [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-009b
	The Chat API SHALL support declining a group chat invitation.
	oauth_token={access-token}
	Use Case: User declines a group chat invitation.

Ref: [RCSR5] ch 3.4 Group Chat, [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-011
	The Chat API SHALL support leaving a group chat.
	oauth_token={access-token}
id={sessionid}
	Use Case 1: User leaves a group chat. This ends the chat for this user.

Use Case 2: If group chat originating user leaves the group chat, depending on the operator policies the group chat session could be terminated or not.
Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-012b
	The Chat API SHALL support notifications about “group chat ended”.
	
	In case of group chat termination the users will receive a notification about that event. See use case 2 of previous requirement.

See “Common notification channel” for establishment of notification channel.

Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-013
	The Chat API SHALL support extending a confirmed 1-to-1 chat to a group chat.
	oauth_token={access-token}

recipient={contact1}, {contact2}, … 

closed={true, false}

	Use Case: User adds one or more participants to the 1-to-1 chat. All participants except the originator receive a chat invitation. The group chat is regular by default if closed parameter is not specified.
Ref: [RCSR5] ch 3.4 Group Chat , [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-014
	The Chat API SHALL support adding a set of users to a group chat.
	oauth_token={access-token}

id={sessionid}
recipient={contact1}, {contact2}, … 


	Use Case: User adds one or more participants to the group chat. The new participant(s) receive(s) a chat invitation.

Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-015
	The Chat API SHALL support re-joining a group chat.
	oauth_token={access-token}

chat conference id={sessionid}
	Use Case: User wants to join a chat (possible use cases: invitation has expired, user left and wants to rejoin, and so on). As a result, user successfully re-joined chat (if chat/session found), or alternatively an indication is returned that chat/session not found (because of expiration).
Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-016
	VOID
	VOID
	VOID

EDITOR NOTE: Already covered by the initial subscription of the client to chat related notifications.

	UNI-CHT-017
	The Chat API SHALL support notifications about participant information in a group chat. An initial  notification SHALL be sent to an invited participant upon invitation acceptance.  Subsequent notifications SHALL be sent to all connected participants including the originator, when the set of participants changes
	
	Use case: The application receives notifications about the changing set of participants in a group chat session. 

See “Common notification channel” for establishment of notification channel.

Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions


4.7.4 Long Lived Group Chat

In the Long Lived Group ,the session management complexity is handled internally by the gateway and only the high level functionality related to the Long Lived Group chat user experience is exposed in the API.

Apart of the media and notification requirements in chapters 4.7.5 and 4.7.6 which are shared with the session aware group chat requirements in chapter 4.7.3, the following requirements shall be fulfilled:

	Label
	Description
	Required parameters (not complete list)
	Comment

	UNI-CHT-030
	The Long Lived Group Chat API SHALL support a user to create a new Long Lived Group indicating the list of participants and the subject of the group.
	oauth_token={access-token}

recipient={contact1}, {contact2}, … 

subject={text} (e.g. “Hi”)
closed={true, false}
gc_services={ft, geopushft}
returns {group_chat_id}
	The group chat ID will be generated internally by the API GW and used according to the RCS 5.1 spec chapter 3.4.4.1.1 Initiating a Group Chat.

The group chat is regular by default if closed parameter is not specified (consistent with UNI-CHT-002b and UNI-CHT-013).

A list of all RCS services supported by the application within the group chat shall be provided during group chat setup in related API calls and notifications. Currently, with [RCS5.1] the list may include File Transfer and Geolocation Push. It may be extended later. Without parameter gc_services it is assumed that no further service is supported within group chat.

	UNI-CHT-031
	The Long Lived Group Chat API SHALL allow a user to add a user or a list of users to a Long Lived Group Chat.
	oauth_token={access-token}
group_chat_id={group_chat_id}
recipient={contact1}, {contact2}, … 


	

	UNI-CHT-032
	The Long Lived Group Chat API SHALL notify the user when it has been added to  Long Lived Group Chat.
	The notification SHALL contain information regarding the Long Lived Group Chat.
	The list of services supported by the RCS enabler within the group chat shall be provided and considered during related API calls, e.g. UNI-FLT-001.

	UNI-CHT-033
	The Long Lived Group Chat API SHALL allow an user to leave a Long Lived Group Chat.
	oauth_token={access-token} 

group_chat_id={group_chat_id}

	When the user leaves a Long Lived Group Chat it SHALL not be allowed to post any new messages to it.

The time to keep storing the information regarding a Long Live group chat in the API GW after the user has left it, is up to service provider polices.

	UNI-CHT-034
	The Long Lived Group Chat API SHALL allow a user to query the Long Lived Group Chats and their subjects for the user.
	oauth_token={access-token} 

return {list of group chat ids + subjects}

	Based on service provider policies the list of group chats returned for a user may be restricted to just the ones that the calling application created for the user.

	UNI-CHT-035
	The Long Lived Group Chat API SHALL allow querying the detailed information about a Long Lived Group Chat
	oauth_token={access-token} 

group_chat_id={group_chat_id}
return {subject, participant list, open/close,...}
	The information SHALL contain at least the participant list and the subject of the group chat and the supported services.

	UNI-CHT-036
	The Long Lived Group Chat API SHALL notify the application when the participant list of a Long Lived Group chat has changed. 
	The notification SHALL contain the list of new participants and/or participants leaving it.
	

	UNI-CHT-037
	The Long Lived Group Chat API SHALL notify the application when the list of supported services of a Long Lived Group chat have changed.
	The notification SHALL contain the new list of services supported during group chat.
	The list of services supported by the RCS enabler within the group chat shall be provided and considered during related API calls (e.g., UNI-FLT-001).

	UNI-CHT-038
	The Long Lived Group Chat API SHALL notify the application when a Long Lived Group Chat is no longer available.
	
	A long lived group chat is no longer available when it is removed from the list of group chats stored by the API GW.

The decision when to disable a long lived group chat is based on service provider policies.



	UNI-CHT-039
	The Long Lived Group Chat API SHALL allow to extend a 1-to-1 confirmed to a Long Lived Group chat
	oauth_token={access-token} 

chat_id={chat_id}

contact={contactId1,contactId}

closed={true, false}
gc_services={ft, geopushft}
return {group_chat_id}
	Based on service provider policies this operation may not be allowed.

The group chat is regular by default if closed parameter is not specified (consistent with UNI-CHT-002b and UNI-CHT-013).

A list of all RCS services supported by the application within the group chat shall be provided during group chat setup in related API calls and notifications. Currently, with [RCS5.1] the list may include File Transfer and Geolocation Push. It may be extended later. Without parameter gc_services it is assumed that no further service is supported within group chat.


	UNI-CHT-040
	The Long Lived Group Chat API SHALL allow a user to rejoin a long lived group chat after the user has left it.
	oauth_token={access-token} 

group_chat_id={group_chat_id}
	Based on service provider policies this operation may not be allowed.




4.7.5 Media
The operations listed below allow handling the media in a chat.

	Label
	Description
	Required parameters (not complete list)
	Comment

	UNI-CHT-018
	The Chat API SHALL support sending text messages
	oauth_token={access-token} 

message_content={content} 

chat_id={contactid| sessionid|group chat id}
return:

status: {success,pending, failure}
	Use case: The application sends a chat message.

Content can be text or multimedia according to RCS specifications.
 This API is for text message support.  The multimedia content support is covered by UNI-CHT-026.

The chat_id parameter can be contactid for ad-hoc 1-to-1 chat, or sessionid for confirmed 1-1 chat and group chat, or group chat id for Long Lived group chat.

The status of  the request for sending message is returned:success, pending,failure. 

One example for the failure case is the chat id is invalid.

In case the transaction is to take too much time to be completed it shall be possible to return a “pending” response and return the final delivery status asynchronously via the notification channel.
Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-019
	The Chat API SHALL support sending of “isComposing”.
	oauth_token={access-token} isComposing=“active”/”idle” “timeout=xx”” …
chat_id={contactid| sessionid|group chat id}
	Use case: The application sends “isComposing” which indicates that a user is currently composing a message.

The chat_id parameter can be contactid for ad-hoc 1-to-1 chat, or sessionid for confirmed 1-1 chat and group chat, or group chat id for Long Lived group chat.

Same as [UNI-CHT-018] with “isComposing” as a special kind of content, parameters according to RFC 3994.

If the message delivery was successful a “success” response is returned.

Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-020
	The Chat API SHALL support receiving messages.
	oauth_token={access-token} 
	Use case: The application receives a chat message via the notification mechanism.

Timestamp value shall be also notified to the application if it was included in the message.

Information regarding “display” notification request for the message shall be also included if present in the original message.
The chat_id (sessionid, contactid, or group chat id) information  is included in the notification for application to identify the chat session.

See “Common notification channel” for establishment of notification channel.

EDITOR’s NOTE: Add: Store & Forward use case.

Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-021
	The Chat API SHALL support receiving the “isComposing” message.
	oauth_token={access-token}
	Use case: the application receives via the notification mechanism an indication that a user is currently composing a message.

The chat_id (sessionid, contactid, or group chat id) information  is included in the notification for application to identify the chat session.

Same as [UNI-CHT-020] with “isComposing” as a special kind of content.

Ref: [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-026
	The Chat API SHALL support sending multimedia chat messages.
	oauth_token={access-token} 

message_content =   Body{multimedia content}

content type={content type}

chat_id={contactid| sessionid|group chat id}
return:

status: {success,pending, failure}
	Use case: The application sends a multimedia chat message (e.g., image, video clip, audio clip, etc).

The chat_id parameter can be contactid for ad-hoc 1-to-1 chat, or sessionid for confirmed 1-1 chat and group chat, or group chat id for Long Lived group chat.

The status of  the request  for sending message is returned:success, pending,failure. 

One example for the failure  case is the chat id is invalid.

In case the transaction is to take too much time to be completed it shall be possible to return a “pending” response and return the final delivery status asynchronously via the notification channel.

Ref: [RCSR5] ch 3.2.1.1 Standalone messaging and ch 3.3.1 1to-1 Chat Feature description, [RCSR5OMAIMEND] ch 7.1 IM Client Procedures for IM Sessions

	UNI-CHT-027
	The Chat API SHALL support 

notifications indicating that a multimedia chat message has been received and is available for download
	content-type={type}

url={file url}
	The API gateway will send this notification to the client with an URL to download the content.

The chat_id (sessionid, contactid, or group chat id)  information  is included in the notification for application to identify the chat session.

The server which the URL is pointed to SHALL be ready to receive download requests when the notification is sent.











NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 1 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20100101-I]

© 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 4 (of 17)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20100101-I]

