OMA-TS-REST_NetAPI_Presence-V1_0-20130212-C
Page 22 V(75)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for
Presence
Input on Presence Ad hoc Lists

	Candidate Version 1.0 - 12 Feb 2013

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_Presence-V1_0-20130212-C

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.
Contents

151.
Scope

2.
References
16
2.1
Normative References
16
2.2
Informative References
17
3.
Terminology and Conventions
18
3.1
Conventions
18
3.2
Definitions
18
3.3
Abbreviations
18
4.
Introduction
20
4.1
Version 1.0
20
5.
Presence API definition
21
5.1
Resources Summary
21
5.2
Data Types
33
5.2.1
XML Namespaces
33
5.2.2
Structures
33
5.2.2.1
Type: PresenceSourceList
33
5.2.2.2
Type: PresenceSource
34
5.2.2.3
Type: Presence
36
5.2.2.4
Type: PersonAttributes
37
5.2.2.5
Type: ServiceAttributes
39
5.2.2.6
Type: DeviceAttributes
40
5.2.2.7
Type: ContentList
40
5.2.2.8
Type: ContentData
41
5.2.2.9
Type: WatcherList
41
5.2.2.10
Type: Watcher
41
5.2.2.11
Type: RuleList
42
5.2.2.12
Type: Rule
43
5.2.2.13
Type: PresenceList
44
5.2.2.14
Type: PresenceContact
44
5.2.2.15
Type: SubscriptionList
45
5.2.2.16
Type: WatchersSubscriptionList
45
5.2.2.17
Type: WatchersSubscription
46
5.2.2.18
Type: WatchersNotification
47
5.2.2.19
Type: PresenceSubscriptionList
47
5.2.2.20
Type: PresenceSubscription
48
5.2.2.21
Type: PresenceNotification
49
5.2.2.22
Type: PresenceListSubscriptionCollection
49
5.2.2.23
Type: PresenceListSubscription
50
5.2.2.24
Type: PresenceListNotification
52
5.2.2.25
Type: Activities
52
5.2.2.26
Type: PlaceType
53
5.2.2.27
Type: Privacy
53
5.2.2.28
Type: Sphere
53
5.2.2.29
Type: Mood
54
5.2.2.30
Type: PlaceIs
54
5.2.2.31
Type: TimeOffset
54
5.2.2.32
Type: StatusIcon
54
5.2.2.33
Type: NoteList
55
5.2.2.34
Type: Location
55
5.2.2.35
Type: CircleData
55
5.2.2.36
Type: CivicAddress
56
5.2.2.37
Type: OverridingWillingness
56
5.2.2.38
Type: LinkList
57
5.2.2.39
Type: Contact
58
5.2.2.40
Type: DeviceIdentityList
58
5.2.2.41
Type: NetworkAvailability
58
5.2.2.42
Type: Network
58
5.2.2.43
Type: ExtendedList
58
5.2.2.44
Type: AttributeValue
59
5.2.3
Enumerations
60
5.2.3.1
Enumeration: ActivityValue
60
5.2.3.2
Enumeration: PlaceTypeValue
61
5.2.3.3
Enumeration: PrivacyValue
62
5.2.3.4
Enumeration: SphereValue
62
5.2.3.5
Enumeration: MoodValue
62
5.2.3.6
Enumeration: PlaceIsAudio
63
5.2.3.7
Enumeration: PlaceIsVideo
64
5.2.3.8
Enumeration: PlaceIsText
64
5.2.3.9
Enumeration: OpenOrClosed
64
5.2.3.10
Enumeration: ActiveOrTerminated
65
5.2.3.11
Enumeration: AutomaticOrManual
65
5.2.3.12
Enumeration: HomeOrVisited
65
5.2.3.13
Enumeration: ResourceStatus
65
5.2.3.14
Enumeration: DefaultDecisionValue
66
5.2.4
Values of the Link “rel” attribute
66
5.3
Sequence Diagrams
67
5.3.1
Application start-up; publish presence, fetch Watcher information, subscribe to Watcher information
67
5.3.2
Adding a Watcher; subscribe for presence and updating of presence information.
70
5.3.3
Update of presence status
72
5.3.4
Shutdown; remove resources
74
6.
Detailed specification of the resources
76
6.1
Resource: Presence Sources
76
6.1.1
Request URL variables
76
6.1.2
Response Codes and Error Handling
77
6.1.3
GET
77
6.1.3.1
Example: retrieving all Presence Sources for user (Informative)
77
6.1.3.1.1
Request
77
6.1.3.1.2
Response
77
6.1.3.2
Example: retrieving of all Presence Sources metadata using a filter (Informative)
78
6.1.3.2.1
Request
78
6.1.3.2.2
Response
78
6.1.4
PUT
79
6.1.5
POST
79
6.1.5.1
Example 1: creating Presence Source for user (Informative)
79
6.1.5.1.1
Request
79
6.1.5.1.2
Response
79
6.1.5.2
Example 2: creating Presence Source for user fails (Informative)
80
6.1.5.2.1
Request
80
6.1.5.2.2
Response
81
6.1.6
DELETE
81
6.2
Resource: Individual Presence Source
81
6.2.1
Request URL variables
81
6.2.2
Response Codes and Error Handling
82
6.2.3
GET
82
6.2.3.1
Example 1: retrieving Presence Source (Informative)
82
6.2.3.1.1
Request
82
6.2.3.1.2
Response
82
6.2.3.2
Example 2: retrieving Presence Source which does not exist (Informative)
83
6.2.3.2.1
Request
83
6.2.3.2.2
Response
83
6.2.4
PUT
83
6.2.4.1
Example: updating Presence Source (Informative)
83
6.2.4.1.1
Request
83
6.2.4.1.2
Response
84
6.2.5
POST
85
6.2.6
DELETE
85
6.2.6.1
Example: removing Presence Source (Informative)
85
6.2.6.1.1
Request
85
6.2.6.1.2
Response
85
6.3
Resource: Individual Presence Source attribute
85
6.3.1
Request URL variables
85
6.3.1.1
Light-weight relative resource paths
86
6.3.2
Response Codes and Error Handling
86
6.3.3
GET
86
6.3.3.1
Example: retrieving individual presence attribute (Informative)
87
6.3.3.1.1
Request
87
6.3.3.1.2
Response
87
6.3.4
PUT
87
6.3.4.1
Example: updating individual presence attribute (Informative)
87
6.3.4.1.1
Request
87
6.3.4.1.2
Response
87
6.3.5
POST
88
6.3.6
DELETE
88
6.3.6.1
Example: removing individual presence attribute (Informative)
88
6.3.6.1.1
Request
88
6.3.6.1.2
Response
88
6.4
Resource: Persistent Presence Source
88
6.4.1
Request URL variables
88
6.4.2
Response Codes and Error Handling
88
6.4.3
GET
89
6.4.3.1
Example: retrieving persistent presence information (Informative)
89
6.4.3.1.1
Request
89
6.4.3.1.2
Response
89
6.4.4
PUT
89
6.4.4.1
Example: updating persistent presence information (Informative)
89
6.4.4.1.1
Request
89
6.4.4.1.2
Response
90
6.4.4.1.3
Request
90
6.4.4.1.4
Response
91
6.4.5
POST
91
6.4.6
DELETE
91
6.4.6.1
Example: removing persistent presence information (Informative)
91
6.4.6.1.1
Request
91
6.4.6.1.2
Response
91
6.5
Resource: Individual persistent Presence Source attribute
91
6.5.1
Request URL variables
92
6.5.1.1
Light-weight relative resource paths
92
6.5.2
Response Codes and Error Handling
93
6.5.3
GET
93
6.5.3.1
Example: retrieving individual persistent presence attribute (Informative)
93
6.5.3.1.1
Request
93
6.5.3.1.2
Response
93
6.5.4
PUT
93
6.5.4.1
Example: updating individual persistent presence attribute (Informative)
93
6.5.4.1.1
Request
93
6.5.4.1.2
Response
94
6.5.5
POST
94
6.5.6
DELETE
94
6.5.6.1
Example: removing individual persistent presence attribute (Informative)
94
6.5.6.1.1
Request
94
6.5.6.1.2
Response
94
6.6
Resource: Presentity content list
94
6.6.1
Request URL variables
95
6.6.2
Response Codes and Error Handling
95
6.6.3
GET
95
6.6.3.1
Example: retrieving list of available contents (Informative)
95
6.6.3.1.1
Request
95
6.6.3.1.2
Response
95
6.6.4
PUT
96
6.6.5
POST
96
6.6.6
DELETE
96
6.7
Resource: Individual Presentity content
96
6.7.1
Request URL variables
96
6.7.2
Response Codes and Error Handling
96
6.7.3
GET
96
6.7.3.1
Example: retrieving individual content by Presentity (Informative)
97
6.7.3.1.1
Request
97
6.7.3.1.2
Response
97
6.7.4
PUT
97
6.7.4.1
Example: uploading/updating individual content by Presentity (Informative)
97
6.7.4.1.1
Request
97
6.7.4.1.2
Response
97
6.7.5
POST
97
6.7.6
DELETE
97
6.7.6.1
Example: removing individual content by Presentity (Informative)
98
6.7.6.1.1
Request
98
6.7.6.1.2
Response
98
6.8
Resource: Watchers list
98
6.8.1
Request URL variables
98
6.8.2
Response Codes and Error Handling
98
6.8.3
GET
98
6.8.3.1
Example: retrieving list of Watchers (Informative)
99
6.8.3.1.1
Request
99
6.8.3.1.2
Response
99
6.8.4
PUT
99
6.8.5
POST
99
6.8.6
DELETE
99
6.9
Resource: Individual Watcher
100
6.9.1
Request URL variables
100
6.9.2
Response Codes and Error Handling
100
6.9.3
GET
100
6.9.3.1
Example: retrieving individual Watcher (Informative)
100
6.9.3.1.1
Request
100
6.9.3.1.2
Response
100
6.9.4
PUT
101
6.9.5
POST
101
6.9.6
DELETE
101
6.10
Resource: Authorization rules
101
6.10.1
Request URL variables
101
6.10.2
Response Codes and Error Handling
101
6.10.3
GET
102
6.10.3.1
Example: retrieving all authorization rules (Informative)
102
6.10.3.1.1
Request
102
6.10.3.1.2
Response
102
6.10.4
PUT
102
6.10.5
POST
102
6.10.5.1
Example: creating an authorization rule (Informative)
102
6.10.5.1.1
Request
102
6.10.5.1.2
Response
103
6.10.5.2
Example 2: creating an authorization rule, response with resourceReference (Informative)
103
6.10.5.2.1
Request
103
6.10.5.2.2
Response
103
6.10.6
DELETE
104
6.11
Resource: Individual authorization rule
104
6.11.1
Request URL variables
104
6.11.2
Response Codes and Error Handling
104
6.11.3
GET
104
6.11.3.1
Example: retrieving an authorization rule (Informative)
104
6.11.3.1.1
Request
104
6.11.3.1.2
Response
105
6.11.4
PUT
105
6.11.4.1
Example: updating an authorization rule (Informative)
105
6.11.4.1.1
Request
105
6.11.4.1.2
Response
105
6.11.5
POST
106
6.11.6
DELETE
106
6.11.6.1
Example: removing an authorization rule (Informative)
106
6.11.6.1.1
Request
106
6.11.6.1.2
Response
106
6.12
Resource: Individual authorization rule data
106
6.12.1
Request URL variables
106
6.12.1.1
Light-weight relative resource paths
107
6.12.2
Response Codes and Error Handling
107
6.12.3
GET
107
6.12.3.1
Example: retrieving individual authorization rule data (Informative)
107
6.12.3.1.1
Request
107
6.12.3.1.2
Response
107
6.12.4
PUT
108
6.12.4.1
Example: updating individual authorization rule data (Informative)
108
6.12.4.1.1
Request
108
6.12.4.1.2
Response
108
6.12.5
POST
108
6.12.6
DELETE
108
6.12.6.1
Example: removing individual authorization rule data (Informative)
108
6.12.6.1.1
Request
108
6.12.6.1.2
Response
109
6.13
Resource: Presence information by Watcher
109
6.13.1
Request URL variables
109
6.13.2
Response Codes and Error Handling
109
6.13.3
GET
109
6.13.3.1
Example 1: retrieving all presence information for Presentity (Informative)
110
6.13.3.1.1
Request
110
6.13.3.1.2
Response
110
6.13.3.2
Example 2: retrieving presence for Presentity by using filter (Informative)
111
6.13.3.2.1
Request
111
6.13.3.2.2
Response
111
6.13.4
PUT
111
6.13.5
POST
111
6.13.6
DELETE
111
6.14
Resource: Individual presence attribute by Watcher
112
6.14.1
Request URL variables
112
6.14.1.1
Light-weight relative resource paths
112
6.14.2
Response Codes and Error Handling
113
6.14.3
GET
113
6.14.3.1
Example: retrieving individual presence attribute for Presentity (Informative)
113
6.14.3.1.1
Request
113
6.14.3.1.2
Response
113
6.14.4
PUT
114
6.14.5
POST
114
6.14.6
DELETE
114
6.15
Resource: Presence information by Watcher for a Presence List
114
6.15.1
Request URL variables
114
6.15.2
Response Codes and Error Handling
114
6.15.3
GET
114
6.15.3.1
Example: retrieving presence information for all Presentities in a Presence List (Informative)
115
6.15.3.1.1
Request
115
6.15.3.1.2
Response
115
6.15.4
PUT
116
6.15.5
POST
116
6.15.6
DELETE
116
6.16
Resource: Content by Watcher
116
6.16.1
Request URL variables
117
6.16.2
Response Codes and Error Handling
117
6.16.3
GET
117
6.16.3.1
Example: retrieving content by Watcher (Informative)
117
6.16.3.1.1
Request
117
6.16.3.1.2
Response
117
6.16.4
PUT
117
6.16.5
POST
117
6.16.6
DELETE
118
6.17
Resource: All subscriptions
118
6.17.1
Request URL variables
118
6.17.2
Response Codes and Error Handling
118
6.17.3
GET
118
6.17.3.1
Example: retrieving all active subscriptions for user (Informative)
118
6.17.3.1.1
Request
118
6.17.3.1.2
Response
118
6.17.4
PUT
120
6.17.5
POST
120
6.17.6
DELETE
120
6.18
Resource: All Watchers subscriptions
120
6.18.1
Request URL variables
120
6.18.2
Response Codes and Error Handling
120
6.18.3
GET
120
6.18.3.1
Example: retrieving all Watchers subscriptions (Informative)
121
6.18.3.1.1
Request
121
6.18.3.1.2
Response
121
6.18.4
PUT
121
6.18.5
POST
122
6.18.5.1
Example: creating new Watchers subscription, using tel URI (Informative)
122
6.18.5.1.1
Request
122
6.18.5.1.2
Response
122
6.18.5.2
Example: creating new Watchers subscription, using ACR (Informative)
123
6.18.5.2.1
Request
123
6.18.5.2.2
Response
123
6.18.6
DELETE
123
6.19
Resource: Individual Watchers subscription
124
6.19.1
Request URL variables
124
6.19.2
Response Codes and Error Handling
124
6.19.3
GET
124
6.19.3.1
Example: retrieving individual Watchers subscription (Informative)
124
6.19.3.1.1
Request
124
6.19.3.1.2
Response
124
6.19.4
PUT
125
6.19.4.1
Example: updating individual Watchers subscription (Informative)
125
6.19.4.1.1
Request
125
6.19.4.1.2
Response
125
6.19.5
POST
126
6.19.6
DELETE
126
6.19.6.1
Example: terminating individual Watchers subscription (Informative)
126
6.19.6.1.1
Request
126
6.19.6.1.2
Response
126
6.20
Resource: Watchers notification
126
6.20.1
Request URL variables
127
6.20.2
Response Codes and Error Handling
127
6.20.3
GET
127
6.20.4
PUT
127
6.20.5
POST
127
6.20.5.1
Example 1: notifying Presentity about change in Watchers status (Informative)
127
6.20.5.1.1
Request
127
6.20.5.1.2
Response
128
6.20.5.2
Example2: notifying Presentity about subscription time out (Informative)
128
6.20.5.2.1
Request
128
6.20.5.2.2
Response
128
6.20.5.3
Example3: notifying Presentity about termination of Watchers subscription (reason unknown) (Informative)
128
6.20.5.3.1
Request
128
6.20.5.3.2
Response
129
6.20.6
DELETE
129
6.21
Resource: All presence subscriptions
129
6.21.1
Request URL variables
129
6.21.2
Response Codes and Error Handling
129
6.21.3
GET
130
6.21.3.1
Example: retrieving all presence subscriptions for all Presentities (Informative)
130
6.21.3.1.1
Request
130
6.21.3.1.2
Response
130
6.21.4
PUT
131
6.21.5
POST
131
6.21.6
DELETE
131
6.22
Resource: Presence subscriptions for a single Presentity
131
6.22.1
Request URL variables
131
6.22.2
Response Codes and Error Handling
131
6.22.3
GET
131
6.22.3.1
Example: retrieving all presence subscriptions for Presentity (Informative)
132
6.22.3.1.1
Request
132
6.22.3.1.2
Response
132
6.22.4
PUT
132
6.22.5
POST
133
6.22.5.1
Example 1: creating new presence subscription for Presentity (Informative)
133
6.22.5.1.1
Request
133
6.22.5.1.2
Response
133
6.22.5.2
Example 2: creating new presence subscription for unknown Presentity (Informative)
134
6.22.5.2.1
Request
134
6.22.5.2.2
Response
134
6.22.6
DELETE
134
6.23
Resource: Individual presence subscription
134
6.23.1
Request URL variables
135
6.23.2
Response Codes and Error Handling
135
6.23.3
GET
135
6.23.3.1
Example: retrieving individual presence subscription (Informative)
135
6.23.3.1.1
Request
135
6.23.3.1.2
Response
135
6.23.4
PUT
136
6.23.4.1
Example: updating individual presence subscription (Informative)
136
6.23.4.1.1
Request
136
6.23.4.1.2
Response
136
6.23.5
POST
137
6.23.6
DELETE
137
6.23.6.1
Example: terminating individual presence subscription (Informative)
137
6.23.6.1.1
Request
137
6.23.6.1.2
Response
137
6.24
Resource: Presence notification
137
6.24.1
Request URL variables
138
6.24.2
Response Codes and Error Handling
138
6.24.3
GET
138
6.24.4
PUT
138
6.24.5
POST
138
6.24.5.1
Example 1: notifying Watcher about presence information updates from an active subscription (Informative)
139
6.24.5.1.1
Request
139
6.24.5.1.2
Response
139
6.24.5.2
Example 2: notifying Watcher about presence information updates from pending subscription (Informative)
139
6.24.5.2.1
Request
139
6.24.5.2.2
Response
140
6.24.5.3
Example 3: notifying Watcher about termination of presence subscription (reason unknown) (Informative)
140
6.24.5.3.1
Request
140
6.24.5.3.2
Response
140
6.24.5.4
Example 4: notifying Watcher about termination of presence subscription (Watcher blocked) (Informative)
140
6.24.5.4.1
Request
140
6.24.5.4.2
Response
141
6.24.6
DELETE
141
6.25
Resource: All Presence List subscriptions
141
6.25.1
Request URL variables
141
6.25.2
Response Codes and Error Handling
141
6.25.3
GET
141
6.25.3.1
Example: retrieving all Presence List subscriptions towards all Presence Lists (Informative)
142
6.25.3.1.1
Request
142
6.25.3.1.2
Response
142
6.25.4
PUT
142
6.25.5
POST
143
6.25.6
DELETE
143
6.26
Resource: Presence List subscriptions for a single Presence List
143
6.26.1
Request URL variables
143
6.26.2
Response Codes and Error Handling
143
6.26.3
GET
143
6.26.3.1
Example: retrieving all Presence List subscriptions towards a single Presence List (Informative)
144
6.26.3.1.1
Request
144
6.26.3.1.2
Response
144
6.26.4
PUT
144
6.26.5
POST
144
6.26.5.1
Example: creating new Presence List subscription towards a single Presence List (Informative)
144
6.26.5.1.1
Request
144
6.26.5.1.2
Response
145
6.26.6
DELETE
145
6.27
Resource: Individual Presence List subscription
146
6.27.1
Request URL variables
146
6.27.2
Response Codes and Error Handling
146
6.27.3
GET
146
6.27.3.1
Example: retrieving individual Presence List subscription (Informative)
146
6.27.3.1.1
Request
146
6.27.3.1.2
Response
146
6.27.4
PUT
147
6.27.4.1
Example: updating individual Presence List subscription (Informative)
147
6.27.4.1.1
Request
147
6.27.4.1.2
Response
148
6.27.5
POST
148
6.27.6
DELETE
148
6.27.6.1
Example: terminating individual Presence List subscription (Informative)
148
6.27.6.1.1
Request
148
6.27.6.1.2
Response
148
6.28
Resource: Presence List notification
148
6.28.1
Request URL variables
149
6.28.2
Response Codes and Error Handling
149
6.28.3
GET
149
6.28.4
PUT
149
6.28.5
POST
149
6.28.5.1
Example 1: notifying Watcher about presence information updates relating to Presence List (Informative)
149
6.28.5.1.1
Request
149
6.28.5.1.2
Response
150
6.28.5.2
Example 2: notifying Watcher about termination of Presence List subscription (No resource) (Informative)
150
6.28.5.2.1
Request
150
6.28.5.2.2
Response
151
6.28.5.3
Example 3: notifying Watcher about termination of presence subscription (reason unknown) (Informative)
151
6.28.5.3.1
Request
151
6.28.5.3.2
Response
151
6.28.5.4
Example 4: notifying Watcher about subscription time out (Informative)
151
6.28.5.4.1
Request
151
6.28.5.4.2
Response
152
6.28.6
DELETE
152
6.29
Resource: Presentity portrait icon
152
6.29.1
Request URL variables
152
6.29.2
Response Codes and Error Handling
152
6.29.3
GET
153
6.29.3.1
Example: retrieving portrait icon by Presentity (Informative)
153
6.29.3.1.1
Request
153
6.29.3.1.2
Response
153
6.29.4
PUT
153
6.29.4.1
Example: uploading/updating of portrait icon and setting the link to the icon as presence information
(Informative)
153
6.29.4.1.1
Request
153
6.29.4.1.2
Response
153
6.29.5
POST
153
6.29.6
DELETE
153
6.29.6.1
Example: removing portrait icon by Presentity (Informative)
154
6.29.6.1.1
Request
154
6.29.6.1.2
Response
154
7.
Fault definitions
155
7.1
Service Exceptions
155
7.1.1
SVC0220: No subscription request
155
7.1.2
SVC0221: Not a Watcher
155
7.1.3
SVC0222: Key property changes not allowed
155
7.1.4
SVC1001: Presence source does not exist
155
7.2
Policy Exceptions
156
7.2.1
POL0260: Maximum number of presence sources exceeded
156
Appendix A.
Change History (Informative)
157
A.1
Approved Version History
157
A.2
Draft/Candidate Version 1.0 History
157
Appendix B.
Static Conformance Requirements (Normative)
161
B.1
SCR for REST.Presence Server
161
B.1.1
SCR for REST.Presence.Presentity.PresenceSource Server
161
B.1.2
SCR for REST.Presence.Presentity.Individual.PresenceSource Server
161
B.1.3
SCR for REST.Presence.Presentity.Individual.PresenceSource.Attribute Server
162
B.1.4
SCR for REST.Presence.Presentity.PresenceSource.Persistent Server
162
B.1.5
SCR for REST.Presence.Presentity.PresenceSource.Persistent.Attribute Server
163
B.1.6
SCR for REST.Presence.Presentity.ContentList Server
163
B.1.7
SCR for REST.Presence.Presentity.Individual.Content Server
163
B.1.8
SCR for REST.Presence.Presentity.WatcherList Server
163
B.1.9
SCR for REST.Presence.Presentity.Individual.Watcher Server
164
B.1.10
SCR for REST.Presence.Presentity.Authorization.Rules Server
164
B.1.11
SCR for REST.Presence.Presentity.Individual.Authorization.Rule Server
164
B.1.12
SCR for REST.Presence.Presentity.Individual.Authorization.Rule.Data Server
165
B.1.13
SCR for REST.Presence.Watcher.PresenceContact Server
165
B.1.14
SCR for REST.Presence.Watcher.Individual.PresenceContact.Attribute Server
165
B.1.15
SCR for REST.Presence.Watcher.PresenceList Server
166
B.1.16
SCR for REST.Presence.Watcher.PresenceContactContent Server
166
B.1.17
SCR for REST.Presence.Subscriptions Server
166
B.1.18
SCR for REST.Presence.Presentity.Subscriptions.WatchersSubscriptions Server
166
B.1.19
SCR for REST.Presence.Presentity.Individual.Subscriptions.WatchersSubscriptions Server
167
B.1.20
SCR for REST.Presence.WatchersSubscriptions.Notifications Server
167
B.1.21
SCR for REST.Presence.Watcher.Subscriptions.PresenceSubscriptions Server
167
B.1.22
SCR for REST.Presence.Watcher.Subscriptions.PresenceSubscriptions.SinglePresentity Server
167
B.1.23
SCR for REST.Presence.Watcher.Individual.Subscriptions.PresenceSubscriptions.SinglePresentity Server
168
B.1.24
SCR for REST.Presence.PresenceSubscriptions.Notifications Server
168
B.1.25
SCR for REST.Presence.Watcher.Subscriptions.PresenceListSubscriptions Server
169
B.1.26
SCR for REST.Presence.Watcher.Subscriptions.PresenceListSubscriptions.SinglePresenceList Server
169
B.1.27
SCR for REST.Presence.Watcher.Individual.Subscriptions.PresenceListSubscriptions.SinglePresenceList
Server
170
B.1.28
SCR for REST.Presence.PresenceListSubscriptions.Notifications Server
170
B.1.29
SCR for REST.Presence.Presentity.Portrait.Icon Server
170
Appendix C.
Application/x-www-form-urlencoded Request Format for POST
Operations (Normative)
172
C.1
Create Presence Source
172
C.1.1
Example: creating Presence Source for user (Informative)
175
C.1.1.1
Request
175
C.1.1.2
Response
176
C.2
Create authorization rule
176
C.2.1
Example: creating an authorization rule (Informative)
177
C.2.1.1
Request
177
C.2.1.2
Response
177
C.3
Create Watchers subscription
178
C.3.1
Example: creating new Watchers subscription, using tel URI (Informative)
179
C.3.1.1
Request
179
C.3.1.2
Response
179
C.3.2
Example: creating new Watchers subscription, using ACR (Informative)
180
C.3.2.1
Request
180
C.3.2.2
Response
180
C.4
Create presence subscription
181
C.4.1
Example: creating new presence subscription for Presentity (Informative)
182
C.4.1.1
Request
182
C.4.1.2
Response
183
C.5
Create Presence List subscription
183
C.5.1
Example: creating new Presence List subscription towards a single Presence List (Informative)
185
C.5.1.1
Request
185
C.5.1.2
Response
185
Appendix D.
JSON examples (Informative)
186
D.1
Retrieving all Presence Sources for user (section 6.1.3.1)
186
D.2
Retrieving of all Presence Sources metadata using a filter (section 6.1.3.2)
187
D.3
Creating Presence Source for user (section 6.1.5.1)
187
D.4
Creating Presence Source for user fails (section 6.1.5.2)
188
D.5
Retrieving Presence Source (section 6.2.3.1)
189
D.6
Retrieving Presence Source which does not exist (section 6.2.3.2)
190
D.7
Updating Presence Source (section 6.2.4.1)
190
D.8
Removing Presence Source (section 6.2.6.1)
192
D.9
Retrieving individual presence attribute (section 6.3.3.1)
192
D.10
Updating individual presence attribute (section 6.3.4.1)
192
D.11
Removing individual presence attribute (section 6.3.6.1)
193
D.12
Retrieving persistent presence information (section 6.4.3.1)
193
D.13
Updating persistent presence information (section 6.4.4.1)
193
D.14
Removing persistent presence information (section 6.4.6.1)
195
D.15
Retrieving individual persistent presence attribute (section 6.5.3.1)
195
D.16
Updating individual persistent presence attribute (section 6.5.4.1)
196
D.17
Removing individual persistent presence attribute (section 6.5.6.1)
196
D.18
Retrieving list of available contents (section 6.6.3.1)
196
D.19
Retrieving individual content by Presentity (section 6.7.3.1)
197
D.20
Uploading/updating individual content by Presentity (section 6.7.4.1)
197
D.21
Removing individual content by Presentity (section 6.7.6.1)
198
D.22
Retrieving list of Watchers (section 6.8.3.1)
198
D.23
Retrieving individual Watcher (section 6.9.3.1)
199
D.24
Retrieving all authorization rules (section 6.10.3.1)
199
D.25
Creating an authorization rule (section 6.10.5.1)
200
D.26
Creating an authorization rule, response with resourceReference (section 6.10.5.2)
200
D.27
Retrieving an authorization rule (section 6.11.3.1)
201
D.28
Updating an authorization rule (section 6.11.4.1)
201
D.29
Removing an authorization rule (section 6.11.6.1)
202
D.30
Retrieving individual authorization rule data (section 6.12.3.1)
202
D.31
Updating individual authorization rule data (section 6.12.4.1)
203
D.32
Removing individual authorization rule data (section 6.12.6.1)
203
D.33
Retrieving all presence information for Presentity (section 6.13.3.1)
203
D.34
Retrieving presence information for Presentity by using filter (section 6.13.3.2)
204
D.35
Retrieving individual presence attribute for Presentity (section 6.14.3.1)
205
D.36
Retrieving presence information for all Presentities in a Presence List (section 6.15.3.1)
205
D.37
Retrieving content by Watcher (section 6.16.3.1)
206
D.38
Retrieving all active subscriptions for user (section 6.17.3.1)
207
D.39
Retrieving all Watchers subscriptions (section 6.18.3.1)
208
D.40
Creating new Watchers subscription, using tel URI (section 6.18.5.1)
209
D.41
Creating new Watchers subscription, using ACR (section 6.18.5.1)
210
D.42
Retrieving individual Watchers subscription (section 6.19.3.1)
210
D.43
Updating individual Watchers subscription (section 6.19.4.1)
211
D.44
Terminating individual Watchers subscription (section 6.19.6.1)
212
D.45
Notifying Presentity about change in Watchers status (section 6.20.5.1)
212
D.46
Notifying Presentity about subscription time out (section 6.20.5.2)
213
D.47
Notifying Presentity about termination of Watchers subscription (reason unknown) (section
6.20.5.3)
213
D.48
Retrieving all presence subscriptions for all Presentities (section 6.21.3.1)
214
D.49
Retrieving all presence subscriptions for Presentity (section 6.22.3.1)
215
D.50
Creating new presence subscription for Presentity (section 6.22.5.1)
216
D.51
Creating new presence subscription for unknown Presentity (section 6.22.5.2)
217
D.52
Retrieving individual presence subscription (section 6.23.3.1)
217
D.53
Updating individual presence subscription (section 6.23.4.1)
218
D.54
Terminating individual presence subscription (section 6.23.6.1)
219
D.55
Notifying Watcher about presence information updates from an active subscription (section
6.24.5.1)
219
D.56
Notifying Watcher about presence information updates from pending subscription (section
6.24.5.2)
220
D.57
Notifying Watcher about termination of presence subscription (reason unknown) (section
6.24.5.3)
220
D.58
Notifying Watcher about termination of presence subscription (Watcher blocked) (section
6.24.5.4)
221
D.59
Retrieving all Presence List subscriptions towards all Presence Lists (section 6.25.3.1)
221
D.60
Retrieving all Presence List subscriptions towards a single Presence List (section 6.26.3.1)
222
D.61
Creating new Presence List subscription towards a single Presence List (section 6.26.5.1)
223
D.62
Retrieving individual Presence List subscription (section 6.27.3.1)
224
D.63
Updating individual Presence List subscription (section 6.27.4.1)
225
D.64
Terminating individual Presence List subscription (section 6.27.6.1)
226
D.65
Notifying Watcher about presence information updates relating to Presence List (section
6.28.5.1)
226
D.66
Notifying Watcher about termination of Presence list subscription (No resource) (section
6.28.5.2)
227
D.67
Notifying Watcher about termination of presence subscription (reason unknown) (section
6.28.5.3)
227
D.68
Notifying Watcher about subscription time out (section 6.28.5.4)
228
D.69
Retrieving portrait icon by Presentity (section 6.29.3.1)
228
D.70
Uploading/updating of portrait icon and setting the link to the icon as presence information
(section 6.29.4.1)
229
D.71
Removing portrait icon by Presentity (section 6.29.6.1)
229
Appendix E.
Parlay X operations mapping (Informative)
230
Appendix F.
Light-weight Resources (Informative)
231
Appendix G.
Authorization aspects (Normative)
234
G.1
Use with OMA Authorization Framework for Network API
234
G.1.1
Scope values
234
G.1.1.1
Definitions
234
G.1.1.2
Downscoping
234
G.1.1.3
Mapping with resources and methods
235
G.1.2
Use of ‘acr:auth’
240

Figures

22Figure 1 Resource structure defined by this specification

68Figure 2 Creation of Presence Source, and subscription to Watchers information

71Figure 3 Subscription for presence information, and Watcher authorization

73Figure 4 Update of presence information

74Figure 5 Termination of subscriptions for Watchers, and presence information

Tables

230Table 1: Parlay X operations mapping

233Table 2: Light-weight Resources for Presence

234Table 3: Scope values for RESTful Presence API

236Table 4: Required scope values for: Management of presence information on behalf of Presentity

237Table 5: Required scope values for: Retrieval of Watchers information by Presentity

237Table 6: Required scope values for: Management of subscriptions to notifications for Watchers information

238Table 7: Required scope values for: Management of authorization rules for accessing presence information

238Table 8: Required scope values for: Retrieval of presence information by Watcher

239Table 9: Required scope values for: Management of subscriptions to notifications for presence information

1. Scope

This specification defines a RESTful Presence API using an HTTP protocol binding, based on similar API defined in [3GPP 29.199-14].
2. References

2.1 Normative References

	[3GPP 29.199-14]
	3GPP Technical Specification, “Open Service Access (OSA); Parlay X Web Services; Part X: Presence (Release 8)”,
URL:http://www.3gpp.org/

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, July 2011, URL: http://tools.ietf.org/html/draft-uri-acr-extension-03

	[ISO.3166-2]
	“Codes for the representation of names of countries and their subdivisions – Part 2: Country subdivision code”, International Organisation for Standardization, ISO Standard 3166-2:2007

	[OMA_DDS]
	“Presence SIMPLE Data Specification”, Open Mobile Alliance™, OMA-DDS-Presence_Data_Ext_V2_1,
URL:http://www.openmobilealliance.org/

	[OMNA]
	Open Mobile Naming Authority, URL: http://www.openmobilealliance.org/Tech/OMNA.aspx

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0,
URL:http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_Presence]
	“XML schema for the RESTful Network API for Presence”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_presence-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3261]
	“SIP: Session Initiation Protocol”, J. Rosenberg et al., June 2002,
URL: http://www.rfc-editor.org/rfc/rfc3261.txt

	[RFC3265]
	“Session Initiation Protocol (SIP)-Specific Event Notification”, A.B. Roach, Jun 2002,
URL: http://www.ietf.org/rfc/rfc3265.txt

	[RFC3857]
	“A Watcher Information Event Template-Package for the Session Initiation Protocol (SIP)”, J. Rosenberg, Aug 2004,
URL: http://www.ietf.org/rfc/rfc3857.txt

	[RFC3863]
	“Presence Information Data Format (PIDF)”, H.Sugano et al., Aug 2004,
URL: http://www.ietf.org/rfc/rfc3863.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4119]
	“A Presence-based GEOPRIV Location Object Format”, J.Peterson, December 2005,
URL: http://www.ietf.org/rfc/rfc4119.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC4479]
	“A data model for Presence”, J.Rosenberg, July 2006,
URL: http://www.ietf.org/rfc/rfc4479.txt

	[RFC4480]
	“RPID: Rich Presence Extensions to the Presence Information Data Format (PIDF)”, H.Schulzrinne, V.Gurbani, P.Kyzivat, J.rosenberg, July 2006, URL: http://www.ietf.org/rfc/rfc4480.txt

	[RFC4482]
	“CIPID: Contact Information for the Presence Information Data Format”, H. Schulzrinne. July 2006,
URL: http://www.ietf.org/rfc/rfc4482.txt

	[RFC5139]
	“Revised Civic Location Format for Presence Information Data Format Location Object (PIDF-LO)”. M. Thomson, J. Winterbottom, February 2008, URL: http://www.ietf.org/rfc/rfc5139.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_URLENC]
	HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium, URL: http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

	[W3C_XML11]
	W3C XML 1.1 Specification, URL: http://www.w3.org/TR/xml11/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition,
URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition,
URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[OMA_PRS_RD]
	“Presence SIMPLE Requirements“, Version 2.0, Open Mobile Alliance™, OMA-RD-Presence_SIMPLE-V2_0, URL: http://www.openmobilealliance.org/

	[OMA_PRS_AD]
	“Presence SIMPLE Architecture” Version 2.0, Open Mobile Alliance™, OMA-AD-Presence-V2_0, URL: http://www.openmobilealliance.org/

	[ParlayREST_Presence]
	“RESTful bindings for Parlay X Web Services – Presence”, Version 1.0, Open Mobile Alliance™, OMA-TS-ParlayREST_Presence-V1_0, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions
	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure

	Light-weight resource key property
	A child element of an element that can be accessed as a Light-weight Resource which uniquely identifies its parent element among its siblings in the XML element tree.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Presence List
	A pre-defined list of Presentities, e.g. stored on a server via [REST_NetAPI_AddressBook], which enables a Watcher to subscribe for or retrieve presence information of multiple Presentities using a single request.

	Presence Source
	An entity that on behalf of a Presentity is publishing presence information that is valid only a certain time unless it is not refreshed by the Presence Source.

In the context of this specification a Presence Source refers to an instance of a Presentity's presence information on the server. There may be zero or more Presence Sources related to a given Presentity at a given time.

	Presentity
	A logical entity that has presence information associated with it. A Presentity is most commonly a reference for a person, although it may represent a role such as “help desk” or a resource such as “conference room #27”.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

	Watcher
	Any uniquely identifiable entity that requests presence information about a Presentity.

Additionally, all definitions from the OMA Dictionary [OMADICT] and Presence specific definitions from [OMA_PRS_RD] and [OMA_PRS_AD] apply.
3.3 Abbreviations

	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	GPRS
	General Packet Radio Service

	GSM
	Global System for Mobile communication

	HTTP
	HyperText Transfer Protocol

	IMS
	IP Multimedia Subsystem

	IP
	Internet Protocol

	ISDN
	Integrated Services Digital Network

	JPEG
	Joint Photographic Experts Group

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	MSISDN
	Mobile Subscriber ISDN Number

	OMA
	Open Mobile Alliance

	OMNA
	Open Mobile Naming Authority

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	UTC
	Universal Time Coordinated

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification for the RESTful Network API for Presence contains HTTP protocol bindings based on the Parlay X Presence Web Services [3GPP 29.199-14] specification, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-urlencoded).
4.1 Version 1.0

The RESTful Network API for Presence V1.0 is a republication of the ParlayREST Presence API V1.0 [ParlayREST_Presence] as part of the suite of OMA RESTful Network APIs.
Bug fixes and structural changes to fit that suite, but also functional changes have been applied.
Version 1.0 of the RESTful Network API for Presence keeps supporting the following operations:
· Presentity manages presence information with a certain time-to-live

· Presentity manages persistent presence information
· Presentity manages own content

· Presentity retrieves Watchers to its presence information
· Presentity manages authorization rules

· Watcher retrieves presence information for a single Presentity

· Watcher retrieves presence information for Presentities in a Presence List

· Watcher retrieves content from a Presentity

· Presentity retrieves all active subscriptions

· Watcher retrieves all active subscriptions

· Presentity manages subscriptions for Watchers
· Watcher manages presence subscriptions for single Presentities

· Watcher manages presence subscriptions for Presence Lists

The following new functionality has been introduced:
· Presentity manages own portrait icon using a dedicated resource
· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in a resource URL variable that identifies an end user
5. Presence API definition
This section is organized to support a comprehensive understanding of the Presence API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common], Presence specific terminology and conventions are defined in [OMA_PRS_RD] and [OMA_PRS_AD].
The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy, followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Application/x-www-form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions. Appendix B provides the Static Conformance Requirements (SCR).
Appendix E lists the Parlay X equivalent method for each supported REST resource and method combination, where applicable.
Appendix F provides a list of all Light-weight Resources, where applicable.

Appendix G defines authorization aspects to control access to the resources defined in this specification.
Note: Throughout this document client and application can be used interchangeably.

5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Presence.

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.

[image: image2.emf]//{serverRoot}/presence/{apiVersion}

/{userId}

/authorization

/presenceContactsContent

/presenceContacts

/presenceLists

/{presenceSourceId}

/persistent

/rules

/{ruleId}

/{presentityUserId}

/{presenceListId}

/{presentityUserId}

/{contentId}

/{presentityUserId}

/{subscriptionId}

/{subscriptionId}

/{subscriptionId}

/watchersSubscriptions

/{presenceListId}

/subscriptions

/watchers

/{watcherUserId}

/presenceSources

/presenceSubscriptions

/presenceListSubscriptions

The {userId} is in the Watcher role

The {userId} is in the Presentity role

The {userId} is in both Watcher & Presentity role

/[ResourceRelPath]

/[ResourceRelPath]

/[ResourceRelPath]

/[ResourceRelPath]

Relative path for light-weight resource

/{contentId}

/content

/portraitIcon

//{serverRoot}/presence/{apiVersion}

/{userId}

/authorization

/presenceContactsContent

/presenceContacts

/presenceLists

/{presenceSourceId}

/persistent

/rules

/{ruleId}

/{presentityUserId}

/{presenceListId}

/{presentityUserId}

/{contentId}

/{presentityUserId}

/{subscriptionId}

/{subscriptionId}

/{subscriptionId}

/watchersSubscriptions

/{presenceListId}

/subscriptions

/watchers

/{watcherUserId}

/presenceSources

/presenceSubscriptions

/presenceListSubscriptions

The {userId} is in the Watcher role

The {userId} is in the Presentity role

The {userId} is in both Watcher & Presentity role

/[ResourceRelPath]

/[ResourceRelPath]

/[ResourceRelPath]

/[ResourceRelPath]

Relative path for light-weight resource

/{contentId} /{contentId}

/content

/portraitIcon

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Purpose: To allow Presentity to manage own presence information
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Presence Sources
	/{userId}/presenceSources
	PresenceSourceList (Used for GET)

PresenceSource (Used for POST)

common:ResourceReference (optional alternative for POST response)
	Retrieves all Presence Sources related to a Presentity
	no
	Creates a new Presence Source for a Presentity
	no

	Individual Presence Source
	/{userId}/presenceSources/{presenceSourceId}
	PresenceSource (Used for PUT/GET)
	Retrieves presence information for a Presentity for a specified Presence Source
NOTE: Watcher SHALL NOT use this operation
	Updates presence information for a Presentity for a specified Presence Source
	no
	Removes presence information for a Presentity for a specified Presence Source

	Individual Presence Source attribute
	/{userId}/presenceSources/{presenceSourceId}/[ResourceRelPath]
	The data structure corresponds to an element within the PresenceSource structure pointed out by the request-URL.
(Used for PUT/GET)
	Retrieves the value of a specified presence attribute for a specified Presence Source
	Creates or updates a presence attribute for a specified Presence Source
	no
	Removes a presence attribute for a specified Presence Source

	Persistent Presence Source
	/{userId}/presenceSources/persistent
	PresenceSource
	Retrieves persistent presence information for a Presentity
	Creates or updates persistent presence information for a Presentity
	no
	Removes persistent presence information for a Presentity.

	Individual persistent Presence Source attribute
	/{userId}/presenceSources/persistent/[ResourceRelPath]
	The data structure corresponds to an element within the PresenceSource structure pointed out by the request-URL.
(Used for PUT/GET)
	Retrieves the value of a specified persistent presence attribute
	Creates or updates a persistent presence attribute
	no
	Removes a persistent presence attribute.

Purpose: To allow Presentity to manage own content (e.g. pictures/avatars/icons)
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Presentity content list
	/{userId}/content
	ContentList
	Retrieves all content identities related to a Presentity
	no
	no
	no

	Individual Presentity content
	/{userId}/content/{contentId}
	Any MIME content
	Retrieves a specified content (e.g. a picture) for a Presentity
NOTE: Watcher SHALL NOT use this operation
	Creates or replaces a specified content for a Presentity on the server
	no
	Removes a specified content from the server

	Presentity portrait icon
	/{userId}/content/portraitIcon
	Any MIME content that represents an image
	Retrieves a portrait icon for a Presentity

NOTE: Watcher SHALL NOT use this operation
	Creates or replaces a portrait icon for a Presentity on the server and at the same time the server sets/updates the link to the icon
	no
	Removes a portrait icon for a Presentity from the server

Purpose: To allow Presentity to retrieve information about Watchers interested in the Presentity’s presence information
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Watchers list
	/{userId}/watchers
	WatcherList
	Retrieves a list of Watchers interested in the Presentity’s presence information, including the current subscription status
	no
	no
	no

	Individual Watcher
	/{userId}/watchers/{watcherUserId}
	Watcher
	Retrieves the current subscription status and the subscribed attributes for a specified Watcher
	no
	no
	no

Purpose: To allow Presentity to control access to presence information for Watchers, member lists or domains.
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Authorization rules
	/{userId}/authorization/rules
	RuleList
(Used for GET)
Rule
(Used for POST)
common:ResourceReference (optional alternative for POST response)
	Retrieves all authorization rules
	no
	Creates a new authorization rule
	no

	Individual authorization rule
	/{userId}/authorization/rules/{ruleId}
	Rule (Used for PUT/GET)
	Retrieves a specified authorization rule
	Updates a specified authorization rule
	no
	Removes a specified authorization rule

	Individual authorization rule data
	/{userId}/authorization/rules/{ruleId}/[ResourceRelPath]
	The data structure corresponds to the element pointed out by the request-URL.
(Used for PUT/GET)
	Retrieves a specified rule data for a specified authorization rule
	Creates or updates a specified rule data for a specified authorization rule
	no
	Removes a specified rule data from a specified authorization rule

Purpose: To allow Watcher to retrieve presence information from a single Presentity or a Presence List
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Presence information by Watcher for a list of presenceContacts provided in the request
	/{userId}/presenceContacts/
	PresenceList
	Option to be considered:
Retrieves a composite presence information from a list of contacts provided in the query string

	no
	Retrieves a composite presence information from a list of contacts provided in the request

	no

	Presence information by Watcher for a single Presentity
	/{userId}/presenceContacts/{presentityUserId}
	PresenceContact
	Retrieves a composite presence information from a Presentity
Note: Retrieved presence information MAY include presence information from several Presence Sources
	no
	no
	no

	Individual presence attribute by Watcher
	/{userId}/presenceContacts/{presentityUserId}/[ResourceRelPath]
	The data structure corresponds to an element within the PresenceContact structure pointed out by the request-URL.
	Retrieves a specified presence attribute for a Presentity
	no
	no
	no

	Presence information by Watcher for a Presence List
	/{userId}/presenceLists/{presenceListId}
	PresenceList
	Retrieves presence information for all Presentities in a specified Presence (member) List
	no
	no
	no

Purpose: To allow Watcher to retrieve content from a Presentity
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Content by Watcher
	/{userId}/PresenceContactsContent/{presentityUserId}/{contentId}
	Any MIME content
	Retrieves a specified content (e.g. picture) for a specified Presentity
	no
	no
	no

Purpose: To allow a user (in both Watcher and Presentity role) to retrieve own subscriptions
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions
	/{userId}/subscriptions
	SubscriptionList
	Retrieves all active subscriptions for a user
	no
	no
	no

Purpose: To allow Presentity to manage subscriptions for notifications on changes in Watchers information
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Watchers subscriptions
	/{userId}/subscriptions/watchersSubscriptions
	WatchersSubscriptionList
(Used for GET)

WatchersSubscription
(Used for POST)

common:ResourceReference (optional alternative for POST response)
	Retrieves all subscriptions related to the Watchers list
	no
	Creates a subscription for notifications on changes in the Watchers list
	no

	Individual Watchers subscription
	/{userId}/subscriptions/watchersSubscriptions/{subscriptionId}
	WatchersSubscription
	Retrieves a specified subscription to changes in the Watchers list
	Updates a specified subscription to the Watchers list
	no
	Terminates a specified subscription to the Watchers list

Purpose: To allow the server to inform Presentity about changes in Watchers subscription status
	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Watchers notification
	<Specified by the client when the subscription for notifications on changes in the Watchers information list is created, or during provisioning process>
	WatchersNotification
	no
	no
	Notifies the client about changes in the Watcher’s subscription status
	no

Purpose: To allow Watcher to manage own subscriptions for notifications on changes in presence information for a Presentity
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All presence subscriptions
	/{userId}/subscriptions/presenceSubscriptions
	PresenceSubscriptionList
	Retrieves all active subscriptions for presence information for all Presentities
	no
	no
	no

	Presence subscriptions for a single Presentity
	/{userId}/subscriptions/presenceSubscriptions/{presentityUserId}
	PresenceSubscriptionList
(Used for GET)

PresenceSubscription
(Used for POST)

common:ResourceReference (optional alternative for POST response)
	Retrieves all active subscriptions for presence information for a specified Presentity
	no
	Creates a subscription for notification on changes in presence information for a specified Presentity
	no

	Individual presence subscription
	/{userId}/subscriptions/presenceSubscriptions/{presentityUserId}/{subscriptionId}
	PresenceSubscription
(Used for GET/PUT)
	Retrieves a specified active subscription for presence information
	Updates a specified subscription for presence information
	no
	Terminates a specified subscription for presence information

Purpose: To allow the server to inform Watcher about changes in presence information for a Presentity
	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Presence notification
	<Specified by the client when the subscription for notification on changes in presence information for a single Presentity is created, or during provisioning process>
	PresenceNotification
	no
	no
	Notifies the client about changes in presence information for a single Presentity
	no

Purpose: To allow Watcher to manage own subscriptions for notifications on changes in presence information for a Presence List
	Resource
	URL
Base URL:
http://{serverRoot}/presence/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Presence List subscriptions
	/{userId}/subscriptions/presenceListSubscriptions
	PresenceListSubscriptionCollection
	Retrieves all active Presence List subscriptions for all Presence Lists
	no
	no
	no

	Presence List subscriptions for a single Presence List
	/{userId}/subscriptions/presenceListSubscriptions/{presenceListId}
	PresenceListSubscriptionCollection
(Used for GET)

PresenceListSubscription
(Used for POST)

common:ResourceReference (optional alternative for POST response)
	Retrieves all active Presence List subscriptions for a specified Presence List
	no
	Creates a subscription for notifications on changes in presence information for a specified Presence list
	no

	Individual Presence List subscription
	/{userId}/subscriptions/presenceListSubscriptions/{presenceListId}/{subscriptionId}
	PresenceListSubscription
(Used for GET/PUT)
	Retrieves a specified Presence list subscription
	Updates a specified Presence List subscription
	no
	Terminates a specified Presence List subscription

Purpose: To allow the server to inform Watcher about changes in presence information for Presentities in a Presence List
	Resource
	URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Presence List notification
	<Specified by the client when the subscription for notifications on changes in presence information for a Presence List is created, or during provisioning process>
	PresenceListNotification
	no
	no
	Notifies the client about changes in presence information for a Presence List
	no

5.2 Data Types

5.2.1 XML Namespaces
The namespace for the Presence data types is:

urn:oma:xml:rest:netapi:presence:1
The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of the names 'xsd' and ‘common’ is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_Presence].
Applications following the RESTful Network API for Presence V 1.0 specification SHALL use the namespace urn:oma:xml:rest:netapi:presence:1.

Note: Server implementations can choose to also support the legacy namespace urn:oma:xml:rest:presence:1 for the Presence data types, in order to allow backwards-compatibility with [ParlayREST_Presence] applications. Use of this legacy namespace is deprecated and support is foreseen to be withdrawn in future versions of this specification. In messages sent from the server to the application, the legacy namespace is suggested to be used by the server if it was used by a legacy application in the corresponding request or subscription message
5.2.2 Structures

The subsections of this section define the data structures used in the Presence API.

Some of the structures can be instantiated as so-called root elements, i.e. they define the type of a representation of a so-called Heavy-weight Resource.

The column [ResourceRelPath] in the tables below, if used, includes relative resource paths for Light-weight Resource URLs that are used to access individual elements in the data structure (so-called Light-weight Resources). A string from this column needs to be appended to the corresponding Heavy-weight Resource URL in order to create Light-weight Resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath].
For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.

5.2.2.1 Type: PresenceSourceList
This type describes a list of Presence Sources.
	Element
	Type
	Optional
	Description

	presenceSource
	PresenceSource [0..unbounded]
	Yes
	A list of Presence Sources

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named presenceSourceList of type PresenceSourceList is allowed in response bodies.

5.2.2.2 Type: PresenceSource
This type defines a set of parameters for the Presence Source.
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	clientCorrelator
	xsd:string
	Yes
	Not applicable
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element SHOULD be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate Presence Source creation in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	applicationTag
	xsd:string
	Yes
	Not applicable
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.
This attribute SHALL NOT be present in case of persistent Presence Source.

	duration
	xsd:int
	Yes
	duration
	Specifies the duration of the publication life time in seconds. When this time has elapsed the Presence Source will expire unless it has been refreshed.
If the parameter is omitted, a default value specified by the server policy will be used for the publication life time.
A too low value (including “0”) will result in an error response. What is too low is defined by server policy.

A too high requested value may be reduced by the server according to the service policy.

This element SHALL NOT be present in case of persistent Presence Source.

	presence
	Presence
	Yes
	Not applicable
	Contains the actual presence attributes. This element SHALL be present in all requests and responses except in the response to GET request with a filter suppressing the element.

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named presenceSource of type PresenceSource is allowed in request and/or response bodies.
Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.
Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

Note that applicationTag is used to enable a particular application instance to pick up a previously created resource (if it exists) and continue to operate on it. A typical usage is that a client will perform a GET on the parent resource and in the response receive a list of previously created resources from where the application is able to find its previously created resource. It is up to the client application how to construct the application tag. Please note that a typical usage of the client correlator is not enough for a stateless application to identify a previously created resource since it is uniquely generated every time a new resource is created.
5.2.2.3 Type: Presence
This type defines a set of presence attributes for a Presence Source.
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	person
	PersonAttributes
	Yes
	person
	The presence attributes related to a person

	service
	ServiceAttributes [0..unbounded]
	Yes
	service/{serviceId}/{version}

	The presence attributes related to services.
For description of ‘serviceId’ and ‘version’ see 5.2.2.5.

The sub-elements ‘serviceId’ and ‘version’ of the type ServiceAttributes are key properties of service element and SHALL NOT be altered when this element is accessed as a Light-weight Resource.

	device
	DeviceAttributes [0..unbounded]
	Yes
	device/{deviceId}
	The presence attributes related to devices.
For description of ‘deviceId’ see 5.2.2.6.

The sub-element ‘deviceId’ of the type DeviceAttribute is a key property for device element and SHALL NOT be altered when this element is accessed as a Light-weight Resource.

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.2.4 Type: PersonAttributes
This type defines a set of presence attributes that relate to a person.

	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	activities
	Activities
	Yes
	person/activities
	The Presentity's activity (e.g. available, busy, lunch, etc.). See [RFC4480].

	placeType
	PlaceType
	Yes
	person/placeType
	At what kind of place the Presentity is (e.g. home, office, etc.). See [RFC4480].

	privacy
	Privacy
	Yes
	person/privacy
	The amount of privacy the user wants (e.g. public, quiet, etc.). See [RFC4480].

	sphere
	Sphere
	Yes
	person/sphere
	The user's current environment (e.g. work, home). See [RFC4480].

	mood
	Mood
	Yes
	person/mood
	The user’s mood (e.g. angry, confused, happy, etc.). See [RFC4480].

	placeIs
	PlaceIs
	Yes
	person/placeIs
	Describes the properties of the place the user is currently at. See [RFC4480].

	timeOffset
	TimeOffset
	Yes
	person/timeOffset
	Describes the number of minutes of offset from UTC that the user is currently at. See [RFC4480].

	statusIcon
	StatusIcon
	Yes
	person/statusIcon
	Contains a link to an icon of the user. See [RFC4480].

	class
	xsd:token
	Yes
	person/class
	Defines the particular class. See [RFC4480].

	noteList
	NoteList
	Yes
	person/noteList
	Contains taglines of the user. See [RFC4479].

	location
	Location
	Yes
	person/location
	Location of a person. See [RFC5491] and [RFC5139].

	overridingWillingness
	OverridingWillingness
	Yes
	person/overridingWillingness
	The overriding willingness for a person. See [OMA_DDS].

	linkList
	LinkList
	Yes
	person/linkList
	Defines labeled links for a person. See [OMA_DDS].

	card
	xsd:anyURI
	Yes
	person/card
	URI to a business card. See [RFC4482].

	displayName
	xsd:string
	Yes
	person/displayName
	A display name of a person. See [RFC4482].

	homePage
	xsd:anyURI
	Yes
	person/homePage
	URI pointing to general information about a person. See [RFC4482].

	icon
	xsd:anyURI
	Yes
	person/icon
	URI pointing to an image/icon of the person. See [RFC4482].
Note: It is recommended to use the StatusIcon for sharing icons/avatars between users.

	map
	xsd:anyURI
	Yes
	person/map
	URI pointing to a map related to the person. See [RFC4482].

	sound
	xsd:anyURI
	Yes
	person/sound
	URI pointing to a sound related to the person. See [RFC4482].

	timestamp
	xsd:dateTime
	Yes
	person/timestamp
	Timestamp of the latest update.

Mandatory in responses. See [RFC3863].

	extended
	ExtendedList
	Yes
	person/extended
	Attributes for extended presence information

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].
5.2.2.5 Type: ServiceAttributes
This type defines a set of presence attributes that relate to a service.
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	serviceId
	xsd:token
	No
	Not applicable
	Identifier of the service. It is a key property of the service and SHALL NOT be altered when included in the Light-weight Resource URL.

NOTE: It is recommended that standards developing organizations making use of the serviceId element register it within OMNA Presence Service-Description Registry [OMNA].

	version
	xsd:token
	No
	Not applicable
	The version of the specified service. It is a key property of the service and SHALL NOT be altered when included in the Light-weight Resource URL.

	statusIcon
	StatusIcon
	Yes
	service/{serviceId}/{version}/statusIcon
	Contains a link to an icon of the user. See [RFC4480].

	class
	xsd:token
	Yes
	service/{serviceId}/{version}/class
	Defines the particular class. See [RFC4480].

	displayName
	xsd:string
	Yes
	service/{serviceId}/{version}/displayName
	A display name of a Service. See [RFC4482].

	homePage
	xsd:anyURI
	Yes
	service/{serviceId}/{version}/homePage
	URI pointing to general information about a Service. See [RFC4482].

	Icon
	xsd:anyURI
	Yes
	service/{serviceId}/{version}/icon
	URI pointing to an image/icon of the Service. See [RFC4482].
Note: It is recommended to use the StatusIcon for sharing icons/avatars between users.

	map
	xsd:anyURI
	Yes
	service/{serviceId}/{version}/map
	URI pointing to a map related to the Service. See [RFC4482].

	sound
	xsd:anyURI
	Yes
	service/{serviceId}/{version}/sound
	URI pointing to a sound related to the Service. See [RFC4482].

	linkList

	LinkList
	Yes
	service/{serviceId}/{version}/linkList
	Defines labeled links for a Service. See [OMA_DDS].

	serviceAvailability
	OpenOrClosed
	Yes
	service/{serviceId}/{version}/serviceAvailability
	Service specific availability. See [OMA_DDS]

	serviceWillingness
	OpenOrClosed
	Yes
	service/{serviceId}/{version}/serviceWillingness
	Service specific willingness. See [OMA_DDS].

	contact
	Contact
	Yes
	service/{serviceId}/{version}/contact
	A contact address for a Service. See [RFC3863].

	sessionParticipation
	OpenOrClosed
	Yes
	service/{serviceId}/{version}/sessionParticipation
	Indicates a participation in a session. See [OMA_DDS].

	registrationState
	ActiveOrTerminated
	Yes
	service/{serviceId}/{version}/registrationState
	The registration state for a Service. See [OMA_DDS].

	barringState
	ActiveOrTerminated
	Yes
	service/{serviceId}/{version}/barringState
	The barring state for a Service. See [OMA_DDS].

	sessionAnswerMode
	AutomaticOrManual
	Yes
	service/{serviceId}/{version}/sessionAnswerMode
	Indicates answer mode for a session. See [OMA_DDS].

	devices
	DeviceIdentityList
	Yes
	service/{serviceId}/{version}/devices
	Identify devices which this particular Service is related to. See [RFC4479].

	timestamp
	xsd:dateTime
	Yes
	service/{serviceId}/{version}/timestamp
	Timestamp of the latest update.

Mandatory in responses. See [RFC3863].

	extended
	ExtendedList
	Yes
	service/{serviceId}/{version}/extended
	Attributes for extended presence information

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.2.6 Type: DeviceAttributes
This type defines a set of presence attributes that relate to a device.

	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	deviceId
	xsd:anyURI
	No
	Not applicable
	Identifier of the device (e.g. 'sip' URI, 'tel' URI, 'acr' URI). See [RFC4479].
It is a key property of the device and SHALL NOT be altered when included in the Light-weight Resource URL.

	class
	xsd:token
	Yes
	device/{deviceId}/class
	Defines the particular class. See [RFC4480].

	location
	Location
	Yes
	device/{deviceId}/location
	Location of a device. See [RFC5491] and [RFC5139].

	networkAvailability
	NetworkAvailability
	Yes
	device/{deviceId}/networkAvailability
	The network availability for a device. See [OMA_DDS].

	timestamp
	xsd:dateTime
	Yes
	device/{deviceId}/timestamp
	Timestamp of the latest update.

Mandatory in responses. See [RFC3863].

	extended
	ExtendedList
	Yes
	device/{deviceId}/extended
	Attributes for extended presence information

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.2.7 Type: ContentList
This type describes a list of content stored on the server.
	Element
	Type
	Optional
	Description

	content
	ContentData [0..unbounded]
	Yes
	The list of content stored on the server.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named contentList of type ContentList is allowed in response bodies.
5.2.2.8 Type: ContentData

This type describes a content stored on the server.

	Element
	Type
	Optional
	Description

	link
	Common:Link
	No
	Link to the content instance where the actual content is stored.

	contentType
	xsd:string
	Yes
	The content type of the stored content (e.g. MIME type: image/jpeg).

	eTag
	xsd:string
	Yes
	HTTP ETag identifier that includes version information related to the stored content. It can be used to detect if the content has been updated compared with a previous retrieval of the content.

	fSize
	xsd:int
	Yes
	The file size of the content in bytes (e.g. 102400)

	resolution
	xsd:string
	Yes
	The resolution of the content (used for instance if the content is an image). The value of the string is of the type “width x height” (e.g. 640x480) where width and height are specified in number of pixels.

5.2.2.9 Type: WatcherList
This type describes a list of Watchers for presence information.
	Element
	Type
	Optional
	Description

	watcher
	Watcher [0..unbounded]
	Yes
	Contains an array of Watchers subscribing for presence information for Presentity.

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named watcherList of type WatcherList is allowed in response bodies.
5.2.2.10 Type: Watcher
This type defines a set of parameters for a Watcher.

	Element
	Type
	Optional
	Description

	watcherUserId
	xsd:anyURI
	No
	The Watcher subscribing for the data (e.g. 'sip' URI, 'tel' URI, 'acr' URI).
In case that the Watcher has requested that its user identity is not revealed to the Presentity, watcherUserId could be, for example, specified as “sip:anonymous@anonymous.invalid”

	displayName
	xsd:string
	Yes
	An optional display name of the Watcher

	resourceStatus
	ResourceStatus
	No
	Describes the state of the Watcher subscription.

	subscribedAttribute
	xsd:anyURI [0..unbounded]
	Yes
	Contains a list of relative paths according to the [ResourceRelPath] in sections 5.2.2.3, 5.2.2.4, 5.2.2.5 and 5.2.2.6.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named watcher of type Watcher is allowed in response bodies.
5.2.2.11 Type: RuleList
This type describes a list of authorization rules.
	Element
	Type
	Optional
	Description

	rule
	Rule [0..unbounded]
	Yes
	Contains a list of all authorization rules.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named ruleList of type RuleList is allowed in response bodies.
5.2.2.12 Type: Rule

This type defines a set of parameters for an authorization rule.
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	ruleName
	xsd:ID
	No
	Not applicable
	A name associated with the rule.
It is a key property of the rule and SHALL NOT be altered when included in the Light-weight Resource URL.

	watcherUserId
	xsd:anyURI [1..unbounded]
	Choice
	watchers/{watcherUserId}
	Contains a list of Watcher identities (e.g. 'sip' URI, 'tel' URI, 'acr' URI).

	memberListId
	xsd:string [1..unbounded]
	Choice
	memberLists/{memberListId}
	Contains a list of member list identities.

	domainName
	xsd:string [1..unbounded]
	Choice
	domains/{domainName}
	Contains a list of domain names.

	anonymous
	(empty)
	Choice
	Not applicable
	Indicates that this rule applies for requests from anonymous.

	otherUser
	(empty)
	Choice
	Not applicable
	Allows the client to specify a default behavior for unknown users.

	decision
	DefaultDecisionValue
	No
	Not applicable
	The authorization decision for the rule

	presenceFilter
	xsd:anyURI [0..unbounded]
	Yes
	Not applicable
	Contains filter indicating which presence attributes the Watchers are allowed to see.

Please refer to the column [ResourceRelPath] in sections 5.2.2.3, 5.2.2.4, 5.2.2.5 and 5.2.2.6 for possible values of the presenceFilter with the following clarifications: The 'serviceId' MAY be specified using a "*" meaning that the rule applies to all services. The ‘version' MUST always be specified using "*". The 'deviceId' MAY be specified using a "*" meaning that the rule applies to all devices.

An empty or no-existing filter means that the Watchers have access to all presence attributes.

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named rule of type Rule is allowed in request and/or response bodies.
XSD modeling use a “choice” to select either watcherUserId, memberListId, domainName, anonymous or otherUser.
Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.2.13 Type: PresenceList
This type describes a list of presence contacts.
	Element
	Type
	Optional
	Description

	presenceContact
	PresenceContact [0..unbounded]
	Yes
	Contains presence information structure for each Presentity in the Presence List.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named presenceList of type PresenceList is allowed in response bodies.
5.2.2.14 Type: PresenceContact
This type defines a set of parameters for a presence contact.
	Element
	Type
	Optional
	Description

	presentityUserId
	xsd:anyURI
	No
	Represents the owner of the presence information (e.g. 'sip' URI, 'tel' URI, 'acr' URI).

	resourceStatus
	ResourceStatus
	Yes
	Indicates the status of the Watcher in relation to the Presentity.

This element MUST only be included when PresenceContact is used within the ‘PresenceList’ data type.

	presence
	Presence
	Yes
	The actual presence information for the Presentity

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named presenceContact of type PresenceContact is allowed in response bodies.
5.2.2.15 Type: SubscriptionList
This type describes a list of subscriptions.
	Element
	Type
	Optional
	Description

	presenceSubscriptionList
	PresenceSubscriptionList
	Yes
	Contains an array of presence subscriptions for individual users.

	presenceListSubscriptionCollection
	PresenceListSubscriptionCollection
	Yes
	Contains an array of Presence List subscriptions for Presence Lists.

	watchersSubscriptionList
	WatchersSubscriptionList
	Yes
	Contains a list of Watchers subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named subscriptionList of type SubscriptionList is allowed in response bodies.
5.2.2.16 Type: WatchersSubscriptionList
This type describes a list of subscriptions for Watchers.
	Element
	Type
	Optional
	Description

	watchersSubscription
	WatchersSubscription [0..unbounded]
	Yes
	Contains an array of Watchers subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named watchersSubscriptionList of type WatchersSubscriptionList is allowed in response bodies.

5.2.2.17 Type: WatchersSubscription
This type defines a set of parameters for a subscription to Watchers.

	Element
	Type
	Optional
	Description

	presentityUserId
	xsd:anyURI
	Yes
	Identifies the Presentity for which the subscription is created towards (e.g. 'sip' URI, 'tel' URI, 'acr' URI). Mandatory in responses.
The client SHALL NOT be allowed to update the presentityUserId in a PUT request.

	callbackReference
	common:CallbackReference
	No
	Client's notification endpoint and parameters. Contains the callback URL on which notifications will be sent to for the duration of the subscription.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.
This element MAY be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscription creation in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it..

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	duration
	xsd:int
	Yes
	Specifies the duration of the subscription in seconds. When this time has elapsed, the subscription will expire unless it has been refreshed.

The server SHALL always include the remaining duration of the subscription in the response.
A too high requested value MAY be reduced by the server according to the service policy.

If the parameter is omitted, a default value specified by the server policy will be used as the subscription life time.

	resourceStatusFilter
	ResourceStatus [0..unbounded]
	Yes
	Indicates the desired Watchers subscription statuses that the Presentity is interested to get notifications about.
If the parameter is omitted or there is an empty filter it means monitoring all states.

	frequency
	xsd:int
	Yes
	Maximum frequency of notifications, expressed as minimum time in seconds between notifications.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named watchersSubscription of type WatchersSubscription is allowed in request and/or response bodies.
Regarding the clientCorrelator and applicationTag elements, the note in section 5.2.2.2 applies.
5.2.2.18 Type: WatchersNotification

This type defines a set of parameters for the notifications about Watchers.
	Element
	Type
	Optional
	Description

	presentityUserId
	xsd:anyURI
	No
	Identifies the Presentity for which the notification is related to (e.g. 'sip' URI, 'tel' URI, 'acr' URI). Normally it is the same user who created the subscription.

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element as passed by the application in the ‘callbackReference’ element when creating a subscription to notifications on changes in Watchers list.

See [REST_NetAPI_Common] for details.

	resourceStatus
	ResourceStatus
	No
	Describes the state for the subscription for Watchers.

	watcherList
	WatcherList
	Yes
	Contains a list of Watchers including corresponding subscription status.

This element is only present if the resourceStatus=Active.

	link
	common:Link [0..unbounded]
	Yes
	Link to other resources that are in relationship with the resource.

A root element named watchersNotification of type WatchersNotification is allowed in watcher notification request.
5.2.2.19 Type: PresenceSubscriptionList
This type describes a list of presence subscriptions.
	Element
	Type
	Optional
	Description

	presenceSubscription
	PresenceSubscription [0..unbounded]
	Yes
	Can contain an array of presence subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named presenceSubscriptionList of type PresenceSubscriptionList is allowed in response bodies.
5.2.2.20 Type: PresenceSubscription
This type defines a set of parameters for the subscription for presence information.
	Element
	Type
	Optional
	Description

	presentityUserId
	xsd:anyURI
	Yes
	Identifies the Presentity for which the subscription is created towards (e.g. 'sip' URI, 'tel' URI, 'acr' URI). Mandatory in responses.
The client SHALL NOT be allowed to update the presentityUserId in a PUT request.

If presentityUserId is also part of the request URL, the two MUST have the same value.

	callbackReference
	common:CallbackReference
	No
	Client's notification endpoint and parameters. Contains the callback URL on which notifications will be sent to for the duration of the subscription.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.
This element MAY be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscription creation in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	anonymous
	(empty)
	Yes
	Allows the Watcher to request that its user identity is not revealed to the Presentity.

	duration
	xsd:int
	Yes
	Specifies the duration of the subscription in seconds. When this time has elapsed the subscription will expire unless it has been refreshed.

The server SHALL always include the remaining duration of the subscription in the response.
A too high requested value may be reduced by the server according to the service policy
If the parameter is omitted, a default value specified by the server policy will be used for the subscription life time.

	presenceFilter
	xsd:anyURI [0..unbounded]
	Yes
	Allows the Watcher to indicate what presence information he/she is interested in. The desired attributes are indicated with relative paths according to the [ResourceRelPath] in sections 5.2.2.3, 5.2.2.4, 5.2.2.5 and 5.2.2.6 with the following clarifications: The 'serviceId', 'version' and 'deviceId' MAY be specified using a "*" meaning that the filter applies to several services and devices respectively.
If the parameter is omitted or there is an empty filter it means monitoring of all attributes.

	frequency
	xsd:int
	Yes
	Maximum frequency of notifications (expressed as minimum time in seconds between notifications).

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named presenceSubscription of type PresenceSubscription is allowed in request and/or response bodies.
Regarding the clientCorrelator and applicationTag elements, the note in section 5.2.2.2 applies.

5.2.2.21 Type: PresenceNotification
This type defines a set of parameters for the presence notifications.
	Element
	Type
	Optional
	Description

	presentityUserId
	xsd:anyURI
	No
	Identifies the Presentity for which the notification is related to (e.g. 'sip' URI, 'tel' URI, 'acr' URI).

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element as passed by the application in the ‘callbackReference’ element when creating a subscription to notifications on changes in presence information for the Presentity.

See [REST_NetAPI_Common] for details.

	resourceStatus
	ResourceStatus
	No
	Indicates the status of the subscription for the Presentity.

	presence
	Presence
	Yes
	The actual presence information for the Presentity.
This element is only present if the resourceStatus=Active.

	link
	common:Link [0..unbounded]
	Yes
	Link to other resources that are in relationship with the resource.

A root element named presenceNotification of type PresenceNotification is allowed in presence notification request.
5.2.2.22 Type: PresenceListSubscriptionCollection

This type describes a collection of Presence List subscriptions.
	Element
	Type
	Optional
	Description

	presenceListSubscription
	PresenceListSubscription [0..unbounded]
	Yes
	Can contain an array of Presence List subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named presenceListSubscriptionCollection of type PresenceListSubscriptionCollection is allowed in response bodies.
5.2.2.23 Type: PresenceListSubscription
This type defines a set of parameters for the Presence List subscription.
	Element
	Type
	Optional
	Description

	presenceListId
	xsd:anyURI
	Yes
	Identifies the Presence List for which the subscription is created towards (e.g. 'sip' URI, 'tel' URI, 'acr' URI). Mandatory in responses.
The client SHALL NOT be allowed to update the presenceListId in a PUT request.

If presenceListId is also part of the request URL, the two MUST have the same value.

	callbackReference
	common:CallbackReference
	No
	Client's notification endpoint and parameters. Contains the callback URL on which notifications will be sent to for the duration of the subscription.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.
This element MAY be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscription creation in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	anonymous
	(empty)
	Yes
	Allows the Watcher to request that its user identity is not revealed to the Presentity.

	duration
	xsd:int
	Yes
	Specifies the duration of the subscription in seconds. When this time has elapsed the subscription will expire unless it has been refreshed.

The server SHALL always include the remaining duration of the subscription in the response.
A too high requested value may be reduced by the server according to service policy.

If the parameter is omitted, a default value specified by the server policy will be used for the subscription life.

	presenceFilter
	xsd:anyURI [0..unbounded]
	Yes
	Allows the Watcher to indicate what type of presence information he/she is interested in. The desired attributes are indicated with relative paths according to the [ResourceRelPath] in sections 5.2.2.3, 5.2.2.4, 5.2.2.5 and 5.2.2.6 with the following clarifications: The 'serviceId', 'version' and 'deviceId' MAY be specified using a "*" meaning that the filter applies to several services and devices respectively.
If the parameter is omitted or there is an empty filter it means monitoring of all attributes.

	frequency
	xsd:int
	Yes
	Maximum frequency of notifications (expressed as minimum time in seconds between notifications).

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named presenceListSubscription of type PresenceListSubscription is allowed in request and/or response bodies.
Regarding the clientCorrelator and applicationTag elements, the note in section 5.2.2.2 applies.

5.2.2.24 Type: PresenceListNotification
This type defines a set of parameters for the Presence List notifications.
	Element
	Type
	Optional
	Description

	presenceListId
	xsd:anyURI
	No
	Identifies the Presence List for which the notification is related to.

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element as passed by the application in the ‘callbackReference’ element when creating a subscription to notifications on changes in presence information for a Presence List.

See [REST_NetAPI_Common] for details

	resourceStatus
	ResourceStatus
	No
	Indicates the state of the subscription.

	presenceList
	PresenceList
	Yes
	Contains data for each Presentity in the Presence List.

This element is only present if the resourceStatus value is set to “Active”.

	link
	common:Link [0..unbounded]
	Yes
	Link to other resources that are in relationship with the resource.

A root element named presenceListNotification of type PresenceListNotification is allowed in presence notification request.
5.2.2.25 Type: Activities
The type defines a set of parameters for activities. It is inherited from [RFC4480].
	Element
	Type
	Optional
	Description

	activityValue
	ActivityValue [1..unbounded]
	No
	The value of the attribute as specified in the URI.

	note
	common:LanguageString
	Yes
	A textual description of what the user is currently doing.
The language of the text SHOULD be defined by populating the attribute ‘xml:lang’ of this element.

	other
	xsd:string
	Yes
	Only applicable in case activityValue is set to ”ActivitiesOther”

	from
	xsd:dateTime
	Yes
	Indicates an absolute time from which time the attribute is expected to be valid.

	until
	xsd:dateTime
	Yes
	Indicates an absolute time until which time the attribute is expected to be valid.

5.2.2.26 Type: PlaceType
The type defines a set of parameters for the type of place. It is inherited from [RFC4480].
	Element
	Type
	Optional
	Description

	placeTypeValue
	PlaceTypeValue [1..unbounded]
	No
	Indicates the type of place the person is currently at.

	note
	common:LanguageString
	Yes
	A comment about the current place the person is located at.
The language of the text SHOULD be defined by populating the attribute ‘xml:lang’ of this element.

	other
	xsd:string
	Yes
	A textual description of what type of place the person is located in. Only applicable when the placeTypeValue element is set to “PlaceOther”.

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the attribute is expected to be valid.

5.2.2.27 Type: Privacy
The type defines a set of parameters for privacy. It is inherited from [RFC4480].
	Element
	Type
	Optional
	Description

	privacyValue
	PrivacyValue [1..unbounded]
	No
	Contains the value(s) of the privacy attribute.

	note
	common:LanguageString
	Yes
	A textual description of the privacy.
The language of the text SHOULD be defined by populating the attribute ‘xml:lang’ of this element.

5.2.2.28 Type: Sphere
The type defines a set of parameters for the sphere. It is inherited from [RFC4480].
	Element
	Type
	Optional
	Description

	sphereValue
	SphereValue
	No
	Contains the value of the sphere attribute.

	<any element>
	< type is defined by the schema which implements the element>
	Yes
	Optional element which is applicable in case sphereValue is set to “SphereOther” only.

Note that element <any element> can be any element from any other namespace (schema) than the target namespace, which defines the value of the attribute. Type of such element is defined by the schema implementing the element.

In XML implementations, the element must be qualified with the namespace prefix.

5.2.2.29 Type: Mood
The type defines a set of parameters for mood. It is inherited from [RFC4480].
	Element
	Type
	Optional
	Description

	moodValue
	MoodValue [1..unbounded]
	No
	Contains the value(s) of the mood attribute.

	note
	common:LanguageString
	Yes
	A textual description of the mood for a person.
The language of the text SHOULD be defined by populating the attribute ‘xml:lang’ of this element.

	other
	xsd:string
	Yes
	Only applicable in case moodValue is set to “MoodOther”

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the attribute is expected to be valid.

5.2.2.30 Type: PlaceIs

This type defines the properties of the place the Presentity is currently at, such as the levels of light and noise. This information can be used by a Watcher to determine the type of communication that is likely to be successful.

	Element
	Type
	Optional
	Description

	placeIsAudio
	PlaceIsAudio
	Yes
	Describes place conditions for audio communication.

	placeIsVideo
	PlaceIsVideo
	Yes
	Describes place conditions for video communication.

	placeIsText
	PlaceIsText
	Yes
	Describes place conditions for real-time and instant-messaging communication.

5.2.2.31 Type: TimeOffset

This type defines a set of parameters for the time offset. It describes the number of minutes of offset from UTC that the user is currently at.

	Element
	Type
	Optional
	Description

	timeOffset
	xsd:int
	No
	Number of minutes of offset from UTC that the user is currently at.

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the attribute is expected to be valid.

5.2.2.32 Type: StatusIcon

This type defines a set of parameters for the status or portrait icon. It includes a URI pointing to an image that represents the current status or portrait/avatar of the user.

	Element
	Type
	Optional
	Description

	statusIconAddress
	xsd:anyURI
	No
	URL pointing to the content (icon)

	contentType
	xsd:string
	Yes
	The content-type related to the content

	eTag
	xsd:string
	Yes
	HTTP ETag identifier for the addressed content. The Presentity MAY specify an eTag (i.e. version) of the content allowing the Watcher to detect when the content has been updated.

	fSize
	xsd:int
	Yes
	The size of the content in bytes (e.g. 102400)

	resolution
	xsd:string
	Yes
	The resolution of the content (used for instance if the content points to an image). The value of the string is of the type “width x height” (e.g. 640x480) where width and height are specified in number of pixels.

	until
	xsd:dateTime
	Yes
	Indicates an absolute time the content is expected to be valid.

5.2.2.33 Type: NoteList
This type describes a list of notes. The note parameter is inherited from [RFC4479].
	Element
	Type
	Optional
	Description

	note
	common:LanguageString [1..unbounded]
	No
	Contains a list of taglines.
The language of the text SHOULD be defined by populating the attribute ‘xml:lang’ of this element.

5.2.2.34 Type: Location

This defines a set of parameters for the location. It is inherited from [RFC5491], [RFC4119], and [RFC5139].

	Element
	Type
	Optional
	Description

	circle
	CircleData
	Choice
	Contains parameters for definition of location in a form of a circle (e.g. latitude, longitude, and radius)

	civicAddress
	CivicAddress
	Choice
	Contains parameters for definition of location in a form of a civic address (e.g. country, city, street, post code etc.)

	retentionExpiry
	xsd:dateTime
	No
	Specifies an absolute date at which time the location information is no longer valid..

XSD modelling use a “choice” to select either circle or civicAddress.

5.2.2.35 Type: CircleData
This defines a set of parameters that describe a circle.
	Element
	Type
	Optional
	Description

	latitude
	xsd:float
	No
	Latitude of center point

	longitude
	xsd:float
	No
	Longitude of center point

	radius
	xsd:float
	Yes
	Radius of circle around center point in meters

5.2.2.36 Type: CivicAddress

This type defines a set of parameters for the civic address. The parameter names are inherited from [RFC5139].

	Element
	Type
	Optional
	Description

	country
	xsd:token
	Yes
	Two-letter according to [ISO.3166-2].

	A1
	xsd:string
	Yes
	National subdivisions (state, region, province, prefecture)

	A2
	xsd:string
	Yes
	County, parish, gun (JP), district (IN)

	A3
	xsd:string
	Yes
	City, township, shi (JP)

	A4
	xsd:string
	Yes
	City division, borough, city district, ward, chou (JP)

	A5
	xsd:string
	Yes
	Neighborhood, block

	A6
	xsd:string
	Yes
	Group of streets below the neighborhood level

	PRM
	xsd:string
	Yes
	Road pre-modifier

	PRD
	xsd:string
	Yes
	Leading street direction

	RD
	xsd:string
	Yes
	Primary road or street

	STS
	xsd:string
	Yes
	Street suffix

	POD
	xsd:string
	Yes
	Trailing street suffix

	POM
	xsd:string
	Yes
	Road post-modifier

	RDSEC
	xsd:string
	Yes
	Road section

	RDBR
	xsd:string
	Yes
	Road branch

	RDSUBBR
	xsd:string
	Yes
	Road sub-branch

	HNO
	xsd:string
	Yes
	House number, numeric part only.

	HNS
	xsd:string
	Yes
	House number suffix

	LMK
	xsd:string
	Yes
	Landmark or vanity address

	LOC
	xsd:string
	Yes
	Additional location information

	FLR
	xsd:string
	Yes
	Floor

	NAM
	xsd:string
	Yes
	Name (residence, business or office occupant)

	PC
	xsd:string
	Yes
	Postal code

	BLD
	xsd:string
	Yes
	Building (structure)

	UNIT
	xsd:string
	Yes
	Unit (apartment, suite)

	ROOM
	xsd:string
	Yes
	Room

	SEAT
	xsd:string
	Yes
	Seat (desk, cubicle, workstation)

	PLC
	xsd:string
	Yes
	Place-type

	PCN
	xsd:string
	Yes
	Postal community name

	POBOX
	xsd:string
	Yes
	Post office box (P.O. box

	ADDCODE
	xsd:string
	Yes
	Additional Code

5.2.2.37 Type: OverridingWillingness

This type defines a set of parameters for the overriding willingness.
	Element/Attribute
	Type
	Optional
	Description

	overridingWillingnessValue
	OpenOrClosed
	No
	Value of the presence attribute describing user’s general willingness to accept or not to accept any type of communication service, thus overriding individual settings for serviceWillingness described in 5.2.2.5.

	until
	xsd:dateTime
	Yes
	Specifies validity for the attribute.

It is defined as an attribute when used in XML format.

5.2.2.38 Type: LinkList
This type defines a set of parameters for the link list. It enables the client to set one or more links to different type of content and distribute them to its Watchers. It is inherited from [OMA_DDS].
	Element/Attribute
	Type
	Optional
	Description

	link
	xsd:anyURI [0..unbounded]
	Yes
	The address for the link. Contains a list of links. A link can contain an URI pointing to any type of resource.
When used to address an REST resource, the link element corresponds to the ‘href’ attribute from ‘Link’ data type described in [REST_NetAPI_Common].

	label
	xsd:string
	Yes
	Label for the link. The Presentity can provide a description of the link. It is defined as an attribute when used in XML format.

	priority
	xsd:decimal
	Yes
	Priority for the link. The Presentity can provide a priority used to indicate to the Watcher which link to select first. It is defined as an attribute when used in XML format

	contentType
	xsd:string
	Yes
	MIME content type for the link. The Presentity can, if known, specify the content type related to the addressed content allowing the Watcher to detect e.g. if it can render the addressed content. It is defined as an attribute when used in XML format.

	rel
	xsd:string
	Yes
	Describes relation between the URI and the resource. If the link is to a REST resource, it corresponds to the ‘rel’ attribute from the ‘Link’ data type as described in [REST_NetAPI_Common].

It is defined as an attribute when used in XML format.

	eTag
	xsd:string
	Yes
	HTTP ETag identifier of the addressed content. The Presentity MAY specify an eTag (i.e. version) of the addressed content allowing the Watcher to detect that the content has been updated in case it is e.g. caching the content. It is defined as an attribute when used in XML format.

	fSize
	xsd:int
	Yes
	The file size of the addressed content in bytes (e.g. 102400).
The Presentity MAY specify the size of the addressed content allowing the Watcher to detect e.g. how much bandwidth an upload of the addressed content requires. It is defined as an attribute when used in XML format.

	resolution
	xsd:string
	Yes
	The resolution of the addressed content. The value of the string is of the type “width x height” (e.g. 640x480) where width and height are specified in number of pixels.

The Presentity can specify the resolution of the addressed content (used for instance if the link points to an image). It is defined as an attribute when used in XML format.

5.2.2.39 Type: Contact

This type defines a set of parameters for the contact. It enables the client to set a contact address for the service.

	Element/Attribute
	Type
	Optional
	Description

	contactAddress
	xsd:anyURI
	No
	A contact address for the service.

	priority
	xsd:decimal
	Yes
	Decimal number between 0 and 1 inclusive with at most 3 digits after the decimal point. Higher values indicate higher priority.

It is defined as an attribute when used in XML format.

5.2.2.40 Type: DeviceIdentityList
This type describes a list of device identities. It enables the client to specify a number of device identities related to the particular service.

	Element
	Type
	Optional
	Description

	deviceId
	xsd:anyURI [1..unbounded]
	No
	A list of device identities related to the service (e.g. 'sip' URI, 'tel' URI, 'acr' URI).

5.2.2.41 Type: NetworkAvailability

This type describes a list of network availabilities. It enables the client to set the network availability for a device.

	Element
	Type
	Optional
	Description

	network
	Network [0…unbounded]
	Yes
	Represents the availability for a particular network.

5.2.2.42 Type: Network

This type defines a set of parameters that describe the network and its availability. The design of the data structure is aligned with [OMA-DDS-V2.1].
	Element/Attribute
	Type
	Optional
	Description

	connectionStatus
	ActiveOrTerminated
	No
	Indicates the current status of the connection for the corresponding network.

	networkMode
	HomeOrVisited
	Yes
	Indicates the current mode of the client connection.

	id
	xsd:token
	No
	The identity of the network (e.g. IMS, GSM, GPRS, 802.11x etc).

It is defined as an attribute in XML format.

5.2.2.43 Type: ExtendedList
This type describes a list of extended presence attributes.
	Element
	Type
	Optional
	Description

	attribute
	AttributeValue [1..unbounded]
	No
	Contains one or more extended attributes.

5.2.2.44 Type: AttributeValue

This type defines a set of parameters for the presence attribute value. It enables the client to define a name and value for the extended presence attribute.

	Element
	Type
	Optional
	Description

	name
	xsd:string
	No
	Contains the name of the extended attribute.

	value
	xsd:string
	Choice
	Optional element; if present it provides the value of the extended attribute.

	<any element>
	< type is defined by the schema which implements the element>
	Choice
	Optional element; if present it provides the value of the extended attribute.

Note that element <any element> can be any element from any other namespace (schema) than the target namespace, which defines the value of the extended attribute. Type of such element is defined by the schema implementing the element.

In XML implementations, the element must be qualified with the namespace prefix.

XSD modelling uses an optional “choice” to select either a value or <any element>, or none of them.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Presence API.
5.2.3.1 Enumeration: ActivityValue

This enumeration defines possible values to describe the type of user activity. It is inherited from [RFC4480].

	Enumeration
	Description

	Appointment
	The user has an appointment.

	Available
	The user is available for communication.

	Busy
	The user is busy and is only available for urgent matters.

	OnThePhone
	The user is on the phone.

	Steering
	The user is driving a car / train / airplane, etc.

	Meeting
	The user is in a meeting.

	Away
	No idea what the user is doing, but he is away.

	Meal
	The user is eating.

	Breakfast
	The user is having breakfast.

	Lunch
	The user is having lunch.

	Dinner
	The user is having dinner.

	PermanentAbsence
	The user is away and will not return for an extended period.

	Vacation
	The user is on vacation.

	Holiday
	A scheduled national or local holiday.

	Performance
	The user is in a theatre / concert.

	InTransit
	The user is in the transit area of an (air) port.

	Travel
	The user is traveling.

	Sleeping
	The user is sleeping.

	LookingForWork
	The user is looking for (paid) work.

	Playing
	The user is occupying him- or her in amusement, sport, or other recreation.

	Presentation
	The user is giving a presentation, lecture, or participating in a formal round-table discussion.

	Shopping
	The user is visiting stores in search of goods or Services.

	Spectator
	The user is observing an event, such as a sports event.

	TV
	The user is watching television.

	Working
	The user is engaged in, typically paid, labor, as part of a profession or job.

	Worship
	The user is participating in religious rites.

	ActivitiesUnknown
	The activity of the user is unknown.

	ActivitiesOther
	The user is doing something not in this list.

5.2.3.2 Enumeration: PlaceTypeValue

This enumeration defines possible values for the type of a place the user is currently at. It is inherited from [RFC4480].

	Enumeration
	Description

	Arena
	The user is at an enclosed area used for sports events.

	Home
	The user is at home.

	Office
	The user is in an office.

	PublicTransport
	The user is on public transport.

	Street
	Walking on the street.

	PublicPlace
	The user is in a public place.

	Hotel
	The user is in a hotel.

	Theatre
	The user is in a theatre or concert.

	Restaurant
	The user is in a restaurant, coffee shop or, other public dining establishment.

	School
	The user is at school.

	Industrial
	The user is in an industrial building.

	Quiet
	The user is in a quiet area.

	Noisy
	The user is in a noisy area.

	Aircraft
	The user is on an aircraft.

	Watercraft
	The user is on a vessel for travel on water such as a boat or ship.

	Automobile
	The user is in a car.

	Bus
	The user is in a bus.

	BusStation
	The user is in a bus- station.

	TrainStation
	The user is in a train-station.

	ShoppingArea
	The user is in a shopping mall or shopping area.

	Airport
	The user is in an airport.

	Train
	The user is in a train.

	Bank
	The user is in a bank.

	Bar
	The user is in a bar.

	Bicycle
	The user is on a bicycle.

	Cafe
	The user is in a café; usually a small and informal establishment that serves various refreshments (such as coffee); coffee shop.

	Classroom
	The user is in an academic classroom or lecture hall.

	Club
	The user is in a dance club, nightclub, or discotheque.

	Construction
	The user is at a construction site.

	ConventionCenter
	The user is in a convention center or exhibition hall.

	Government
	The user is in a government building, such as those used by the legislative, executive, or judicial branches of governments, including court houses, police stations, and military installations.

	Hospital
	The user is in a hospital, hospice, medical clinic, mental institution, or doctor's office.

	Library
	The user is in a library.

	Motorcycle
	The user is on a motorcycle.

	Outdoors
	The user outside a building, in or into the open air, such as a park or city streets.

	Parking
	The user is in a parking lot or parking garage.

	PlaceOfWorship
	The user is at a religious site where congregations gather for religious observances, such as a church, chapel, meetinghouse, mosque, shrine, synagogue, or temple.

	Prison
	The user is in a prison, penitentiary, jail or a brig.

	Residence
	The user is in a private or residential setting.

	Stadium
	The user is in a stadium.

	Store
	The user is in a shop or store.

	Truck
	The user is in a truck.

	Underway
	The user is in a land-, water-, or aircraft that is underway (in motion).

	Warehouse
	The user is in a warehouse.

	Water
	The user is in, on, or above bodies of water, such as an ocean, lake, river, canal, or other waterway.

	PlaceOther
	The user is in a kind of place not listed here.

5.2.3.3 Enumeration: PrivacyValue

This enumeration defines possible values for privacy. It is inherited from [RFC4480].

	Enumeration
	Description

	Audio
	Inappropriate individuals are not likely to overhear audio communications.

	Text
	Inappropriate individuals are not likely to see text communications.

	Video
	Inappropriate individuals are not likely to see video communications.

	Other
	None of the other values applies.

5.2.3.4 Enumeration: SphereValue

This enumeration describes possible values for sphere. It is inherited from [RFC4480].

	Enumeration
	Description

	Work
	The user is acting within his work sphere, i.e. as a member of his company.

	Home
	The user is acting within his home sphere, i.e. as a private person.

	Unknown
	The current sphere is unknown.

	Other
	The user is acting neither within his work nor within his home sphere.

5.2.3.5 Enumeration: MoodValue

This enumeration describes possible values for mood. It is inherited from [RFC4480].

	Enumeration
	Description

	Afraid
	The user is afraid.

	Amazed
	The user is amazed.

	Angry
	The user is angry.

	Annoyed
	The user is annoyed.

	Anxious
	The user is anxious.

	Ashamed
	The user is ashamed.

	Bored
	The user is bored.

	Brave
	The user is brave.

	Calm
	The user is calm.

	Cold
	The user is cold.

	Confused
	The user is confused.

	Contented
	The user is contented.

	Cranky
	The user is cranky.

	Curious
	The user is curious.

	Depressed
	The user is depressed.

	Disappointed
	The user is disappointed.

	Disgusted
	The user is disgusted.

	Distracted
	The user is distracted.

	Embarrassed
	The user is embarrassed.

	Excited
	The user is excited.

	Flirtatious
	The user is flirtatious.

	Frustrated
	The user is frustrated.

	Grumpy
	The user is grumpy.

	Guilty
	The user is guilty.

	Happy
	The user is happy.

	Hot
	The user is hot.

	Humbled
	The user is humbled.

	Humiliated
	The user is humiliated.

	Hungry
	The user is hungry.

	Hurt
	The user is hurt.

	Impressed
	The user is impressed.

	InAwe
	The user is in awe.

	InLove
	The user is in love.

	Indignant
	The user is indignant.

	Interested
	The user is interested.

	Invincible
	The user is invincible.

	Jealous
	The user is jealous.

	Lonely
	The user is lonely.

	Mean
	The user is mean.

	MoodUnknown
	The user’s mood is unknown.

	Moody
	The user is moody.

	Nervous
	The user is nervous.

	Neutral
	The user is neutral.

	Offended
	The user is offended.

	Playful
	The user is playful.

	Proud
	The user is proud.

	Relieved
	The user is relieved.

	Remorseful
	The user is remorseful.

	Restless
	The user is restless.

	Sad
	The user is sad.

	Sarcastic
	The user is sarcastic.

	Serious
	The user is serious.

	Shocked
	The user is shocked.

	Shy
	The user is shy.

	Sick
	The user is sick.

	Sleepy
	The user is sleepy.

	Stressed
	The user is stressed.

	Surprised
	The user is surprised.

	Thirsty
	The user is thirsty.

	Worried
	The user is worried.

	MoodOther
	The user’s current mood is not listed here.

5.2.3.6 Enumeration: PlaceIsAudio

This enumeration defines possible values to describe the place the Presentity is currently at with respect to audio communication. It is inherited from [RFC4480].

	Enumeration
	Description

	Noisy
	The user is in a place with a level of background noise that makes audio communications difficult.

	Ok
	The environmental conditions are suitable.

	Quiet
	The user is in a place such as a library, restaurant, place of worship, or theatre that discourages noise, conversation, and other distractions.

	Unknown
	The place attributes are not known.

5.2.3.7 Enumeration: PlaceIsVideo

This enumeration defines possible values to describe the place the Presentity is currently at with respect to video communication. It is inherited from [RFC4480].
	Enumeration
	Description

	TooBright
	The place is too bright for video communication.

	Ok
	The environmental conditions for video communication are acceptable.

	Dark
	The place is too dark for video communication.

	Unknown
	The environmental conditions for video communication are not known.

5.2.3.8 Enumeration: PlaceIsText

This enumeration defines possible values to describe the place the Presentity is currently at with respect to real-time text and instant messaging. It is inherited from [RFC4480].
	Enumeration
	Description

	Uncomfortable
	The place is uncomfortable for typing or other text entry.

	Inappropriate
	The place is inappropriate for typing or other text entry.

	Ok
	The environmental conditions are suitable for typing or other text entry.

	Unknown
	The place attributes for text communication is not known.

5.2.3.9 Enumeration: OpenOrClosed

This enumeration defines possible values to describe the state of a presence attribute related to a service. It is inherited from [OMA_DDS].

	Element
	Description

	Open
	Depending on the attribute type the value indicates:

· the service is available for use (for serviceAvailability attribute), or
· user desires to use that particular service for communication (for serviceWillingness attribute), or

· user is willing to use any service for communication (for overridingWillingnessValue attribute), or
· a user is participating in at least one session of that particular service (for sessionParticipation attribute).

	Closed
	Depending on the attribute type the value indicates:
· the service is not available for use (for serviceAvailability attribute), or
· a user is not willing to use that particular service for communication (for serviceWillingness attribute), or

· a user is not willing to use any service for communication (for overridingWillingnessValue attribute), or

· a user is not participating in any session of that particular service (for sessionParticipation attribute).

5.2.3.10 Enumeration: ActiveOrTerminated

This enumeration defines possible values to describe the state of a presence attribute related to aservice, or network connection. It is inherited from [OMA_DDS].
	Element
	Description

	Active
	Depending on the attribute type the value indicates:

· a user has an active registration with that particular service (for registrationState attribute), or

· a user has activated communication barring for that particular service (for barringState attribute), or

· a device is connected to that particular network (for connectionStatus attribute).

	Terminated
	Depending on the attribute type the value indicates:

· a user does not have an active registration with that particular service (for registrationState attribute), or

· a user has deactivated communication barring for that particular service (for barringState attribute), or
· a device is not connected to that particular network (for connectionStatus attribute).

5.2.3.11 Enumeration: AutomaticOrManual

This enumeration defines possible values to describe the mode of a presence attribute. It is inherited from [OMA_DDS].
	Element
	Description

	Automatic
	Indicates that a user will automatically accept an incoming session for that particular service.

	Manual
	Indicates that a user must make decision, and manually accept/reject the incoming session for that particular service.

5.2.3.12 Enumeration: HomeOrVisited

This enumeration defines possible values to describe client connection mode to the network. It is inherited from [OMA_DDS].
	Element
	Description

	Home
	Indicates that a device of a user is in user’s home network.

	Visited
	Indicates that a device of a user is in user’s visiting network.

5.2.3.13 Enumeration: ResourceStatus
This enumeration defines possible values to describe the status of the subscription.
	Enumeration
	Description

	Active
	Indicates that the subscription is active and authorized. (corresponds to ‘active’ state in [RFC3265 and RFC3857).

	Pending
	Indicates that the subscription is awaiting an authorization decision. (‘pending’, ‘waiting’ and ‘terminated/giveup’ state in [RFC3265] and [RFC3857]).

	TerminatedBlocked
	Indicates that the subscription has been terminated. The subscription was blocked. (‘terminated/rejected’ state in [RFC3265] and [RFC3857]).

	TerminatedTimeout
	Indicates that the subscription has been terminated. The subscription was not refreshed in time before it expired. (‘terminated/timeout’ state in [RFC3265] and [RFC3857]).

	TerminatedNoResource
	Indicates that the subscription has been terminated. The intended resource does not exist. (‘terminated/noresource’ state in [RFC3265] and [RFC3857]).

	TerminatedOther
	Indicates that the subscription has been terminated of an unknown reason. (‘terminated/probation and terminated/deactivated’ state in [RFC3265] and [RFC3857]).

5.2.3.14 Enumeration: DefaultDecisionValue

This enumeration defines possible values for the default authorization decision.

	Enumeration
	Description

	Allow
	New Watchers are automatically granted to access presence information about the Presentity.

	Block
	New Watchers are automatically blocked from seeing any presence information.

	PolitelyBlock
	New Watchers are automatically politely blocked

	Confirm
	New Watchers have to be manually authorized before being able to get access to the presence information.

5.2.4 Values of the Link “rel” attribute

The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· PresenceSourceList

· PresenceSource

· PresenceList

· PresenceContact

· Content

· ContentList

· PresenceSubscriptionList

· PresenceListSubscriptionCollection

· SubscriptionList

· PresenceSubscription

· PresenceNotification

· PresenceListSubscription

· PresenceListNotification

· WatcherList

· Watcher

· WatchersSubscriptionList

· WatchersSubscription

· WatchersNotification

· RuleList

· Rule
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams

The following subsections describe the resources, methods and steps involved in typical scenarios for the usage of the Presence API. In the scenarios described below, there are two applications involved with different roles.

· Application 1 acts on behalf of Alice and has the pesentity role.

· Application 2 acts on behalf of Bob and has a Watcher role.

The sequences also try to show the interaction between these different roles.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.3.1 Application start-up; publish presence, fetch Watcher information, subscribe to Watcher information
This figure below shows a scenario for starting or restarting an application instance of Application 1 on terminal 1 of Alice. Application 1 is a multi-terminal application and can publish different presence status from each of the terminals the application is running on. The sequence shows the following steps.

- Publishing information by application 1 on terminal 1 on behalf of Alice (step 1 - 2)

- Retrieving information about the Watchers of Alice (step 3 - 4)

- Subscribing to Watcher information for Alice, including the corresponding notification (step 5 - 6)
The notification URL (included in callbackReference) passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and the use of that Notification Channel by the client.

The resources:

- To fetch the list of presenceSources the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/presenceSources
- To create a new presenceSource the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/presenceSources
- To fetch the current Watchers this resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/watchers
- To fetch the list of subscriptions the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/subscriptions/watchersSubscriptions
- To subscribe to changes in the Watcher information the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/subscriptions/watchersSubscriptions
- The notification of the Watcher information is done on the notification URL provided by the application.

[image: image3.emf]1.

GET

check for the presence of a previous Presence Source for Alice

Response - list of Presence Source Ids

2.

POST

create presence information on behalf of the Alice

Response - created

5.

POST

create a Watchers subscription for Alice

Response

-

created

3.

GET

retrieve pending Watchers for Alice

Response - list of Watcher Ids

Response

6.

POST

or

NOTIFY

inform about Watcher

Application1

Server

Create resource Create resource

Create resource Optional!

Create resource Create resource

4.

GET

check for presence of previous Watchers subscription

Response - list of Watcher info subscriptions

1.

GET

check for the presence of a previous Presence Source for Alice

Response - list of Presence Source Ids

2.

POST

create presence information on behalf of the Alice

Response - created

5.

POST

create a Watchers subscription for Alice

Response

-

created

3.

GET

retrieve pending Watchers for Alice

Response - list of Watcher Ids

Response

6.

POST

or

NOTIFY

inform about Watcher

Application1

Server

Create resource Create resource Create resource Create resource

Create resource Optional! Create resource Optional!

Create resource Create resource Create resource Create resource

4.

GET

check for presence of previous Watchers subscription

Response - list of Watcher info subscriptions

Figure 2 Creation of Presence Source, and subscription to Watchers information

Outline of the flows:

The idea is that the application 1 is stateless. i.e., it does not store any data between restarts. So in fact it does not know if the current situation is a start or a restart. The applicationTag is created by the client, and in this case they are created based on the application id and the terminal id (i.e.. app1_term1), to create a unique identifier per terminal per application. The (optional) applicationTag is used to retrieve resources that were created before the restart and can be reused after the restart.

1. Application 1 retrieves the list of presenceSources by using a GET method. The response returns a list of presenceSources. Each presenceSource will have a clientCorrelator and an applicationTag. The application tries to find the resource that matches its applicationTag. This way it can find out the resourceURL of that resource.

In this scenario it is assumed that the resource was not found and the next step is to create a new resource. However, if the resource would have been found, the next step could be to do a GET on the resource, in order to synchronise the client with the server view of the resource (i.e., get the e-tag of the resource and get the current content). After that the client would be in a position to update the resource by using PUT (see later sequences on updating an existing presenceSourceId resource).

2. To create publication data (presenceSourceId) by application 1 on terminal 1 (2) the application uses POST method which includes applicationTag and a clientCorrelator that is generated to be unique.

In the response a 201 result is returned with the location of the resource.
3. Application 1 fetches the current Watchers by using a GET method.

A list of Watchers is returned. The result contains most data about the Watchers, except for some detailed information with is obtained in the following step.

4. Application 1 gets the list of Watcher information subscriptions by using GET method.. This is because in case of a restart it wants to reuse (and probably refresh) the same subscription that was used before the restart.

The response is a list of subscriptions which the application uses to find if there is a subscription matching its specific applicationTag (i.e. app1_term1). In this case (after a start) the resource is not found.

5. Application 1 subscribes to changes in the Watcher information by using a POST method. The application uses the same applicationTag as used in step 1 and 3 and a unique clientCorrelator.

The response contains a 201 with a location header pointing to the created resource.
6. The subscription in step 5 will result in a notification of the application with the current status of the Watcher info. The application provided notification URL is used in the notification. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel].

This makes step 3 superfluous, but it was included as an alternative way to fetch the same information by polling.

5.3.2 Adding a Watcher; subscribe for presence and updating of presence information.

This is a continuation of the sequence started in the previous section. More specifically the following preconditions apply:

· There is an active subscription for Watcher information by application 1 for the Presentity Alice.

This figure below shows the following scenario:
- Application 2 (a stateful application) subscribes to Alice’s presence on behalf of Bob (and corresponding notify) (step 1 - 2)

- Watcher information notification since Bob becomes a pending Watcher (step 3)

- Adding Bob to the allowed list (step 4)

- Presence notification to Bob's application since Bob is now allowed to see the status of Alice (step 5)

- Watcher information notification to Alice's application since the status of the Watcher Bob changed to active (step 6)
The notification URL (included in callbackReference) passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and the use of that Notification Channel by the client.
The resources:

- To create a subscription for presence notifications for a single entity the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/subscriptions/presenceSubscriptions/{presentityUserId}
- The initial notification of the presence information is done on the notification URL provided by the application 2.
- The notification of the Watchers list is done on the notification URL provided by the application 1.
- To add a Watcher to the allowed list the following Light-weight Resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/authorization/rules/{ruleId}/[ResourceRelPath]
Where [ResourceRelPath] is a light-weight relative resource URL, and in this case it shall be replaced with “watchers/{watcherUserId}”

- The notification of the presence information is done on the notification URL provided by the application 2.
- The notification of the Watcher information is done on the notification URL provided by the application 1.

[image: image4.emf]1.

POST

create a presence subscription for Alice

on behalf of Bob

Response - created

Response

3.

POST

or

NOTIFY

inform about Watcher

4.

PUT

add Bob to allowed list

Response - created

Response

2.

POST

or

NOTIFY

inform Watcher about pending resource status

Response

5.

POST

or

NOTIFY

inform Watcher about presence status

Response

6.

POST

or

NOTIFY

inform about Watcher

Application1 Server Application2

Create resource Create resource

Create resource Create resource

Create resource Alice authorize Bob

1.

POST

create a presence subscription for Alice

on behalf of Bob

Response - created

Response

3.

POST

or

NOTIFY

inform about Watcher

4.

PUT

add Bob to allowed list

Response - created

Response

2.

POST

or

NOTIFY

inform Watcher about pending resource status

Response

5.

POST

or

NOTIFY

inform Watcher about presence status

Response

6.

POST

or

NOTIFY

inform about Watcher

Application1 Server Application2

Create resource Create resource Create resource Create resource

Create resource Create resource Create resource Create resource

Create resource Alice authorize Bob Create resource Alice authorize Bob

Figure 3 Subscription for presence information, and Watcher authorization
Outline of the flows:

Application 2 is a stateful application, i.e., it stored information between restarts. Therefore, it will remember the resources that where used in the previous session, and does not have to fetch any resources from the server to find if there is any resource that match its applicationTag.
1. Application 2 creates a subscription to the presence information of Alice. Application 2 acts on behalf of Bob (the Watcher). The subscription is created by using a POST method with a client generated unique correlator. No applicationTag is included.

As a result a 201 created is returned. The location header is pointing to the created resource.
2. The server notifies application 2 about the current status of the subscription. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel].
In this case the subscription status is notified as being pending, since Bob is not yet authorized by Alice to view the presence status of Alice.

3. The server notifies application 1 about a new Watcher called Bob, whose status is unauthorized. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel].
4. Application 2 prompts Alice to request authorization of Bob. Alice allows Bob, so application 1 adds Bob to the allowed list of Alice, meaning that Bob is authorized to view the status of Alice. This is done by performing a PUT on the Light-weight Resource that includes Watcher Bob’s identifier.

In this case Bob was not yet authorized, so the result is 201 created.
5. The server notifies application 2 about the current status of the subscription. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel].
In this case the subscription status is notified as being active, since Bob is now authorized by Alice to view the presence status of Alice. The notification will also contain the all of the current presence information of Alice that Bob is allowed to see according to the rules.

6. The server notifies application 1 about a new Watcher called Bob, whose status is now changed to active. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel].
5.3.3 Update of presence status

This is a continuation of the sequence started in the previous sections. More specifically the following preconditions apply:

· There is an active subscription for Watcher information by application 1 for the Presentity Alice.

· There is an active subscription for the presence of Presentity Alice by application 2 on behalf of Watcher Bob

· There is an active publication resource for Presentity Alice created by application 1.

This figure below shows the following scenario

- Application 1 uploads a new status-icon for Alice (step 1)

- Application 1 updates the presence information of Alice to with a link to the uploaded status-icon (step 2)
- Application 2 is notified about the changed presence information (step 3)
- Application 2 retrieves the content status-icon (step 4)
The resources:

- To put the content of the status icon the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/content/{contentId}
- To modify the published presence status the following Light-weight Resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/presenceSources/{presenceSourceId}/[ResourceRelPath]
Where [ResourceRelPath] is a light-weight relative resource URL, and in this case it shall be replaced with “person/statusIcon”

- The notification of the presence information is done on the notification URL provided by the application.

- To get the content of the status-icon the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/presenceContactsContent/{presentityUserId}/{contentId}

[image: image5.emf]1.

PUT

new status-icon

Response - created

2.

PUT

change status-icon element

Response

4.

GET

status-icon content

Response - status-icon content

Response

3.

POST

or

NOTIFY

i

nform Watcher about presence status

Application1

Server

Application2

Create resource Create resource

1.

PUT

new status-icon

Response - created

2.

PUT

change status-icon element

Response

4.

GET

status-icon content

Response - status-icon content

Response

3.

POST

or

NOTIFY

i

nform Watcher about presence status

Application1

Server

Application2

Create resource Create resource Create resource Create resource

Figure 4 Update of presence information
Outline of the flows:

1. Application 1 uploads a new status-icon for the Alice. It includes the content of the icon as the body in the PUT request.
The result depends on whether the content with that id already exists. In this case it is assumed that it did not yet exist, so a 201 created is returned.

2. Application 1 updates the status of the Alice, by only updating the status-icon part. It does by using a PUT method on the Light-weight Resource for status-icon.
The result depends on whether the old presence information already contained a status-icon.

3. The server notifies Application 2 with the Watcher Bob about the status change of the Presentity Alice. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel]. The provided presence information contains the status-icon with a link to the location of the icon.

4. Application 2 fetches the content of the status-icon by using a GET method on the resource with the specified content id.
The response contains the status icon content in the body.

5.3.4 Shutdown; remove resources

This is a continuation of the sequence started in the previous sections. More specifically the following preconditions apply:

· There is an active subscription for Watcher information by application 1 for the Presentity Alice.

· There is an active subscription for the presence of Presentity Alice by application 2 on behalf of Watcher Bob

· There is an active publication resource for Presentity Alice created by application 1.

This figure below shows the following scenario

- All the created subscriptions and the publications are terminated (but not the status-icon content)

The resources:

- To delete the presence subscription the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/subscriptions/presenceSubscriptions/{presentityUserId}/{subscriptionId}
- To delete the Watcher information subscription the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/subscriptions/watchersSubscriptions/{subscriptionId}

- To delete the publication of presence information the following resource is used:
http://{serverRoot}/presence/{apiVersion}/{userId}/presenceSources/{presenceSourceId}

[image: image6.emf]1.

DELETE

subscription for presence updates

Response

2.

DELETE

subscription for Watchers

Response

3.

DELETE

presence information for Application 1

Response

Application1 Server Application2

Create resource

Remove resource

Remove resource

Remove resource

1.

DELETE

subscription for presence updates

Response

2.

DELETE

subscription for Watchers

Response

3.

DELETE

presence information for Application 1

Response

Application1 Server Application2

Create resource

Remove resource

Remove resource

Remove resource

Figure 5 Termination of subscriptions for Watchers, and presence information
Outline of the flows:

1. Application 2 deletes the subscription resource for presence information by using a DELETE method on the resource with the specified subscription id.

Note that a DELETE on a subscription resource will NOT trigger any notifications!
2. Application 1 deletes the Watcher information subscription by using a DELETE method on the resource with specified subscription id.
3. Application 2 deletes the publication of presence information by using a DELETE method on the resource with the specified Presence Source id.
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130101-I]
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130101-I]

