Doc# OMA-ARC-REST-NetAPI-2016-0001R01-CR_Notification_Channel_NativeChannel.docx[image: Picture in Transforming WAPF Into OMA 20020313]
Change Request

Doc# OMA-ARC-REST-NetAPI-2016-0001R01-CR_Notification_Channel_NativeChannel..doc[image: Picture in Transforming WAPF Into OMA 20020313]
Change Request

Change Request

	Title:
	Notification_Channel_NativeChannel
	|X| Public |_| OMA Confidential

	To:
	OMA ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20151203-D

	Submission Date:
	184 Jan 2016

	Classification:
	|X| 0: New Functionality
|_| 1: Major Change
|_| 2: Bug Fix
|_| 3: Editorial

	Source:
	Shahram Mohajeri, sm7084@att.com

	Replaces:
	N/A

Reason for Change
The objective of this CR is to add a new notification channel type called NativeChannel (i.e. device-specific notification services) to the Notification Channel TS.
To receive events asynchronously many client applications on Android, IOS and Windows devices use the device-specific notification service offered by their respective OEM i.e. Google GCM or Apple APNS or Microsoft WNS.
OMA Notification Channel API is required to be enhanced so that it can cover the need from such application clients which desire to use their own Native device-specific notification service (e.g. Google GCM).
Currently, when the client application has its own Application Server, then the existing OMA defined Webhooks is the way the Application Server requests an MNO backend enabler to send it the notifications of interest. That is, the client passes in its own Application Server’s Callback URL to the MNO’s backend enabler as part of its event Subscription creation request.
Also, currently, when the client application doesn’t have its own Application Server, then it can for instance use the existing defined OMA Push channel type to asynchronously receive events from the Notification Server.
However, there are use cases where a client application does not have its own Application Server and yet wants to use the device-specific notification service offered by its OEM platform (e.g. GCM) as opposed to OMA Push. Under such circumstances, there is a need for the OMA Notification Channel TS to fill-in the gap by allowing the client request the creation of a Native Channel.
By creation of a NativeChannel, the client informs the (OMA) Notification Server, to asynchronously route events to it through the OEM’s notification service (e.g. Google GCM). This means that the Notification Server is required to be integrated with the OEM’s notification services (e.g. Google GCM or Apple APNS or Microsoft WNS).
In summary, in the request to create a NativeChannel, the client has to at a minimum provide two key pieces of information: identify OEM’s notification service it has registered with and a Registration-Token which identifies the client application to the OEM’s notification service (by which the OEM’s notification service identifies the recipient client when it receives an event from the Notification Server.
The following diagram highlights some of the behind-the-scene details of registration of the client with the OEM’s notification services: Google GCM or Apple APNS or Microsoft WNS. Such device registration details are hidden from the Notification Channel API.
For clients opting to create a NativeChannel (using the proposed CR), the Application Server in figures below is replaced with the Notification Server allowing RESTful client applications to use GCM, APNS or WNS. It should be noted that, device registration parameters such as “RegistrationID” or DeviceToken” are passed on to Notification Server as part of the on-boarding process of the client onto the MNO’s API Gateway.
R01: adds further clarification
[image:][image:][image:][image:][image:][image:]
Additionally, this CR enables the usage of “largeDataPoling” by the NativeChannel so that if the size of the NotificationsList is larger than what can be Pushed over the native channel, the client is notified asynchronously and provided with the means to come to the Notification Server and fetch/poll the awaiting events. That is, the same capability (“largeDataPoling”) which the TS has already defined to be used by OMA Push clients is being made available to NativeChannel clients.

References:
1. https://developers.google.com/cloud-messaging/gcm
2. https://www.pubnub.com/blog/2014-12-22-sending-ios-push-notifications-via-apns-javascript-using-apns-phonegap/
3. https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
4. https://www.pubnub.com/blog/2014-12-22-sending-ios-push-notifications-via-apns-javascript-using-apns-phonegap/
5. https://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx?f=255&MSPPError=-2147217396

Impact on Other Specifications
None	
Intellectual Property Rights
Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.
Recommendation
The ARC group is recommended to accept the proposed changes to Notification Channel API.
Detailed Change Proposal	
See Attached OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20151203-D_CR01R01.

[bookmark: _GoBack]
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.
THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.
USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.
THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.
[bookmark: Template]© 2013 Open Mobile Alliance Ltd. All Rights Reserved.	Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-ChangeRequest-20130101-I]
© 2013 Open Mobile Alliance Ltd. All Rights Reserved.	Page 5 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-ChangeRequest-20130101-I]
image3.JPG
INTIL IR Apple Push Noti
i0S devices to send and rec:
messages. The typical flow looks li

To register a devic:

Application
Server

2.105 sends the request to APNS
3. APNS sends back a device token
4. The Client App sends device token to Application

Server

To send a push notification: h)

5. The Application Server sends a payload to APNS with Client 4 o l
the device token Aop a

6. APNS sends a push notification to the device ‘9

oy |

image4.png

image5.JPG
WHS Fiows 5

Windows Push [lows Push Noti ion Services (WNS) enables.
third-party developers to send toast, tile, badge, and
raw updates from their own cloud service. The typical
flow looks like:

dows client app sends a request for a push
notification channel to the Notification Client Platform.
-ation Client Platform asks WNS to create a

Windows

inthe form of a URI.

3. The notification channel URIis returned by Windows
to client app.

4. Client app sends the URI to application server (cloud
service).

5. When application server (cloud service) has an
update to send, it notifies WNS using the channel URI.
This i done by issuing an HTTP POST request, including
the notification payload, over SSL. This step requires
oAuth authentication.

6. WNS receives the request and routes the noti
to the appropriate device

image6.png
Cloud Service

I @

image1.JPG
Google Cloud
Messaging

Google Cloud Messaging (GCM) is a service for Android
devices to send and receive Android push noti
messages. The typical flow looks

To register a devi
1. An Android device sends a Sender ID to GCM server
2. GCM server sends back the Registration ID to the
device

3. Application server store the Registration ID

To send a push notificatior
4. Application server sends a request to GCM with the
Registration ID

5.GCM sends a push n

ication to the device

RegistrationID +

Registration 1D Notification payload

Application
Server

Sender ID

Registration 1D e

Notification payload

image2.png

image7.jpeg
"sOMaQa

Open Mobile Alliance

