Doc# OMA-REST_MsgBCast-2016-0006-CR_Sequence_diagrams_for_message_broadcast.doc[image: image6.jpg]
Change Request

Doc# OMA-REST_MsgBCast-2016-0006-CR_Sequence_diagrams_for_message_broadcast[image: image7.jpg]
Change Request

Change Request

	Title:
	Sequence diagrams for message broadcast
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC REST_MsgBCast

	Doc to Change:
	OMA-TS-REST_NetAPI_MsgBCast-V1_0-20160219-D

	Submission Date:
	24 March 2016

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Xhafer Krasniqi, NEC, Xhafer.krasniqi@emea.nec.com
Norio Uchida, NEC, n-uchida@cq.jp.nec.com
S. (Ram) Ramanan, NEC, S.Ramanan@EMEA.NEC.COM

	Replaces:
	n/a

1 Reason for Change

This change request provides content for section 5.3, on Sequence diagrams/call flows for Message Broadcast API.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We kindly request the ARC group to review the CR and agree the changes.
6 Detailed Change Proposal

Change 1: 5.3 Sequence Diagrams
5.2 Sequence Diagrams

The following subsections describe the resources, methods and steps involved in typical scenarios.

In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.2.1 Requesting to send a broadcast message in specified geographic areas
This figure below shows a scenario for requesting the server to send a broadcast message in specified geographic areas.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:

· To request sending a broadcast message, create resource under
http://{serverRoot}/messagebroadcast/{apiVersion}/request
· To retrieve the message broadcast status under requestId, read resource under
http://{serverRoot}/messagebroadcast/{apiVersion}/request/{requestId}/status
[image: image1.png]
Figure 1 Flow for sending a broadcast message
Outline of the flows:

1. An application POSTs a request to the server. The request SHALL contain the representation of {requestId} resource. Then the server allocates a new {requestId} resource representing the request and respond to the application with the newly created resource URL. This response is a kind of acknowledgement of the request and does not have the result of broadcasting. The server, at the same time, starts sending the broadcast message with specified conditions and allocates a new {requestId}/status resource representing the status of broadcasting..
2. The application requests the delivery status of the sent broadcast message using GET method on requestId/status and server returns the delivery status contained in requestId/status
5.2.2 Retrieve message broadcast delivery status
This figure below shows a scenario retrieving delivery status of a broadcast message send to a specific geographic area defined by an application.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:

· To retrieve the issued list of message broadcasts, read resource under
http://{serverRoot}/messagebroadcast/{apiVersion}/request
· To retrieve the message broadcast status under requestId, read resource under
http://{serverRoot}/messagebroadcast/{apiVersion}/request/{requestId}/status
[image: image2.png]
Figure 2 Flow for retrieving message delivery status
Outline of the flows:

1. An application requests the issued list of broadcast messages using GET method and server responds with the list broadcast messages and their requestIds.
2. The application requests the delivery status of the sent broadcast message using GET method on requestId/status and server returns status contained in requestId/status.
5.2.3 Deleting a broadcast message
This figure below shows a scenario for deleting a broadcast message send to a specific geographic area defined by an application.

The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:
· To retrieve the issued list of message broadcasts, read resource under
http://{serverRoot}/messagebroadcast/{apiVersion}/request
· To delete a message broadcast data under requestId, delete resource under
http://{serverRoot}/messagebroadcast/{apiVersion}/request/{requestId}
[image: image4.png]
Figure 3 Flow for deleting a broadcast message
Outline of the flows:

1. An application requests the issued list of broadcast messages using GET method and server responds with the list broadcast messages
2. The application decides to remove one of the broadcast messages in the list by using DELETE method on the resource and server returns a response with deletion confirmation.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20150101-I]

© 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20150101-I]

