Doc# OMA-ARC-REST-NMS-2013-0040R01-CR_Deletion_synchronization.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-ARC-REST-NMS-2013-0040R01-CR_Deletion_synchronization.doc
Change Request

Change Request

	Title:
	Deletion synchronization
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1_0-2013-09-03-D

	Submission Date:
	26 Sep 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Keith Wansbrough, Metaswitch Networks, Keith.Wansbrough@metaswitch.com

	Replaces:
	CR40

1 Reason for Change

The motivation and rationale for this change are described in OMA-ARC-REST-NMS-2013-0026-INP_Notification_and_sync.ppt.

This change updates text introduced by CR36, so is invalid if that CR is not adopted.

In order for clients to be able to correctly synchronize deletions that occur while they are offline, the storage must retain information about deletions. This change makes this requirement explicit.

There are various ways in which this information could be retained – two possible implementations are tombstones (as described in the INP26 presentation) or a deletion log, but others may also exist. Hence this change does not require any particular implementation.
This change does not propose a mechanism for expiring this deletion information after a period of time. That should be covered as part of the wider issue of object/folder expiry (also known as system deletion), and this change adds an editor’s note to ensure this is considered at that time.
The change is limited to the definitions in the initial part of Section 5 only.

If this change is not accepted, it may not be clear to implementors that a correct implementation requires maintenance of this information. This could lead to implementations which incorrectly fail to provide deletion information to caching clients, causing them to fall out of sync with the storage.
R01: Wording changes arising from online and offline discussion with Elad Granot. Removes normative language applying to implementation, and simply clarifies behaviour.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The ARC group is recommended to accept the proposed changes to the NMS TS.
6 Detailed Change Proposal

Change 1: 5: Explain that the storage MUST retain lastmodseq of deletions.
5
Network Message Storage API definition

This section is organized to support a comprehensive understanding of the Network Message Storage API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
The object resource in the context of this specification comprises of:

· a payload (sequence of bytes)

· flags, which are string labels that may have applicative meaning, such as:

· Important

· Urgent

· Read

· Unread

· attributes that contain meta data, such as:

· size (in bytes)

· type (e.g. FileTransfer, Image, SMS, text)

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

Each object resource in a given storage is identified by objectId, which is a string that MUST be unique in the context of that storage (under the same BASE_URL). The objectId is assigned by the storage server.

Each object also has a name, which is used to construct the location (path).
Each object also has a lastmodseq, which is a mod-sequence (modification sequence number – see below) value used to determine whether the object metadata has changed since some known moment. Whenever the metadata changes the lastmodseq value MUST be updated. Setting a metadata item to a value equal to the value which it already has SHOULD NOT change the lastmodseq.

Similar to the abstract model of a file system, a folder in the context of this specification is a container with a designated location (pathname) that can contain objects and/or sub-folders, i.e. be considered as their parent in the location hierarchy. The folder resource in the context of this specification comprises of:

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

· identification of the contained objects and/or sub-folders (i.e. children in the hierarchy of the storage)

Each folder resource in a given storage is identified by folderId, which is a string that MUST be unique in the context of that storage (under the same BASE_URL). The folderId is assigned by the storage server.

Each folder also has a name, which is used to construct the location (path).

Each folder also has a lastmodseq, which is a mod-sequence value used to determine whether the folder metadata has changed since some known moment. Whenever the metadata changes the lastmodseq value MUST be updated. Setting a metadata item to a value equal to the value which it already has SHOULD NOT change the lastmodseq.

Editor’s note: FFS details of how path is constructed from object/folder names.
Editor’s note: FFS how the name is specified on object/folder creation.
While a folder in a file system model conceptually contains objects and sub-folders, the resource tree shown in Error! Reference source not found. does not mimic that hierarchy. For the purpose of the API, objects and folders are identified by objectId and folderId respectively, and not by their location (pathname). However, through RESTful operations and queries on the resource tree, it is possible for a client to discover the location (full pathname) of all objects and folder in the storage; hence it is possible to map the full hierarchy. It is also possible to perform a query to resolve a pathname (of a folder or an object) to the equivalent identifier (folderId or objectId).
Editor’s note: FFS “A box within the context of this specification comprises of…”
Each box also has a highestmodseq, which is a mod-sequence value used to determine whether metadata of objects and folders within the box have changed since some known moment.

A mod-sequence is a positive unsigned 64-bit value. When a relevant operation is performed the storage MUST obtain a mod-sequence value, and MUST set both the lastmodseq value of the object or folder being acted upon and the highestmodseq of the box which contains it to that value. A relevant operation for the purposes of this paragraph is one which creates or deletes an object or folder, or modifies the metadata of an object or folder. The server MUST guarantee that each relevant operation performed on the same box (including simultaneous operations on different metadata items from different connections) will get a different mod-sequence value. Also, for any two successful relevant operations performed on the same mailbox, the mod-sequence of the second completed operation MUST be greater than the mod-sequence of the first completed. Note that the latter rule disallows the use of the system clock as a mod-sequence, because if the system time changes (e.g., an NTP (Network Time Protocol) client adjusting the time), the next generated value might be less than the previous one. See [RFC4551] for an informative discussion of mod-sequences.
In order for the storage to correctly notify changes that include deletion events, it is necessary for the storage to retain the lastmodseq value and objectId or folderId of each deletion operation of an object or folder.
Editor’s note: FFS how system deletion (i.e., object/folder expiry) interacts with deleted objects and folders and lastmodseq values.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 0 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section Error! Reference source not found.). What follows are the data structures (section Error! Reference source not found.). A sample of typical use cases is included in section Error! Reference source not found., described as high level flow diagrams.

Section Error! Reference source not found. contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section Error! Reference source not found. use XML as the format for the message body. Application/x-www-form-urlencoded examples are provided in Error! Reference source not found., while JSON examples are provided in Error! Reference source not found..
Section Error! Reference source not found. contains fault definition details such as Service Exceptions and Policy Exceptions.

Error! Reference source not found. provides the Static Conformance Requirements (SCR).
Error! Reference source not found. provides a list of all Light-weight Resources, where applicable.

Error! Reference source not found. defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

