Doc# OMA-ARC-REST-NMS-2013-0066-CR_Correlation.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-ARC-REST-NMS-2013-0066-CR_Correlation.doc
Change Request

Change Request

	Title:
	Correlation
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1.0_20131111-D

	Submission Date:
	13 Nov 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Keith Wansbrough, Metaswitch, Keith.Wansbrough@metaswitch.com

	Replaces:
	n/a

1 Reason for Change

Some clients obtain objects via another mechanism (e.g., CPM messaging [REST_NetAPI_Messaging]) as well as via the NMS. Such clients generally wish to correlate these objects with notifications received from the NMS, e.g., to avoid unnecessary downloads, to avoid duplications, and to ensure flag changes made by other NMS clients are correctly applied to local objects. See OMA-ARC-REST-NMS-2013-0041-INP_Correlation for further motivation.
The NMS TS currently does not provide the necessary information for clients to perform this correlation.

This CR adds two elements, uniqueId and contentHash, which can be used to do this correlation. These elements are added to the data structures underlying the relevant notifications: newObject, changedObject, and deletedObject. This correlation approach, and the particular hash function used for contentHash, is in successful production use today.

The change is limited to the aforementioned data structures (s5.2.2: Object, ChangedObject, DeletedObject) and a new section s5.2.5 explaining how the NMS derives values for these elements.

The changes in this document are written assuming CR53R01 (system deletion, for DeletedObject) and CR68 (notification simplification, for ChangedObject) have been accepted. If not, this change request is still applicable but will have to be revised appropriately.

If this change is not accepted, it will not be possible for mobile clients to correlate messages received over the radio with messages notified via NMS.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The ARC group is recommended to accept the proposed changes to the NMS TS.
6 Detailed Change Proposal

Change 1: Add elements to s5.2.2.1 Object.
5.2.2.1 Type: Object

Individual object

	Element
	Type
	Optional
	Description

	parentFolder
	xsd:anyURI
	Choice
	Resource URL of the parent folder that contains the object.
In object creation requests this element specifies the folder that will contain the new object.

In object creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.

The server MUST include this element in responses.

Editor’s note: FFS whether this is included in notification POSTs.

	parentFolderPath
	xsd:string
	Choice
	The location in the hierarchical storage of the folder that contains this object.

In object creation requests this element specifies the folder that will contain the new object. The server will internally resolve the parentFolderPath to an equivalent of the parentFolder URL of the requested parent folder.

In object creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.

The server MUST NOT include this element in responses.

	attributeList
	AttributeList
	Yes
	List of attributes associated with the object

	flagList
	FlagList
	Yes
	List of flags associated with the object

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	Path
	xsd:string
	Yes
	The location of the object in the hierarchical storage.

The client MUST NOT include this element in POST requests.

Editor’s note: FFS whether this is included in server responses and notification POSTs.

	payloadPart
	PayloadPartInfo [0…unbounded]
	Yes
	Information about individual payload parts, including content type indication, the link for individual payload part retrieval and optionally the size of the payload part.

Number and content of payload parts:

· If the object is empty, this element MUST be omitted.

· If the object’s payload has MIME type multipart/mixed, the first-level parts of the payload MUST be represented as individual payload parts.

· If the object’s payload is of another type which can be divided into a sequence of parts, those parts SHOULD be represented as individual payload parts.

· Otherwise, the object MUST be represented as having precisely one payload part representing the entire object payload.

In case the object contains a presentation part, this SHALL be referenced by the first item in the list of payloadPart elements.

Only the first-level parts of the payload are represented as payload parts; for example, a nested multipart/mixed part is represented as a single payload part, not a sequence of subparts.

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the object.

The server MUST provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.

	uniqueId
	xsd:string
	Yes
	Unique ID associated with the object. This ID is derived from the object content (see Section 5.2.5) and is unrelated to the {objectId}.

The client MUST NOT provide this element in requests to the server.

	contentHash
	xsd:string
	Yes
	Content hash derived from the object content (see Section 5.2.5).

The client MUST NOT provide this element in requests to the server.

A root element named object of type Object is allowed in request and/or response bodies.
XSD modelling uses a “choice” to select either parentFolder or parentFolderPath, but not both of them.
Change 2: Add elements to s5.2.2.24 DeletedObject.
5.2.2.24 Type: DeletedObject
An object that has been deleted.
	Element
	Type
	Optional
	Description

	resourceURL
	xsd:anyURI
	No
	The resource URL of the deleted object.

	lastModSeq
	xsd:unsignedLong
	No
	Last mod-sequence value associated with the deleted object.

	uniqueId
	xsd:string
	Yes
	Unique ID associated with the object. This ID is derived from the object content (see Section 5.2.5) and is unrelated to the {objectId}.

	contentHash
	xsd:string
	Yes
	Content hash derived from the object content (see Section 5.2.5).

Change 3: Add elements to s5.2.2.x ChangedObject.
5.2.2.x Type: ChangedObject

Changes to an individual object

	Element
	Type
	Optional
	Description

	parentFolder
	xsd:anyURI
	No
	Resource URL of the parent folder that contains the object.

	flagList
	FlagList
	No
	List of flags associated with the object

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

	lastModSeq
	xsd:unsignedLong
	No
	Last mod-sequence value associated with the object.

	uniqueId
	xsd:string
	Yes
	Unique ID associated with the object. This ID is derived from the object content (see Section 5.2.5) and is unrelated to the {objectId}.

	contentHash
	xsd:string
	Yes
	Content hash derived from the object content (see Section 5.2.5).

A root element named object of type ChangedObject is allowed in request and/or response bodies.
Change 4: Add new section s5.2.5 explaining how NMS computes the uniqueId and contentHash.
5.2.1 Determining the unique ID and content hash
7.1.1 Introduction (Informative)
Some clients obtain objects via another mechanism (e.g., CPM messaging [REST_NetAPI_Messaging]) as well as via the NMS. Such clients generally wish to correlate these objects with notifications received from the NMS, e.g., to avoid unnecessary downloads, to avoid duplications, and to ensure flag changes made by other NMS clients are correctly applied to local objects. Clients may perform this correlation by means of the uniqueId and contentHash elements contained in all relevant notifications.
Not all objects have an attribute which contains a unique ID; e.g., CPM messages do not necessarily contain a Message-ID header, and the Contribution-ID is not unique for chat messages within a session. Furthermore, some mechanisms (e.g., SMS) can transport object content but not additional headers. For these reasons, a content hash is provided as a secondary means of correlation.
Unique ID
If an object contains a Message-ID attribute (as provided by, e.g., [RCF5322] MIME messages or [RFC5438] IMs), the server MUST expose the value of this attribute as the uniqueId field.
Otherwise, if the object contains an attribute which is defined to be a globally-unique ID, the server SHOULD expose the value of this attribute as the uniqueId field.

Otherwise, the server SHOULD omit the uniqueId field.
5.2.1.1 Content hash

If an object contains a text payload part, the server MUST expose the content hash of this object as the contentHash field.

Otherwise, the server SHOULD omit the contentHash field.

The content hash is formed by constructing a hash string and then hashing it.
For objects with a text payload, the hash string is formed as follows:
· The hash string is constructed from the following attributes’ values in the following order: To, Cc, Bcc, From, Subject, followed by the “text payload”.
· The “text payload” is the content of the first text payload part.
· Each value is separated from the next one by a colon (U+003A) and no spaces.
· Absent values are represented by empty strings.
· In the To, From, Cc and Bcc fields, multiple values for a single attribute MUST be sorted in ascending lexicographic order, separated by a comma (U+002C) with no space.
· If the Direction attribute is present and has the value “outbound”, the From value is not used but an empty string is used instead.

· If the Direction attribute is present and has the value “inbound”, the To, Cc, and Bcc values are not used but an empty string is used for each instead.
The content hash is formed from the hash string as follows:

· Encoding the hash string in UTF-8.

· Applying the MD5 hash algorithm.

· Take the first eight bytes of the result.

· Represent these as a hex string using the character set [0-9a-f] (i.e., lower-case) with no leading 0x and no leading zeroes.
Informative Java code implementing this hash algorithm is as follows:
import java.io.*

import java.math.*

import java.security.*

 /**

 * Hash a string using the first 64 bits of output from the MD5 algorithm.

 *

 * @param string The string to hash

 * @return A hex encoded string of the hash.

 * @throws UnsupportedEncodingException

 * @throws NoSuchAlgorithmException

 */

 public static String hash(String string) throws UnsupportedEncodingException, NoSuchAlgorithmException

 {

 MessageDigest m = null;

 m = MessageDigest.getInstance("MD5");

 byte[] stringInUTF8 = string.getBytes("UTF-8");

 m.update(stringInUTF8, 0, stringInUTF8.length);

 //--

 // Just copy the first 8 bytes

 //--

 byte[] firstEightBytes = Arrays.copyOfRange(m.digest(), 0, 8);

 //--

 // Create a hex representation

 //--

 String hash = new BigInteger(1,firstEightBytes).toString(16);

 return hash;
 }
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

