Doc# OMA-ARC-REST-NMS-2014-0023R01-CR_Sync.doc
Change Request

Doc# OMA-ARC-REST-NMS-2014-0023R01-CR_Sync.doc[image: image3.jpg]
Change Request

Change Request

	Title:
	Sync
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC-REST_NMS WA

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1_0-20140129-D

	Submission Date:
	08 Feb 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Elad Granot, Comverse, elad.granot@comverse.com

	Replaces:
	n/a

	Attachments:
	OMA-ARC-REST-NMS-2014-0023

1 Reason for Change

Synchronization NMS Server and NMS Client is described high level in section 5.0.4. The details are then appear in a few other sections.
Given the overhead and performance penalty associated with extended state information, it is likely that at least some deployment scenarios will (intentionally) not support it, and will instead use NOMODSEQ response (as per RFCs 4551).
This CR extends the synchronization procedure to support such deployments and still allow efficient synchronization of most significant state (new objects, purged objects, non \Seen flag) at the cost of excluding insignificant flags from the synchronization.
The simplified sync requires the following changes:

1. Change objectId from string to unsigned number, and mandate increasing values.

2. Standardize the \Vanished flag, as a mark for a permanently deleted object.

3. Add ‘objectId’ search type to retrieve objects based on designated objectId value(s).

4. Define the simplified search, comprised of a 3-steps search:

a. Search new objects (those with objectId greater than highest objectId known to the client)
b. Search deleted objects (those with \Vanished flag)
c. Search for objects without \Seen flag

R01 responds to some offline comments:

Comment 1: changing of objectId to unsignedLong and requiring that it is assigned strictly sequentially is extremely restrictive for implementations: for example, it prevents a distributed implementation where each node assigns random object IDs. It’s even hard to see how you could implement it over IMAP, which assigns object IDs sequentially per folder not per box.
· please note that backwards compatibility is officially (process-wise) required only after a spec has been released. It is not required in Draft stages of an evolving spec.
· instead of objectId R01 uses a new element, objectSeq.
· R01 clarifies that only loose sequencing (rather than strict sequencing) is required, i.e. the sequence MUST be monotonically increasing, but MAY skip values (i.e. 1,2,3,10,20 is still valid).
· Changing the requirement for loose sequencing to be per-folder (rather than per box) would reduce the efficiency of the sync, because it would require the client to perform multiple sync round-trip (each per folder) instead of allowing a single sync per box. For this reason, R01 keeps the scope of (loose) sequencing per box.
Comment 2: allowing the server to omit lastModSeq prevents clients from relying on it, which means that a developer cannot write an NMS client which uses strict synchronization – since they cannot be assured of server support. If we want to define two kinds of NMS servers, then we should do this explicitly and declare it up front, so that a server implementor has to say “This server implements the Simplified NMS API” or “This server implements the Strict NMS API”. Just making an element optional is not explicit enough.
· The intention is to allow a server/client to support either of the sync options or both, depending on the deployment’s use-cases, needs, policies, etc. This is no different than any other deployment option in any other spec.
· Similar to IMAP, we may consider adding capabilities query to the API, but this would be in a separate CR and should cover other aspects, e.g. supported search types.
· For identifying the kind of sync supported by the server:

· A server supporting Strict Sync would return lastModSeq

· A server supporting Simplified Sync would return objectSeq
Comment 3: refers to RFC4551 and RFC5162, saying that an NMS client may receive a NOMODSEQ response from the NMS server. This makes no sense – NOMODSEQ is an IMAP response; there’s no such data structure in NMS so it cannot be returned to a client.
· This was a copy paste mistake. Fixed in R01.
Comment 4: s5.0.4.2 “SHALL” – we should not mandatorily constrain the client usage of the API in this way. Clients are allowed to use the API in any valid way; we can’t insist that they SHALL make three particular searches in a particular order. This should just be a suggestion, with no RFC2119 language.

· R01 changed SHALL to SHOULD
Comment 5: This CR significantly complicates the spec, because it requires clients to implement two different sync algorithms – one to be used in the normal case, and one to be used when it receives a NOMODSEQ response from the API. Elsewhere we have tried to keep just one way of doing things, to make interop easier to achieve
· The CR does not mandate one way or the other. That will be a deployment option. On the contrary, we see complexity with the existing mod-seq mechanism, but for now we do not object it, as long as we also allow a simplified alternative. Then each deployment can choose what works best for its use case.
Comment 6: This CR introduces a \Vanished flag. It’s not at all clear what this means, but at a guess the CR means that if I DELETE /objects/123 and then GET /objects/123 I get not a 404 but a 200 with an Object that contains the \Vanished flag? That’s certainly incorrect. A deleted message is deleted from the store and cannot be retrieved. Also, what happens if I PUT /objects/123/flags/%5CVanished – does that delete the message? Does DELETE /objects/123/flags/%5CVanished restore it again?

· We agree that the \Vanished flag does not behave like other flags, therefore R01 drops this flag and instead specifies that the server maintains a list of objects that have been recently permanently deleted.
· If the application performs DELETE /objects/123 and then GET /objects/123 the server should respond with 404. In R01 this becomes clear, as we no longer use a /Vanished flag.
Comment 7: The first three paragraphs of s5.0.4 are unnecessarily negative. If a developer wants to design a multi-client system, this is exactly the right API to be looking at and it makes no sense to discourage her from using it.

· There is no intention to be either negative or positive. We are not “judging” anything. We try to capture the properties of each option, so that each deployment can understand the consequences of selecting each option.
So far we got no proposals for a better description, but we are open for subsequent CRs to improve any description including this one.
· Alternatively, we could also omit most of this descriptive text and just specify the two alternatives, but then we assume that every reader will be able to understand the pros/cons of each option. Even some related RFCs use extensive text to describe various implementation considerations, so we don’t see a reason why we can’t do the same.

Comment 8: The sequence diagram in s5.3.2.2 has text that is too small to read.

· The intention is for the editor to use the same tools that generated the other diagrams. We tried to edit existing diagrams, but they were not editable, so we just used an online tool to generate the content. We trust the editor to re-generate the same diagram using better tools.
· R01 adds an editor’s note to update the diagram
Comment 9: Appendix H; “/Vanished”: What’s the difference with the already defined (RFC3501) “/Deleted”? Why can’t “/Deleted” be used?

· In IMAP: \Vanished is for permanently deleted objects (unrecoverable), whereas \Deleted is a flag for messages that were marked to-be deleted (typically displayed with a strike-out formatting). IMAP Expunge command turns /Deleted objects to /Vanished
· R01 no longer uses /Vanished.
Comment 10: s5.3.2.2 Simplified Synchronization: It seems that this is a pull-based (while limited) sync purely based on existing search mechanism. Once the queries (set of searches) are done, the client is assumed to perform the search on period basis in order to keep in sync (in a limited way) with the server. This periodic pull assumption also needs to be mentioned somewhere in the text
· R01 includes new text to denote the ‘pull’ semantics.
· Note that the simplified sync is not necessarily periodic, and could be also be initiated by other triggers.
Comment 11: in Section 5.0.4 refer to a new Appendix which explains how the existing Search mechanism can be used to perform Simplified Synchronization; Add a new Appendix called “Search-based Synchronization”: in this appendix explain the mechanism as proposed in CR: s5.0.4.2 and s5.3.2.2

· Simplified sync is an equally normative alternative to strict sync, therefore we see no reason to list one within the spec and another in an Appendix.
· Moving text from a structured section to an Appendix does not help reduce complexity and might even be confusing to the reader.
· The (positive) fact that the sync mechanism re-uses other existing features of the API (i.e. Strict sync re-uses notifications and Simplified sync reuses search) does not imply that these sync mechanisms should be demoted to an appendix.
· If we decide to move the sync details to an Appendix then this decision should apply to all types of sync. In any case, this is more of an editorial preference, and can be addressed in a future CR during CONR.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

ARC is recommended to agree on the proposed changes in this CR.
6 Detailed Change Proposal

Change 1: Change objectId from string to unsigned number, and mandate increasing values.

5.0.1 Object
The object resource in the context of this specification comprises of:

· a payload (sequence of bytes)

· flags, which are string labels that may have applicative meaning, such as:

· Important

· Urgent

· Read

· Unread

· attributes that contain meta data, such as:

· size (in bytes)

· type (e.g. FileTransfer, Image, SMS, text)

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

Each object resource in a given storage is identified by objectId, which is a string that MUST be unique in the context of that storage (under the same box and over the lifetime of that box, even if the object is deleted or moved). The objectId is assigned by the storage server.
Each object resource is associated with objectSeq, which is a positive unsigned 64-bit value that MUST be unique in the context of that storage (under the same box and over the lifetime of that box, even if the object is deleted or moved). The objectSeq is assigned by the storage server in an strictly ascending fashion (per the parent folder); as each object is added to the folder it is assigned a higher but not necessarily contiguous objectSeq value. The objectSeq is persistent as long as the object is not moved to another folder, in which case the server assigns a new objectSeq.
 The path for any object in the network storage is made up of a sequence of folder names starting from the root folder and ending with the given object’s unique Id (i.e. objectId) where the folder names and the objectId are separated by “/”(U+002F) character.

Change 2: Add high level description of two complementing sync methods (and add sub-section for each method)
5.0.4 Managing local storage mirror (cache) at the client
Clients may need to have a local cache, representing the storage at the server. In order to keep it up-to-date, any change made on the server needs to be mirrored in the local cache, which requires tracking of storage changes. Tracking such changes in a multi-device (multi-client) environment is a complicated task that requires extended state management. This tracking incurs overhead both in complexity (cost) of the client and server implementations and in their runtime performance when synchronizing the changes between the client(s) and the server.
Different deployment scenarios have different requirements with regards to the tradeoff made between strict change tracking at the expense of complexity/performance penalty and simplified tracking at the expense of excluding some information from the scope of changes synchronization.
Furthermore, in some use-cases a user may only be interested in selective tracking (e.g. she may only care about the most recent changes and consider older objects/folders irrelevant).
The NMS API offers two alternatives:
· Strict Synchronization: suitable for deployments that require full and accurate cache and willing to incur the extra cost.
· Simplified Synchronization: suitable for deployments that require simplicity and either prefer to or willing to have a selective cache, i.e. one that skips the mirroring of insignificant server changes.
5.0.4.1 Strict Synchronization
FFS: We would like consider (in addition) a more simplified approach which has some limitations (e.g., the situation prior to CR2014-0001, presented using the present syntax). This may be simpler for implementors. It must remain interoperable.
Each object also has a lastmodseq, which is a mod-sequence (modification sequence number – see below) value used to determine whether the object metadata has changed since some known moment. Whenever the metadata changes the lastmodseq value MUST be updated. Setting a metadata item to a value equal to the value which it already has SHOULD NOT change the lastmodseq.

…..
Change 3: Add high level description for simplified sync
5.0.4.2 Simplified Synchronziation
Extra server state information and persistent storage of mod-sequences may not always be supported, in which case the client will receive an error code when subscribing to notifications. In this scenario the client SHOULD follow the following steps:
1. Synchronize new objects: Fetch all objects whose objectId is greater than the last objectId known to the client.

2. Synchronize purged objects: Fetch objectIds of objects that have been permanently deleted.
3. Synchronize significant flag changes:

a. Sync Read/Unread flag for all objects: search for objects that do not carry the “\Seen” flag. All objectIds returned by the search have the flag unset, and therefore all the others have the flag set.
This step assumes that most objects in the store are read (seen), therefore searching for non “\Seen” objects optimizes the retrieval of a relatively short list of objectIds.

b. Optionally, use similar approach to synchronize other significant flags. The rest of the flags will not be synchronized into the local store.

Change 4: Mandate maintenance of permanently deleted object list
5.0.6 Deletion
There are two ways in which an object or folder can be deleted:

· A client may delete an object or folder by supplying a DELETE request over the API. This is called “user deletion”.

· The storage server MAY at any time spontaneously delete an object or folder. This is called “expiry”.

Both of these kinds of delete update the object or folder’s lastmodseq and trigger a notification. The notification indicates which has occurred.

Clients may choose to associate different semantics with these different kinds of delete, e.g., user deletion may result in the object or folder being removed from local storage, whereas expiry may be ignored (for instance to allow the user to hold onto the local copy of a server-deleted object).

If the server receives a subscription request from before the point at which the object or folder was deleted, the server SHOULD return a notification indicating the user-deletion or expiry. However the server MAY omit this notification. The server SHOULD NOT omit the notification unless a reasonable period of time has elapsed since the delete occurred (i.e., such that the client could reasonably be expected to have issued a subscription request within this period).

The NMS Server MUST maintain a list of objectIds of Objects that have recently been permanently deleted, where the definition “recently” is subject to service provider’s policy (e.g. last 30 days, last 1,000 objects).
Change 5: Add objectSeq element to the Object structure
5.2.2.1 Type: Object

Individual object

	Element
	Type
	Optional
	Description

	…
	….
	…
	…

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the object.

The server MUST provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.

	objectSeq
	xsd:unsignedLong
	Yes
	Unique persistent sequential identifier of the object, used for Simplified Sync. See sections 5.0.1, 5.0.4.2.
A server supporting Simplified Sync MUST provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.

	…
	…
	…
	…

Change 6: Add flow diagram for simplified sync
5.3.2 Synchronization with NMS
5.3.2.1 Strict Synchronization
This figure below shows a scenario for an application wishing to synchronize its local message storage with the NMS. Typically, this scenario happens if an application with a local storage is off-line for a period of time (e.g. during a flight) and wishing to sync back with the network message storage.

Synchronization with the NMS is yet another form of subscribing to events to NMS notifications with the inclusion of the “highestModSeq” parameter the client application is aware of (from the last modification (“lastModSeq”) notification it received prior to going off-line).

The resources:

· To subscribe to NMS notifications while needing to synchronize, include “highestModSeq” parameter in the request to create a new resource under http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions
[image: image1.png]
Figure 3: Strict synchronization with NMS
Outline of the flows:
1. An application subscribes to NMS notifications using the POST method to submit the NmsNotificationSubscription data structure including “highestModSeq” element to the resource containing all subscriptions

2. The application receives the result resource URL containing the subscriptionId.
3. The server compares the client’s “highestModSeq” received in the subscription request with it’s own “highestModSeq”. Assuming that the client’s “highestModSeq” is smaller that the server’s “highestModSeq”, the server formulates a list of events the client has missed (while being off-line) and sends that in a NmsEventNotificationList data structure to the client.

4. After some time new changes takes place in the NMS which results in the application receiving a new list of notifications. Please note that the notifications list reported in step #3 and #4 may be filtered by the server if instructed by the client application (see section 5.3.3. for further information on notification filtering mechanism use case).
5.3.2.2 Simplified Synchronization
This figure below shows a scenario for an application wishing to synchronize its local message storage with the NMS, by leveraging the simplified selective synchronization. Typically, this scenario happens if an application with a local storage is off-line for a period of time (e.g. during a flight) and wishing to sync back with the network message storage.

Simplified synchronization with the NMS comprises of a set of search operations based on the last objectSeq value that the client application is aware of (from the last simplified synchronization performed prior to going off-line).
The client can initiate the simplified synchronization either asynchroneously (i.e. in a ‘pull’ fashion, for example periodically, or triggered by some user operation) or after receiving some change notification.
The resources:

To search NMS needing to synchronize, use the following resource http://{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/search
[image: image2.png]
Figure 3: Simplified synchronization with NMS
Editor’s note: update the figure format to be consistent with other figures; update the label on steps 1, 3 to be consistent with the text below
the client SHALL follow the following steps:

1. Search for new objects - SelectionCriteria.searchCriteria.criterion[1]: field.type = objectSeq, field.name omitted, value = highest objectSeq known to the application.
2. The server responds with all objects whose objectSeq is greater than the last objectSeq known to the client.
3. Search for purged objects - SelectionCriteria.searchCriteria.criterion[1]: field.type = vanishedObjects, field.name ommitted, value = “”.
4. The server responds with all objects that have recently been permanently deleted.
5. Search for objects that do not carry the “\Seen” flag.
SelectionCriteria.searchCriteria.criterion[1]: field.type = Flag, field.name = \Seen, value = false.
This step assumes that most objects in the store are read (seen), therefore searching for non “\Seen” objects optimizes the retrieval of a relatively short list of objectIds.

6. The server responds with all objects that have the flag unset, and therefore all the others have the flag set.
7. Optionally (not shown in the diagram), use similar approach to synchronize other significant flags. The rest of the flags will not be synchronized into the local store.

Change 7: Relax the requirement to always maintain server modification sequence
5.2.2.1 Type: Object

Individual object

	Element
	Type
	Optional
	Description

	…
	…
	…
	…

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the object.

The server MAY provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.

	…
	…
	…
	…

A root element named object of type Object is allowed in request and/or response bodies.
XSD modelling uses a “choice” to select either parentFolder or parentFolderPath, but not both of them.

FFS: In some scenarios, the NMS will be able to calculate the uniqueId itself, rather than requiring the client to supply it. Consider allowing it to do so.
Change 8: make objectId an unsigned

5.2.2.3 Type: ObjectReference

Reference to stored object

	Element
	Type
	Optional
	Description

	objectId
	xsd:unsignedLong
	No
	The object identifier

	resourceURL
	xsd:anyURI
	Yes
	The object resource URL

	path
	xsd:string
	Yes
	The location of the object in the hierarchical storage

Change 9: Add objectId search
5.2.3.1 Enumeration: SearchFieldEnum
	Enumeration
	Description

	 Conversation
Editor’s note: consider a clarification note to avoid confusion with CPM conversation.
	 Searching for conversation with particular user, identified by user ID(s).

.
· SearchField.name element is not applicable.

· SearchCriterion.value element MUST contain one or more user IDs separated by comma. If multiple IDs are provided, they are all assumed to belong to the same (single) user, hence a logical OR is implied between them.
Empty value denotes “all conversations”

	…
	…

	vanishedObjects
	Searching for objectIds of objects that were recently pemenantly deleted:

· SearchField.name element is not applicable.
· SearchCriterion.value element is set to “” (in any case this value is ignored by the search)

	objectSeq
	Searching for objects that whose objectSeq matches the specified criterion:

· SearchField.name element is not applicable.
· SearchCriterion.value element contains a query string of the following format:

minObjectSeq={minObjectSeq} – all objects with objectSeq greater than {minObjectSeq} exclusive

minObjectSeq={minObjectSeq}&maxObjectSeq={maxObjectSeq} – all objects with objectSeq value between {minObjectSeq} exclusive and {maxObjectSeq} inclusive

maxObjectSeq={maxObjectSeq} – all objects with objectSeq smaller than {maxObjectSeq} inclusive.

Change 10: Add the Vanished flag – R01 withdraws this change
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 9 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

