Doc# OMA-ARC-REST-NMS-2014-0105R01-CR_Object_creation_behavior.docx[image: Picture in Transforming WAPF Into OMA 20020313]
Change Request

Doc# OMA-ARC-REST-NMS-2014-0105-CR_Object_creation_behavior.doc[image: Picture in Transforming WAPF Into OMA 20020313]
Change Request

Change Request

	Title:
	Object_creation_behavior
	|X| Public |_| OMA Confidential

	To:
	OMA ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_NMS-V1_0-20140429-D

	Submission Date:
	023 JuneMay. 2014

	Classification:
	|_| 0: New Functionality
|_| 1: Major Change
|X| 2: Bug Fix
|_| 3: Editorial

	Source:
	Shahram Mohajeri, sm7084@att.com

	Replaces:
	N/A

Reason for Change
The objective of this CR is to make BulkCreation operation and single Object creation operation (i.e. POST /objects) behave consistently as far as parent folder auto-creation is concerned.
[bookmark: _GoBack]BulkCreation operation, allows parent folder auto-creation if a given parentFolderPath listed in the request does not exist. Here is what the TS states in this regard in section “5.0.10 Bulk Creation”:
“If the identified parent folder of a given object in the list does not exist, the server SHALL create the parent folder before creating and placing the object in the folder.”
However, the TS currently does not state such a behavior for the single object creation operation (i.e. POST /objects). Additionally, XML example in section 6.1.5.2 shows a failure due to non-existent parentFolderPath scenario. Basically the example for the single object creation operation is reverse of what is done in the bulk object creation. This observed inconsistency between the two object creation operation (i. bulk and single object creation) does not make sense and is more of an oversight than anything else.
In order to make the two object creation operations (Bulk and single creation) provide a consistent behavior. This CR suggests the follows:
1. A simple change in the description of parentFolderPath element of Object data structure
2. Changing XML example in section 6.1.5.2 to show a non-existent parent folder is auto-created to match the description in #1 above
R01: incorporates the changes suggested in Hawaii F2F ARC meeting.
Impact on Backward Compatibility
None	
Impact on Other Specifications
None	
Intellectual Property Rights
Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.
Recommendation
The ARC group is recommended to accept the proposed changes to NMS TS.
Detailed Change Proposal	
1. Consistent behaviour is added

[bookmark: _Toc283846830][bookmark: _Toc294513753][bookmark: _Ref372643570][bookmark: _Ref374287624][bookmark: _Ref382584014][bookmark: _Toc386202228][bookmark: _Toc386202623]5.2.2.1 Type: Object
Individual object
	Element
	Type
	Optional
	Description

	parentFolder
	xsd:anyURI
	Choice
	Resource URL of the parent folder that contains the object.
In object creation requests this element specifies the folder that will contain the new object.
In object creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.
The server MUST include this element in responses.

	parentFolderPath
	xsd:string
	Choice
	The location in the hierarchical storage of the folder that contains this object.
In object creation requests this element specifies the folder that will contain the new object. The server will internally resolve the parentFolderPath to an equivalent of the parentFolder URL of the requested parent folder.
In object creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.
The server SHALL implicitly create any folder(s) (referred to by the parentFolderPath element) which do not already exist.
The server MUST NOT include this element in responses.

	…
	
	
	

	…
	
	
	

1. Correct the example to reflected the new statement in the behaviour above

[bookmark: _Toc386202253][bookmark: _Toc386202648]Example 2: Object creation by parentFolderPath, response with a location of the created resource while the non-existent parent folder is auto-createdcreation failure due to a non-existent parent folder 	(Informative)
The following example shows a request for creation of an object under a non-existent parent folder which is auto-created by the server prior to placing the new object in it.
[bookmark: _Toc386202254][bookmark: _Toc386202649]Request
	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects HTTP/1.1
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com	
Content-Type: multipart/form-data; boundary="===============outer123456==";
Content-Length: nnnn
MIME-Version: 1.0

--===============outer123456==
Content-Type: application/xml
Content-Disposition: form-data; name=”root-fields”
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nms:object xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <parentFolderPath>/main/myBackups/Football/SavedPictures</parentFolderPath>
 <flags>
 <flag>\Seen</flag>
 <flag>\Flagged</flag>
 </flags>
</nms:object>
--===============outer123456==
Content-Type: multipart/mixed; boundary=”--=-sep-=--”
Content-Disposition: form-data; name=”attachments”

----=-sep-=--
Content-Type: text/plain
Content-Disposition: attachment; filename=”body.txt”

See attached photo

----=-sep-=--
Content-Type: image/gif
Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----
--===============outer123456==--

[bookmark: _Toc386202255][bookmark: _Toc386202650]Response
	HTTP/1.1 201 Created
Date: Fri, 23 May 2014 02:51:59 GMT
Location: http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj4141
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nms:reference xmlns:nms="urn:oma:xml:rest:netapi:nms:1">
 <resourceURL>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj4141</resourceURL>
 <path>/main/myBackups/Football/SavedPictures</path>
</nms:reference>

HTTP/1.1 400 Bad request
Date: Tue, 20 Nov 2014 20:51:51 GMT
Content-Type: application/xml
Content-Length: nnnn
	
<?xml version="1.0" encoding="UTF-8"?>
<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">
 <serviceException>
 <messageId>SVC0002</messageId>
 <text>Invalid input value for message part %1</text>
 <variables>/main/myBackups/Football/SavedPictures</variables>
 </serviceException>
</common:requestError>

1. Further explanation in sec. 5.0.2

[bookmark: _Ref374278283][bookmark: _Toc386202166][bookmark: _Toc388784945]Folder
Similar to the abstract model of a file system, a folder in the context of this specification is a container with a designated location (pathname) that can contain objects and/or sub-folders (i.e. be considered as their parent in the location hierarchy). The folder resource in the context of this specification comprises of:
· attributes
· name
· location (i.e. the equivalent of a full pathname in a hierarchical file system)
· identification of the contained objects and/or sub-folders (i.e. children in the hierarchy of the storage)
Similar to object, as listed above, a folder can also be assigned attributes that contain metadata. A client can perform batch search for objects/folders by their attributes.
Each folder resource in a given storage is identified by resourceURL containing a “folderId”, which is a string that MUST be unique in the context of that storage (under the same box and over the lifetime of that box, even if the folder is deleted). The folderId is assigned by the storage server. Note: “operations” is a reserved keyword and MUST NOT be used as a folderId.
Each folder also has a name, which is used to construct the location (path). The name is a string which MUST be unique in the context of the folder’s parent folder in the hierarchy of the storage.
The path for any folder in the network storage is made up of a sequence of folder names starting from the root folder and ending with the given folder’s name where the folder names are separated by a “/” (U+002F) character.
While a folder in a file system model conceptually contains objects and sub-folders, the resource tree shown in Figure 1 does not mimic that hierarchy. For the purpose of the API, objects and folders are identified by resourceURL containing a unique objectId and folderId respectively, and not by their location (pathname). However, through RESTful operations and queries on the resource tree, it is possible for a client to discover the location (full pathname) of all objects and folder in the storage; hence it is possible to map the full hierarchy. It is also possible to perform a query to resolve a pathname (of a folder or an object) to the equivalent resourceURL (containing a folderId or objectId).
Folder can be created explicitly using POST /folders or implicitly while creating a new object given a parent folder path which doesn’t already exist. This results in implicit creation of the non-existent folder(s).
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.
THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.
USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.
THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.
[bookmark: Template]© 2013 Open Mobile Alliance Ltd. All Rights Reserved.	Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-ChangeRequest-20130101-I]
© 2013 Open Mobile Alliance Ltd. All Rights Reserved.	Page 2 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-ChangeRequest-20130101-I]
image1.jpeg
"sOMaQa

Open Mobile Alliance

