OMA-TS-REST_NetAPI_NMS-V1_0-20131111-D
Page 67  V(79)


	[image: image1.jpg]
	

	RESTful Network API for Network Message Storage  

	Draft Version 1.0 – 11 Nov 2013

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_NMS-V1_0-20131111-D

	
	

	

	
	


Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner.  Information contained in this document may be used, at your sole risk, for any purposes.  You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance.  The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms.  This copyright permission does not constitute an endorsement of the products or services.  The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.  However, the members do not have an obligation to conduct IPR searches.  The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html.  The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights.  This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions.  Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

81.
Scope

2.
References
9
2.1
Normative References
9
2.2
Informative References
9
3.
Terminology and Conventions
11
3.1
Conventions
11
3.2
Definitions
11
3.3
Abbreviations
11
4.
Introduction
13
4.1
Version 1.0
13
5.
Network Message Storage API definition
15
5.0
Concepts
15
5.0.1
Object
15
5.0.2
Folder
16
5.0.3
Box
16
5.0.4
Tracking storage changes
16
5.1
Resources Summary
17
5.2
Data Types
24
5.2.1
XML Namespaces
24
5.2.2
Structures
24
5.2.2.1
Type: Object
24
5.2.2.2
Type: ObjectList
26
5.2.2.3
Type: ObjectReference
26
5.2.2.4
Type: ObjectReferenceList
26
5.2.2.5
Type: Flag
27
5.2.2.6
Type: FlagList
27
5.2.2.7
Type: Attribute
27
5.2.2.8
Type: AttributeList
27
5.2.2.9
Type: ReferenceList
27
5.2.2.10
Type: TargetSourceRef
27
5.2.2.11
Type: Folder
28
5.2.2.12
Type: FolderList
30
5.2.2.13
Type: FolderReference
30
5.2.2.14
Type: FolderReferenceList
30
5.2.2.15
Type: SelectionCriteria
30
5.2.2.16
Type: SearchCriteria
31
5.2.2.17
Type: SearchCriterion
31
5.2.2.18
Type: SearchField
32
5.2.2.19
Type: SortCriterion
32
5.2.2.20
Type: SortField
32
5.2.2.21
Type: NmsSubscriptionList
32
5.2.2.22
Type: NmsNotificationSubscription
32
5.2.2.23
Type: NmsEventNotificationList
34
5.2.2.24
Type: NmsEventNotification
35
5.2.2.25
Type: PayloadPartInfo
35
5.2.2.26
Type: PathList
36
5.2.3
Enumerations
36
5.2.3.1
Enumeration: SearchFieldEnum
36
5.2.3.2
Enumeration: LogicalOperatorEnum
37
5.2.3.3
Enumeration: SortFieldEnum
37
5.2.3.4
Enumeration: RetrievalOrderEnum
37
5.2.4
Values of the Link “rel” attribute
37
5.3
Sequence Diagrams
37
5.3.1
[Title of flow scenario]
38
6.
Detailed specification of the resources
41
6.1
Resource: Resource containing all objects
41
6.1.1
Request URL variables
41
6.1.2
Response Codes and Error Handling
42
6.1.3
GET
42
6.1.4
PUT
42
6.1.5
POST
42
6.1.5.1
Example 1: Object creation by parentFolder, response with a location of created resource (Informative)
42
6.1.5.1.1
Request
42
6.1.5.1.2
Response
43
6.1.6
DELETE
43
6.2
Resource: A stored object
44
6.2.1
Response Codes and Error Handling
44
6.2.2
GET
44
6.2.3
PUT
44
6.2.4
POST
44
6.2.5
DELETE
45
6.2.5.1
Delete an object (Informative)
45
6.2.5.1.1
Request
45
6.2.5.1.2
Response
45
6.3
Resource: Flags associated with the stored object
45
6.3.1
Request URL variables
45
6.3.2
Response Codes and Error Handling
45
6.3.3
GET
46
6.3.4
PUT
46
6.3.5
POST
46
6.3.6
DELETE
46
6.4
Resource: Individual flag associated with the stored object
46
6.4.1
Request URL variables
46
6.4.2
Response Codes and Error Handling
47
6.4.3
GET
47
6.4.4
PUT
47
6.4.5
POST
47
6.4.6
DELETE
47
6.5
Resource: Payload of the stored object
47
6.5.1
Request URL variables
47
6.5.2
Response Codes and Error Handling
48
6.5.3
GET
48
6.5.3.1
Example: Read payload of the stored object  (Informative)
48
6.5.3.1.1
Request
48
6.5.3.1.2
Response
48
6.5.4
PUT
49
6.5.5
POST
49
6.5.6
DELETE
49
6.6
Resource: Payload part of the stored object
49
6.6.1
Request URL variables
49
6.6.2
Response Codes and Error Handling
49
6.6.3
GET
50
6.6.3.1
Example: Read an object payload part  (Informative)
50
6.6.3.1.1
Request
50
6.6.3.1.2
Response
50
6.6.4
PUT
50
6.6.5
POST
50
6.6.6
DELETE
50
6.7
Resource: Information about a selected set of objects in the storage
50
6.7.1
Request URL variables
50
6.7.2
Response Codes and Error Handling
51
6.7.3
GET
51
6.7.4
PUT
51
6.7.5
POST
51
6.7.6
DELETE
52
6.8
Resource: Resource URLs of a selected set of objects in the storage
52
6.8.1
Request URL variables
52
6.8.2
Response Codes and Error Handling
53
6.8.3
GET
53
6.8.4
PUT
53
6.8.5
POST
53
6.8.6
DELETE
53
6.9
Resource: Resource containing all folders
53
6.9.1
Request URL variables
53
6.9.2
Response Codes and Error Handling
54
6.9.3
GET
54
6.9.4
PUT
54
6.9.5
POST
54
6.9.5.1
Example 1: Folder creation by path, response with a location of created resource (Informative)
54
6.9.5.1.1
Request
54
6.9.5.1.2
Response
55
6.9.6
DELETE
55
6.10
Resource: A folder
55
6.10.1
Request URL variables
55
6.10.2
Response Codes and Error Handling
56
6.10.3
GET
56
6.10.4
PUT
56
6.10.5
POST
56
6.10.6
DELETE
56
6.10.6.1
Delete a folder (Informative)
56
6.10.6.1.1
Request
56
6.10.6.1.2
Response
56
6.11
Resource: Individual folder data
56
6.11.1
Request URL variables
56
6.11.2
Response Codes and Error Handling
57
6.11.3
GET
57
6.11.3.1
Example: Retrieve a folder’s name  (Informative)
57
6.11.3.1.1
Request
57
6.11.3.1.2
Response
58
6.11.4
PUT
58
6.11.5
POST
58
6.11.6
DELETE
58
6.12
Resource: Information about a selected set of folders in the storage
59
6.12.1
Request URL variables
59
6.12.2
Response Codes and Error Handling
59
6.12.3
GET
59
6.12.4
PUT
59
6.12.5
POST
59
6.12.6
DELETE
60
6.13
Resource: Resource URLs of a selected set of folders in the storage
60
6.13.1
Request URL variables
60
6.13.2
Response Codes and Error Handling
60
6.13.3
GET
60
6.13.4
PUT
61
6.13.5
POST
61
6.13.6
DELETE
61
6.14
Resource: All subscriptions in the storage
61
6.14.1
Request URL variables
61
6.14.2
Response Codes and Error Handling
62
6.14.3
GET
62
6.14.4
PUT
62
6.14.5
POST
62
6.14.6
DELETE
62
6.15
Resource: Individual subscription
62
6.15.1
Request URL variables
62
6.15.2
Response Codes and Error Handling
63
6.15.3
GET
63
6.15.4
PUT
63
6.15.5
POST
63
6.15.6
DELETE
63
6.16
Resource: Client notification about storage changes
63
6.16.1
Request URL variables
64
6.16.2
Response Codes and Error Handling
64
6.16.3
GET
64
6.16.4
PUT
64
6.16.5
POST
64
6.16.1
DELETE
64
7.
Fault definitions
65
7.1
Service Exceptions
65
7.1.1
SVC[code number]: [Text for exception header]
65
7.2
Policy Exceptions
65
7.2.1
POL[code number]: [Text for exception header]
66
7.2.1
POL1003: Refund exceeds original charge amount
66
Appendix A.
Change History (Informative)
67
A.1
Approved Version History
67
A.2
Draft/Candidate Version 1.0 History
67
Appendix B.
Static Conformance Requirements (Normative)
69
B.1
SCR for REST.NMS Server
69
B.1.1
SCR for REST.NMS.FUNCTION Server
69
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
70
C.1
[Operation]
70
C.1.1
Example     (Informative)
71
C.1.1.1
Request
71
C.1.1.2
Response
71
Appendix D.
JSON examples  (Informative)
72
D.1
[Example Title] (section [section number cross reference])
72
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
73
Appendix F.
Light-weight Resources (Informative)
74
Appendix G.
Authorization aspects (Normative)
75
G.1
Use with OMA Authorization Framework for Network APIs
75
G.1.1
Scope values
75
G.1.1.1
Definitions
75
G.1.1.2
Downscoping
76
G.1.1.3
Mapping with resources and methods
76
G.1.2
Use of ‘acr:Authorization’
78
Appendix H.
Flag Names Table (Normative)
79






















































































































































































































Figures

12Figure 1 Resource structure defined by this specification


22Figure 2 [Caption of this flow]


23Figure 3 [Caption of this flow]




Tables

1. Scope

This specification defines RESTful Network API for Network Message Storage using HTTP protocol bindings. 
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IETF_ACR_draft]
	Include if the use of ACR is supported, otherwise delete this reference. “The acr URI for anonymous users”, S.Jakobsson, K.Smith, January 2010, URL: http://tools.ietf.org/html/draft-uri-acr-extension-00 

	[OMA-CPM_TS_MessageStorage]
	“CPM Message Storage; Open Mobile Alliance ™, OMA-TS-CPM_MessageStorage -V2_0, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel] 
	Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Messaging]
	“RESTful Network API for Messaging”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Messaging-V1_0, URL:http://www.openmobilealliance.org/

	[REST_SUP_NMS]
	“XML schema for the RESTful Network API for Network Message Storage  Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_nms-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3501]
	“INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1”, M. Crispin, March 2003, URL: http://www.ietf.org/rfc/rfc3501.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt  

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt 

	[RFC5788]
	“IMAP4 Keyword Registry”, A. Melnikov, March 2010, URL: http://www.ietf.org/rfc/rfc5788.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_URLENC] 
	HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium, URL: http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1 [only needed if application/x-www-form-urlencoding (Appendix C) is supported]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/ 

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/ 


2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

	[RFC4551]
	“IMAP Extension for Conditional STORE Operation or Quick Flag Changes Resynchronization”, A. Melnikov, S.Hole, June 2006, URL: http://www.ietf.org/rfc/rfc4551.txt 


3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. If the use of Notification Channel and/or Light-weight Resources are supported, include also the definitions below, otherwise delete those that are not applicable. 

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource. Include this definition if Light-weight Resources are supported, otherwise delete it..

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure. Include this definition if Light-weight Resources are supported, otherwise delete it.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms. 

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.


3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	NMS
	Network Message Storage

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition


4. Introduction

The Technical Specification of the RESTful Network API for Network Message Storage contains HTTP protocol bindings for Network Message Storage, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-urlencoded).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Create a folder.
· Delete a folder

· Rename a folder

· Move folder(s) 

· Copy folder(s)
· Store an object (e.g., message, file, etc.) in the storage, in a particular folder.
· Delete an object

· Move object(s)

· Copy object(s)
· Retrieve information about a stored object (e.g. message, file, etc.), such as:

· size in the storage 

· hierarchical location (i.e. the equivalent of a full pathname in a file system)

· flags (string labels) associated with the object

· Update flags (string label) associated with an object
· Retrieve information about a set of selected objects, for example a list of messages, including associated header information such as subject, data and time.

· Retrieve the payload (i.e. stream of bytes) of a stored object.

· Retrieve individual attachments of an object
· Retrieve information about a folder, such as:

· hierarchical location (i.e. the equivalent of a full pathname in a file system)

· identification of the contained objects and/or sub-folders (i.e. children in the hierarchy of the storage)

· Retrieve information about a set of folders.
· Manage subscriptions to event notifications on changes occurring in the storage

· Notify client(s) about network message storage events

· Manage synchronization between client local storage and network storage
· Subscriber to filtered notifications
Editor’s note: re-visit this list to add other operations added to the TS 
5. Network Message Storage API definition
This section is organized to support a comprehensive understanding of the Network Message Storage API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].
The remainder of this document is structured as follows:

Section 5 starts with a description of the concepts used by this API (section 5.0). This is followed by a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body. Application/x-www-form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. 
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions. 

Appendix B provides the Static Conformance Requirements (SCR). 
Appendix F provides a list of all Light-weight Resources, where applicable. 

Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Concepts

Object
The object resource in the context of this specification comprises of:

· a payload (sequence of bytes)

· flags, which are string labels that may have applicative meaning, such as:

· Important

· Urgent

· Read

· Unread

· attributes  that contain meta data, such as:

· size (in bytes)

· type (e.g. FileTransfer, Image, SMS, text)

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

Each object resource in a given storage is identified by objectId, which is a string that MUST be unique in the context of that storage (under the same BASE_URL). The objectId is assigned by the storage server.

Each object also has a name, which is used to construct the location (path).
Folder
Similar to the abstract model of a file system, a folder in the context of this specification is a container with a designated location (pathname) that can contain objects and/or sub-folders ( i.e. be considered as their parent in the location hierarchy). The folder resource in the context of this specification comprises of:

· location (i.e. the equivalent of a full pathname in a hierarchical file system)

· identification of the contained objects and/or sub-folders (i.e. children in the hierarchy of the storage)

Each folder resource in a given storage is identified by folderId, which is a string that MUST be unique in the context of that storage (under the same BASE_URL). The folderId is assigned by the storage server.

Each folder also has a name, which is used to construct the location (path).

Editor’s note: FFS details of how path is constructed from object/folder names.
Similar to object, a folder can also be assigned attributes that contain meta data.  A client can perform batch search for objects/folders by their attributes.

A client can perform traversal of the storage hierarchical structure, provided that it can discover the root folder(s) of the hierarchy, i.e. the starting point(s) for traversal. Folder attributes are used to identify root folder(s) in the message storage. A folder attribute named “root” with the value “Yes” designates such a starting point. In some deployment scenarios other well-known attribute values may be used and other restrictions may apply (e.g. mandating only single root folder).

Editor’s note: consider moving the attribute values to an annex or another section (to avoid duplication).
While a folder in a file system model conceptually contains objects and sub-folders, the resource tree shown in Figure 1 does not mimic that hierarchy. For the purpose of the API, objects and folders are identified by objectId and folderId respectively, and not by their location (pathname). However, through RESTful operations and queries on the resource tree, it is possible for a client to discover the location (full pathname) of all objects and folder in the storage; hence it is possible to map the full hierarchy. It is also possible to perform a query to resolve a pathname (of a folder or an object) to the equivalent identifier (folderId or objectId).
Box
Editor’s note: FFS “A box within the context of this specification comprises of…”

Tracking storage changes


Each object also has a lastmodseq, which is a mod-sequence (modification sequence number – see below) value used to determine whether the object metadata has changed since some known moment. Whenever the metadata changes the lastmodseq value MUST be updated. Setting a metadata item to a value equal to the value which it already has SHOULD NOT change the lastmodseq.

Each folder also has a lastmodseq, which is a mod-sequence value used to determine whether the folder metadata has changed since some known moment. Whenever the metadata changes the lastmodseq value MUST be updated. Setting a metadata item to a value equal to the value which it already has SHOULD NOT change the lastmodseq.

Each box also logically has a highestmodseq, which is a mod-sequence value used to determine whether metadata of objects and folders within the box have changed since some known moment. The highestmodseq is not exposed over the NMS API.
A mod-sequence is a positive unsigned 64-bit value. When a relevant operation is performed the storage MUST obtain a mod-sequence value, and MUST set both the lastmodseq value of the object or folder being acted upon and the highestmodseq of the box which contains it to that value. The server MUST guarantee that each relevant operation performed on the same box (including simultaneous operations on different metadata items from different connections) will get a different mod-sequence value. Also, for any two successful relevant operations performed on the same mailbox, the mod-sequence of the second completed operation MUST be greater than the mod-sequence of the first completed. Note that the latter rule disallows the use of the system clock as a mod-sequence, because if the system time changes (e.g., an NTP (Network Time Protocol) client adjusting the time), the next generated value might be less than the previous one. See [RFC4551] for an informative discussion of mod-sequences.
The following operations (and only these operations) cause the lastmodseq of an object to be updated:

· creation (whether direct or as part of a recursive operation)

· deletion (whether direct or as part of a recursive operation)

· parentFolder change

· flag change

The following operations (and only these operations) cause the lastmodseq of a folder to be updated:

· creation (whether direct or as part of a recursive operation)

· deletion (whether direct or as part of a recursive operation)

· parentFolder change

· change of any lightweight resource within a folder, as described in Section 6.11.1.1“Light-weight relative resource paths”, e.g., changing its folderName.

In particular:

· Changing the folderName of a folder causes the lastmodseq of that folder to be updated, but the lastmodseq values of any subfolders or objects within it are not updated (their path and parentFolderPath values are changed, but these do not cause a lastmodseq update).

· Adding or deleting an object within a folder causes the lastmodseq of that object to be updated, but the lastmodseq value of the folder itself is not updated (its objects value changes, but this does not cause a lastmodseq update).

· Adding or deleting a subfolder within a parent folder causes the lastmodseq of the subfolder to be updated, but the lastmodseq value of the parent folder itself is not updated (its subFolders value changes, but this does not cause a lastmodseq update).

· Moving a folder to a new location causes the lastmodseq of the moved folder to be updated (since its parentFolder changes), but the lastmodseq values of any subfolders or objects within it are not updated (only their path and parentFolderPath values are changed), and the lastmodseq value of the new location (folder) is not updated (only its subFolders value is changed).
Editor’s note: FFS how to implement this over IMAP (which has highestmodseq per folder).
In order for the storage to correctly notify changes that include deletion events, it is necessary for the storage to retain the lastmodseq value and objectId or folderId of each deletion operation of an object or folder.
A client which is intending to keep in sync with the server SHOULD keep track of the highest lastmodseq ever received in a notification for the box. This is the client’s highestmodseq value. When the client makes an NmsNotificationSubscription request to determine subsequent changes, it SHOULD supply this value in the highestModSeq element.










5.2 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Network Message Storage. 
The "apiVersion" URL variable SHALL have the value “v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
The "storeName" URL variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value for that variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

The "boxId" URL variable can be used to identify specific area (or a ‘box’) allocated within the store, The value for this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.



[image: image3.emf]Base URL: //{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/

/flags/payload/{objectId}/folders/{folderId}/objectssubscriptions/{subscriptionId}/pathToId

/operations

/pathToId

/operations

/search/search/{flagName}

/[ResourceRelPath]

/copyToFolder/moveToFolder

/payloadParts

/{payloadpartId}


Figure 1 Resource structure defined by this specification

Note: pathToId resource is read as path-To-Id.

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods. 
Purpose: To allow a client to manage individual objects
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Resource containing all objects


	/objects


	Object

common:ResourceReference (optional alternative for POST response)

Editor’s Note: FFS whether this should be ObjectReference so as to include path.
	no
	no
	Create an object
	no

	A stored object


	/objects/{objectId}


	Object

FFS: for DELETE provide section 6 examples for both: HTTP “200 OK” with Object data type in the body as well as “204 No Content” 
	Retrieve the attributes (meta data) associated with the object
	no
	no
	Delete an object (including payload) from the storage

	Flags associated with the stored object
	/objects/{objectId}/flags


	FlagList



	Retrieve the flags(string labels) associated with the object
	Create or update the flags (string labels) associated with the object
	no
	No

	Individual flag
	/objects/{objectId}/flags/{flagName}

	
	Retrieve/check existence of an individual flag (string label). 
	Add individual flag (string label) 
	no
	Remove individual flag (string label

	Payload of the stored object
	/objects/{objectId}/payload


	Any MIME content (the one of the message, e.g., multipart/mixed)


	Retrieve the payload (stream of bytes) of the object
	no
	no
	no

	Payload part of the stored object
	/objects/{objectId}/payloadParts/{payloadPartId}
	Any MIME content (the one of the payload part)
	Retrieve individual object payload part
	no
	no
	no


Purpose: To allow a client to manage individual folders
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Resource containing all folders
	/folders


	Folder


common:ResourceReference (optional alternative for POST response)

Editor’s Note: FFS whether this should be FolderReference so as to include path.
	no
	no
	Create a folder
	no

	A folder


	/folders/{folderId}



	Folder 

FFS: for DELETE provide section 6 examples for both: HTTP “200 OK” with Object data type in the body as well as “204 No Content”
	Retrieve the folder properties (such as its location and list of contained objects/sub-folders)
	no
	no
	Delete a folder from the storage, including contained folders and objects (with their payload)

	Individual folder data
	/folders/{folderId}/[ResourceRelPath]


	The data structure corresponds to an element within the Folder structure pointed out by the resource URL.

(used for PUT/GET)
	Retrieve individual folder information parameters (e.g “name” parameter)
	Update individual folder information parameters (e.g. Rename the folder by changing its “name” parameter) 


	no
	no


Purpose: To allow a client to perform operations on a set of objects, where the set is defined by selection criteria
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}/objects/operations
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Information about a selected set of objects in the storage


	/search

	SelectionCriteria
(used for POST request)

ObjectList
(used for POST response)


	no


	no


	Retrieve information about a set of selected objects
	no



	Resource URLs of a selected set of objects in the storage
	/pathToId
Note: read as path-To-Id
	ObjectReference
(used for GET response)

PathList
(used for POST request)

ObjectReferenceList
(used for POST response)


	Retrieve resource URL for an object, based on its pathname which is provided via query string.
	no
	Retrieve resource URLs for a list of objects, based on their pathnames.
	no


Purpose: To allow a client to retrieve information and/or perform operations on a set of folders, where the set is defined by selection criteria
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}/folders/operations
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Information about a selected set of  folders in the storage


	/search

	SelectionCriteria
(used for POST request)

FolderList
(used for POST response)
	no


	no


	Retrieve information about a set of selected folders
	no



	Resource for triggering object(s)/folder(s) copying 
	/copyToFolder
	TargetSourceRef

(used for POST request)

ReferenceList

(used for POST response)


	no
	no
	Copy referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder
	no

	Resource for triggering object(s)/folder(s) moving
	/moveToFolder
	TargetSourceRef

(used for POST request)

ReferenceList

(used for POST response)
	no
	no
	Move referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder
	no

	Resource URLs of a selected set of folders in the storage
	/pathToId
Note: read as path-To-Id
	FolderReference
(used for GET response)

PathList
(used for POST request)

FolderReferenceList
(used for POST response)


	Retrieve resource URL for a folder, based on its pathname which is provided via query string.
	no
	Retrieve resource URLs for a list of folders, based on their pathnames.
	no


Editor’s Note: For copyToFolder/moveTolder resources update section 6 and insert “output references should not include folders’ recursive contents” (because notifications will take care of the recursive sub-tree).
Purpose: To allow a client to manage subscriptions for storage changes
	Resource
	URL
Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions in the storage
	/subscriptions

	NmsSubscriptionList 
(used for GET)


NmsNotificationSubscription 
(used for POST) 

common:ResourceReference (optional alternative for POST response)
	Retrieve all active  NMS notification subscriptions
	no
	Create new  subscription for notification for NMS changes
	no

	Individual subscription
	/subscriptions/{subscriptionId}

	NmsNotificationSubscription
	Retrieve an individual subscription
	no 
	no
	Cancel  subscription and stop  corresponding notifications


Purpose: To allow server to notify client about storage changes
	Resource
	URL
<specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about storage changes
	<specified by the client when subscription is created or during provisioning process>


	NmsEventNotificationList
	no
	no
	notifies client about storage changes
	no


Editor’s Note: FFS if we need a subscription cancel notification
5.3 Data Types
5.3.1 XML Namespaces

The XML namespace for the Network Message Storage  data types is:


urn:oma:xml:rest:netapi:nms:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_NMS].
5.3.2 Structures
The subsections of this section define the data structures used in the NMS API. 
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.3.2.1 Type: Object

Individual object

	Element
	Type
	Optional
	Description

	parentFolder
	xsd:anyURI
	Choice
	Resource URL of the parent folder that contains the object. 
In object creation requests this element specifies the folder that will contain the new object.

In object creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.
The server MUST include this element in responses.

Editor’s note: FFS whether this is included in notification POSTs.

	parentFolderPath
	xsd:string
	Choice
	The location in the hierarchical storage of the folder that contains this object.

In object creation requests this element specifies the folder that will contain the new object. The server will internally resolve the parentFolderPath to an equivalent of the parentFolder URL of the requested parent folder.

In object creation requests either the parentFolder or the parentFolderPath element MUST be included by the client. 

The server MUST NOT include this element in responses.

	attributeList
	AttributeList
	Yes
	List of attributes associated with the object

	flagList
	FlagList
	Yes
	List of flags associated with the object 

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. 

The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	path
	xsd:string
	Yes
	The location of the object in the hierarchical storage.
The client MUST NOT include this element in POST requests.

Editor’s note: FFS whether this is included in server responses and notification POSTs.

	payloadPart
	PayloadPartInfo [0…unbounded]
	Yes
	Information about individual payload parts, including content type indication, the link for individual payload part retrieval and optionally the size of the payload part.

Number and content of payload parts:

· If the object is empty, this element MUST be omitted.

· If the object’s payload has MIME type multipart/mixed, the first-level parts of the payload MUST be represented as individual payload parts.

· If the object’s payload is of another type which can be divided into a sequence of parts, those parts SHOULD be represented as individual payload parts.

· Otherwise, the object MUST be represented as having precisely one payload part representing the entire object payload.

In case the object contains a presentation part, this SHALL be referenced by the first item in the list of payloadPart elements.

Only the first-level parts of the payload are represented as payload parts; for example, a nested multipart/mixed part is represented as a single payload part, not a sequence of subparts.

	lastModSeq
	xsd:unsignedLong
	Yes
	Last mod-sequence value associated with the object.

The server MUST provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.


A root element named object of type Object is allowed in request and/or response bodies.
XSD modelling uses a “choice” to select either parentFolder or parentFolderPath, but not both of them.
5.3.2.2 Type: ObjectList

List of objects

	Element
	Type
	Optional
	Description

	object
	Object[0..unbounded]
	Yes
	List of objects. Number of objects MAY be limited by the server.

	cursor
	xsd:string
	Yes
	If the list of objects is complete, this element is omitted.

If there are more available objects not included in the list, then a cursor value is returned, which encapsulates information on these objects. The client can use the cursor in a subsequent request, to hint to the server that it is asking for the rest of objects which had not been returned in a previous request.

The cursor encapsulates server state information which might be volatile, especially in a multi-device environment. Therefore the cursor mechanism makes no guarantee on the integral continuity of object lists returned in subsequent requests. The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.

	resourceURL
	xsd:anyURI
	No
	Self referring URL. 


A root element named objectList of type ObjectList is allowed in response bodies.

5.3.2.3 Type: ObjectReference

Reference to stored object

	Element
	Type
	Optional
	Description

	objectId
	xsd:string
	No
	The object identifier

	resourceURL
	xsd:anyURI
	Yes
	The object resource URL

	path
	xsd:string
	Yes
	The location of the object in the hierarchical storage 


A root element named objectReference of type ObjectReference is allowed in request and/or response bodies.

Editor’s Note: FFS whether ObjectReference is needed or should it be renamed
5.3.2.4 Type: ObjectReferenceList

List of object references

	Element
	Type
	Optional
	Description

	objectReference
	ObjectReference[0..unbounded]
	Yes
	A list of object references


5.3.2.5 Type: Flag

Individual flag

	Element
	Type
	Optional
	Description

	name
	xsd:string
	No
	Flag name (case sensitive). See Appendix H.


5.3.2.6 Type: FlagList

List of flags 

	Element
	Type
	Optional
	Description

	flags
	Flag[0..unbounded]
	Yes
	List of flags. Appendix H defines the strings for flag names.


A root element named flagList of type FlagList is allowed in request and/or response bodies.

5.3.2.7 Type: Attribute

Individual attribute, used as container for an object attribute

	Element
	Type
	Optional
	Description

	name
	xsd:string
	No
	Attribute name

	value
	xsd:string
	Yes
	Attribute value


5.3.2.8 Type: AttributeList

List of attributes

	Element
	Type
	Optional
	Description

	attribute
	Attribute[0..unbounded]
	Yes
	List of attributes


5.3.2.9 Type: ReferenceList
References to stored folders and/or objects
	Element

	Type
	Optional
	Description

	folders
	FolderReferenceList
	Yes
	The referenced folders 

	Objects
	ObjectReferenceList
	Yes
	The referenced objects


A root element named referenceList of type ReferenceList is allowed in response bodies.
5.3.2.10 Type: TargetSourceRef
References to a target folder for referenced source object(s)/folder(s) 
	Element
	Type
	Optional
	Description

	targetRef
	FolderReference
	No
	Reference to the target folder

	sourceRef
	ReferenceList
	No
	References to the source object(s)/folder(s)


5.3.2.11 A root element named targetSourceRef of type Refer TargetSourceRef is allowed in request bodies.
5.3.2.12 Type: Folder

Individual folder

	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	parentFolder
	xsd:anyURI
	Choice
	Not applicable
	Resource URL of the parent folder that contains this folder. 
In folder creation requests this element specifies the folder that will contain the new folder.

In folder creation requests either the parentFolder or the parentFolderPath element MUST be included by the client.

The server MUST include this element in responses.

Editor’s note: FFS whether this is included in notification POSTs.

	parentFolderPath
	xsd:string
	Choice
	Not applicable
	The location in the hierarchical storage (if applicable) of the folder that contains this folder.

In folder creation requests this element specifies the folder that will contain the new folder. The server will internally resolve the parentFolderPath to an equivalent of the parentFolder URL of the requested parent folder.

In folder creation requests either the parentFolder or the parentFolderPath element MUST be included by the client. 

The server MUST NOT include this element in responses.

	attributeList
	AttributeList
	Yes
	Not applicable
	List of attributes associated with the folder.
An attribute named “root” with the value “Yes” identifies the folder as a root folder. For multi-root deployment environment, there may be several folders containing the attribute root=”Yes”. In some deployment scenarios other well-known attribute values may be used and other restrictions may apply (e.g. mandating only single root folder).

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL. 

The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	path
	xsd:string
	Yes
	Not applicable
	The location of the folder in the hierarchical storage.

The client SHALL NOT include this element in POST requests. 

Editor’s note: FFS whether this is included in server responses and notification POSTs.
Editor’s note: FFS once, the previous FFS re response is resolved, provide further information about how in create folder operation, “newName” value is used to create the path

	name
	xsd:string
	Yes
	folderName
	The name of the new folder in folder creation operation. 

This element MAY be present in POST (folder creation operation) requests.

If name is not provided by the client, the server SHALL assign a unique folder name in the context of the parent folder.

If folder creation operation is successful, name SHALL be used as part of the path (see path element for further details).

	lastModSeq
	xsd:unsignedLong
	Yes
	Not applicable
	Last mod-sequence value associated with the folder.

The server MUST provide this element in responses to the client. The client MUST NOT provide this element in requests to the server.

	subFolders
	FolderReferenceList
	Yes
	Not applicable
	List of sub-folders under this folder.

The client SHALL NOT include this element in POST or PUT requests.

	objects
	ObjectReferenceList
	Yes
	Not applicable
	List of objects under this folder.

The client SHALL NOT include this element in POST or PUT requests.


A root element named folder of type Folder is allowed in request and/or response bodies.

XSD modelling uses a “choice” to select either parentFolder or parentFolderPath, but not both of them.

5.3.2.13 Type: FolderList

List of folders

	Element
	Type
	Optional
	Description

	folder
	Folder[0..unbounded]
	Yes
	List of folders. Number of folders MAY be limited by the server.

	resourceURL
	xsd:anyURI
	No
	Self referring URL. 


A root element named folderList of type FolderList is allowed in response bodies.

5.3.2.14 Type: FolderReference

Reference to stored folder

	Element
	Type
	Optional
	Description

	folderId
	xsd:string
	No
	The folder identifier

	resourceURL
	xsd:anyURI
	Yes
	The folder resource URL

	path
	xsd:string
	Yes
	The location of the folder in the hierarchical storage 


5.3.2.15 Type: FolderReferenceList

List of folder references

	Element
	Type
	Optional
	Description

	folderReference
	FolderReference[0..unbounded]
	Yes
	A list of folder references


5.3.2.16 Type: SelectionCriteria
Selection criteria for a set of objects

	Element
	Type
	Optional
	Description

	fromCursor
	xsd:string
	Yes
	 The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request with the same SelectionCriteria (except for the fromCursor element); see Section 5.2.2.2.


The cursor encapsulates server state information, which might be volatile, especially in a multi-device environment. Therefore the cursor mechanism makes no guarantee on the integral continuity of object lists returned in subsequent API calls.

	maxEntries
	xsd:int
	No
	Specifies maximum number of entries to be returned in the response.

Note: A server pre-defined (i.e., implementation specific) maximum number of entries MAY be returned in case the requested maximum exceeds server’s pre-defined maximum entries.

	searchCriteria
	SearchCriteria
	Yes
	The search criteria for the retrieval of elements. 

Default is no search criterion, i.e. retrieval of all available elements.

	searchScope
	FolderReference
	Yes
	Reference to folder at which point the search would start.
If searchScope is provided, the scope of the search is limited to the subtree starting at this folder.   

If searchScope is not provided, the search is applied to the box identified by the {boxId} 

	sortCriterion
	SortCriterion
	Yes
	The sort criterion for the retrieval of elements. 

Default is random or server preferred sort.


A root element named selectionCriteria of type SelectionCriteria is allowed in request bodies.
5.3.2.17 Type: SearchCriteria

Search criteria
	Element
	Type
	Optional
	Description

	criterion
	SearchCriterion[1..unbounded]
	No
	The search criteria. In the case of multiple search criteria, the result will include elements that comply with all criteria supplied . If the logicalOperator is absent (not specified), then the AND operation is applied to all criteria to find matching elements.

	logicalOperator
	LogicalOperatorEnum
	Yes
	In case there is more than one SearchCriterion,the defined logical operation is applied between them. See LogicalOperatorEnum for possible allowed operation types.
If the logicalOperator has the value NOT and there is more than one SearchCriterion, then the resulting operation is equivalent to first applying AND to all criteria and then applying NOT:

NOT (criteria1 AND criteria2 AND …criteriaN)


5.3.2.18 Type: SearchCriterion
Search criterion
	Element
	Type
	Optional
	Description

	field
	SearchField
	No
	The field name for the search criteria

	value
	xsd:string
	No
	The value to be matched against by the search operation. 

Format of the value string MUST follow the format as defined by the SearchFieldEnum (within the SearchField).

The search is for exact (and case sensitive) match, unless otherwise specified in the SearchFieldEnum description.


5.3.2.19 Type: SearchField
Search field
	Element
	Type
	Optional
	Description

	type
	SearchFieldEnum
	No
	The search field type.

	name
	xsd:string
	Yes
	The field name – MUST be present for field types that require a name (e.g. for the Attribute field type this attribute contains the attribute name) 


5.3.2.20 Type: SortCriterion
Sort criterion
	Element
	Type
	Optional
	Description

	field
	SortField
	No
	The field name for the sort criteria

	retrievalOrder
	RetrievalOrderEnum
	Yes
	Specifies order in which elements should be retrieved. Default: Descending.


5.3.2.21 Type: SortField
Sort field
	Element
	Type
	Optional
	Description

	type
	SortFieldEnum
	No
	The sort field type

	name
	xsd:string
	Yes
	The field name  MUST be present for field types that require a name (e.g. for the Attribute field type this attribute contains the attribute name).


5.3.2.22 Type: NmsSubscriptionList

List of subscriptions to notifications about inbound messages

	Element
	Type
	Optional
	Description

	subscription
	NmsNotificationSubscription[0..unbounded]
	Yes
	It may contain an array of notification subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL


A root element named nmsSubscriptionList of type NmsSubscriptionList is allowed in response bodies
5.3.2.23 Type: NmsNotificationSubscription

Individual subscription to notifications about inbound messages

	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference 
	No
	Client's notification endpoint and OPTIONAL callbackData

	duration
	xsd:unsignedInt
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications. 

This element MAY be given by the client during resource creation in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	filter
	SearchCriteria
	Yes
	A filter which may be used by the client to indicate which objects/folders it is interested in receiving notifications about (e.g. only SMS messages or when SMS messages from a particular contact/userId).

By default (i.e. when this parameter is absent), the storage server reports on all supported types of events. See section 5.2.2.22 for the possible list of events.

FFS: need to weather in all cases entire SearchCriteria applies or there would limitations for which the text above need to reflect such limitations.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server. 

This element MAY be present. Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscription creation in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	highestModSeq
	xsd:unsignedLong
	Yes
	The client’s last-known highestmodseq value.

If this element is present, all matching changes with a lastmodseq strictly greater than this value will be notified by the server in addition to any subsequent notifications.

If this element is absent, any changes from the time this subscription is created will be notified by the server.


A root element named nmsNotificationSubscription of type NmsNotificationSubscription is allowed in request and/or response bodies.

Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. The specification [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.
5.3.2.24 Type: NmsEventNotificationList
This type defines a list of NMS Notifications.
	Element
	Type

	Optional
	Description

	nmsEventNotification
	NmsEventNotification
[0..unbounded]
	Yes
	May contain an array of storage change notifications.

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about chat events

See [REST_NetAPI_Common]

	resourceURL
	xsd:anyURI
	No
	Self referring URL


A root element named nmsEventNotificationList of type NmsEventNotificationList is allowed in notification request bodies..

Type: NmsEventNotification
Notification about changes in the storage 

	Element
	Type
	Optional
	Description

	
	
	
	

	newObject
	Object
	Choice
	The new object 

	newFolder
	Folder
	Choice
	The new folder 

	deletedObject
	ObjectReference
	Choice
	Reference to the deleted object 

	deletedFolder
	FolderReference
	Choice
	Reference to the deleted folder 

	movedObject
	Object
	Choice
	The moved object 

	movedFolder
	Folder
	Choice
	The moved folder 

	renamedFolder
	Folder
	Choice
	The renamed folder 

	messageFlagChange
	Object
	Choice
	The object with the flagList containing all the current flags

	quotaExceed
	xsd:string
	Choice
	An operation failed (typically new message arrival) because the user's mailbox exceeded one of the quotas (e.g., disk quota, message quota, etc.).

	lastModSeq
	xsd:unsignedLong
	No
	Last mod-sequence value associated with the changed resource.


Editor’s note: FFS add a mechanism to enable the client to detect notification loss.
XSD modelling uses a “choice” to select either newObject or newFolder, deletedObject,  deletedFolder, movedObject, movedFolder,  renamedFolder,  messageFlagChange or  quotaExceed.
5.3.2.25 Type: PayloadPartInfo

Parameters for a payload part of an object.
	Element

	Type
	Optional
	Description

	contentType
	xsd:string
	No
	Indicates the content type of the payload part. 

For example: image/gif, video/3gpp

	size
	xsd:unsignedLong
	Yes
	Indicates the actual size of the payload part in bytes.

	link
	common:Link
	No
	Link to individual payload part:

E.g.: <link rel=”payloadPart” href=”…/objects/{objectId}/payloadParts/{payloadPartId}”/>)


5.3.2.26 Type: PathList
Paths (i.e. location) to a list of objects or folders.
	Element

	Type
	Optional
	Description

	path
	xsd:string [1..unbounded]
	No
	The location of the object or folder in the hierarchical storage


A root element named pathList of type PathList is allowed in request bodies
5.3.3 Enumerations

The subsections of this section define the enumerations used in the NMS API. 
5.3.3.1 Enumeration: SearchFieldEnum
	Enumeration
	Description

	 Conversation
Editor’s note: consider a clarification note to avoid confusion with CPM conversation.
	 Searching for conversation with particular user, identified by user ID(s). 

. 
· SearchField.name element is not applicable. 

· SearchCriterion.value element MUST contain one or more  user  IDs separated by comma. If multiple IDs are provided, they are all assumed to belong to the same (single) user, hence a logical OR is implied between them. 
Empty value denotes “all conversations”

	Date
	Searching for object stored by date.

· SearchField.name element is not applicable. 

· SearchCriterion.value element contains a query string of the following format:

minDate={minDate} - all object stored from a starting (internal date) {minDate} inclusive
minDate={minDate}&maxDate={maxDate} - all objects stored between minDate inclusive and maxDate exclusive.

maxDate={maxDate} - all objects stored up to maxDate exclusive.
Where the string format of {minDate} and {maxDate} is as defined in xsd:dateTime, except that the timezone MUST be included.

	Attribute
	Searching for objects that contain a specified attribute that matches the given attribute value.

· SearchField.name element contains the attribute’s name. A special reserved value of “AllSearchableText” denotes search across all searchable text attributes (e.g., subject, transcript, etc.).

· SearchCriterion.value element contains the attribute’s value for search

	Flag
	Searching for objects that are marked with the specified flag.

· SearchField.name element contains the flag name.

· SearchCriterion.value element is not applicable. 

	


5.3.3.2 Enumeration: LogicalOperatorEnum
	Enumeration
	Description


	Intersect
	Logical AND. 

	Union
	Logical OR.

	Not
	Logical NOT.


5.3.3.3 Enumeration: SortFieldEnum
	Enumeration
	Description


	Date
	Sorting elements by (internal) date.

	Attribute
	Sorting elements by a specified object attribute.


5.3.3.4 Enumeration: RetrievalOrderEnum
	Enumeration
	Description


	Ascending
	Retrieve in ascending order.

	Descending
	Retrieve in the descending order.


5.3.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· payloadPart

· NmsNotificationSubscription

· NmsNotificationSubscriptionList
These values indicate the kind of resource that the link points to. The value “payloadPart” indicates that the Link refers to a payload part of the object.
5.4 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
If the flows include notifications to the client that could be delivered either by POST or through the use of Notification Channel then include this paragraph, otherwise delete it.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
5.4.1 [Title of flow scenario]
This figure below shows a scenario for [description of scenario].
 If the flow includes a subscription for notifications step, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. If there are more scenarios for subscriptions for notifications, in order to avoid repetition this paragraph can be placed one level above (under 5.3) instead.The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources: 

· To [description of operation], [create/read/update/delete] resource under [resource URL]
· To [description of operation], [create/read/update/delete] resource under [resource URL]
<< Include a flow diagram, and add a figure caption 
Use solid lines for requests

Use dotted lines for responses 

Use numbers if you want to reference in the text 

If multiple servers are involved, name them (e.g. Foo Server, Bar Server), otherwise do not name the server
An editable PPT versions of the figure is provided below, as editing the embedded figure is problematic

[image: image4.emf]example-flow.zip




example-flow.zip

>>

<< Example 1: Signalling flow which includes neither a subscription for notifications nor notifications to the application. Delete this comment.>>

[image: image5.emf]3. Remove a callparticipant(includingresourceURLwithparticipantId) fromthesessionApplicationServer1. POST CallSessionInformationResponse withcreatedcallsessionresourceincl. callSessionId2. POST CallParticipantInformationtoresourceURLofnewcallsessionResponse withinformationabout addedcallParticipantincl. resourceURLwithparticipantId

Create a newcallsessionAdd participanttosession

4. GET participantlistforcallSessionIdResponse withinformationabout eachparticipantincl. theirstatus

Fetch participants 

5. TerminatethecallsessionResponse orerrormessage

TerminatecallsessionRequest removalofparticipant

Response whetherremovalwas successful

Delete participantfromsession


Figure 2 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]
3. [High-level description of 1 or more steps in the flow diagram]
<< Example 2: Signalling flow which includes a subscription for notifications and notifications to the application. The notifications to the application can be delivered either by POST or through the use of Notification Channel, which is indicated by “POST or NOTIFY”. Delete this comment. >>

[image: image6.emf]2. POST or NOTIFY

Call Event Notification

Application

Application

Server

Server

1. POST Call Notification Subscription 

Response with created resource

Response

3. DELETE Call Notification Subscription 

Response

Later, the 

application 

cancels the 

subscription

At some time 

later, a call event 

occurs to trigger 

the notification

2. POST or NOTIFY

Call Event Notification

Application

Application

Server

Server

1. POST Call Notification Subscription 

Response with created resource

Response

3. DELETE Call Notification Subscription 

Response

Later, the 

application 

cancels the 

subscription

At some time 

later, a call event 

occurs to trigger 

the notification


Figure 3 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram].  If the step relates to a notification to the application either with POST or NOTIFY, after the high-level description of the action with POST include/adapt the following sentence; otherwise, if POST is supported only, delet it. Alternatively, the application obtains the notifications using a Notification Channel [REST_NetAPI_NotificationChannel].
3. [High-level description of 1 or more steps in the flow diagram] 
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, application/x-www-form-urlencoded):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘authorization’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: Resource containing all objects
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects
This resource is used for creating a new object (message, file, etc.).
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

Editor’s note: FFS add the following errors to section 7:

The parent folder must exist. A request to create an object within a non-existent folder SHOULD be rejected with an HTTP 4xx response.

Implementations MAY prevent clients from creating objects in certain locations. Such prohibited requests SHOULD be rejected with an HTTP 4xx response..
6.1.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used for creating a new object. 

The request contains both the Object data structure and the payload.

Objects MAY be represented as multipart/form-data entity bodies, where the first entry of the form are the root fields and the second entry of the form are the payload parts. Details about the structure of such objects are defined in [REST_NetAPI_Common] and [REST_WP]. The type of the form entry carrying the root fields part of such an object MUST be Object in this API. In case the object has a presentation part, this part SHALL be the first MIME message body part after the root part, i.e. the first part of the multipart/mixed body.  

Note: An object returned by the server in response to a client request, or sent by the server to a client in a notification, can alternatively be represented as a list of link elements to the individual payload parts.

6.1.5.1 Example 1: Object creation by parentFolder, response with a location of created resource
(Informative)
The following example shows a request for creation of an Object of MIME type multipart/mixed, to be stored under folder id “fld123”, with assigned flags “\Seen” and “\Flagged”.
6.1.5.1.1  Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects HTTP/1.1

Accept: application/xml

Host: example.com


Content-Type: multipart/form-data; boundary="===============outer123456==";

Content-Length: nnnn

MIME-Version: 1.0

--===============outer123456==

Content-Type: application/xml

Content-Disposition: multipart/form-data; name=”root-fields”

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:object xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

  <parentFolder>http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld123</parentFolder>

  <flagList><name>\Seen</name><name>\Flagged</name></flagList>

</nms:object>

--===============outer123456==

Content-Type: multipart/mixed; boundary=”--=-sep-=--”

Content-Disposition: multipart/form-data; name=”attachments”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

See attached photo

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----

--===============outer123456==--


6.1.5.1.2 Response

	HTTP/1.1 201 Created

Date: Tue, 20 Aug 2013 02:51:59 GMT

Location: http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj123

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

  http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj123

</common:resourceReference>


6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: A stored object
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}
6.2.1 This resource is used for managing a stored object such as retrieving information about the object or deleting the object Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier 


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.2.3 GET

This operation is used for retrieval of an object’s properties such as its location, its list of attributes and flags.
[add example]
6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.2.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.2.6 DELETE

This operation is used to delete an object including its payload. 

6.2.6.1 Delete an object
(Informative)
6.2.6.1.1  Request
	DELETE /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/oId999  HTTP/1.1
Host: example.com

Accept: application/xml



6.2.6.1.2 Response


	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 05:55:59 GMT


6.3 Resource: Flags associated with the stored object
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/flags
This resource is used to manage flags list associated with an object.

6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier 


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.3.3 GET

Retrieve the flags(string labels) associated with the object.

[add example]
6.3.4 PUT

Create or update the flags (string labels) associated with the object.

[add example]
6.3.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.4 Resource: Individual flag associated with the stored object
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/flags/{flagName}
This resource is used to manage an individual flag associated with a given object. .

6.4.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name

	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier 

	flagName
	Flag name (case sensitive). See Appendix H.


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].


For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.
6.4.3 GET

Retrieve/check existence of an individual flag (string label).
[add example]
6.4.4 PUT

Add individual flag (string label).
[add example]
6.4.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, POST’ field in the response as per section 14.7 of [RFC 2616].

6.4.6 DELETE

Remove individual flag (string label
[add example]
6.5 Resource: Payload of the stored object
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/payload
This resource is used for retrieving the entire payload of an object at once.
6.5.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier 


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.5.3 GET

This operation is used to read the object payload from the storage server.
6.5.3.1 Example: Read payload of the stored object
 (Informative)

6.5.3.1.1 Request
	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj123/payload HTTP/1.1
Accept: image/gif, image/png, image/jpeg, text/html, application/xml
Host: example.com


6.5.3.1.2 Response
	HTTP/1.1 200 OK
Date: Tue, 20 Aug 2013 03:52:01 GMT

Content-Length: nnnn
Content-Type: multipart/mixed; boundary=”--=-sep-=--”

----=-sep-=--

Content-Type: text/plain

Content-Disposition: attachment; filename=”body.txt”

See attached photo

----=-sep-=--

Content-Type: image/gif

Content-Disposition: attachment; filename="picture.gif"

GIF89a...binary image data...

----=-sep-=----


6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.5.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC 2616].
6.6 Resource: Payload part of the stored object
The resource used is: 


//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/{objectId}/payloadParts/{payloadPartId}
This resource is used for retrieving an individual payload part of an object.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	objectId
	Object identifier 

	payloadPartId
	Unique payload part identifier generated by the storage server.


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Messaging API, see section 7.
6.6.3 GET

This operation is used to read one payload part from the storage server.
6.6.3.1 Example: Read an object payload part
 (Informative)

6.6.3.1.1 Request
	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/objects/obj123/payloadParts/part123 HTTP/1.1
Accept: image/gif, image/png, image/jpeg, text/html, application/xml
Host: example.com


6.6.3.1.2 Response
	HTTP/1.1 200 OK
Date: Tue, 20 Aug 2013 03:51:59 GMT

Content-Length: nnnn
Content-Type: image/gif

...GIF89a...binary image data


6.6.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].

6.6.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].

6.6.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET’ field in the response as per section 14.7 of [RFC2616].

6.7 Resource: Information about a selected set of objects in the storage
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/search
This resource is used for retrieving information about a set of selected objects. 
6.7.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.
6.7.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.7.5 POST
This operation is used for retrieving information about a set of selected objects.
Editor’s note: consider moving the following paragraphs to a more generic location, so it can cover other cases of partial vs. complete list retrieval
The fromCursor and maxEntries request elements and the cursor response element allow a client to retrieve a large result in multiple batches.

Incomplete list retrieval

If the number of objects matching the criteria is larger than maxEntries or is larger than the server is willing to provide in a single response, the server responds with an initial segment of the matches. In this case the list of objects is said to be incomplete.

If the list of objects in the response is incomplete, the server SHOULD provide a cursor to allow the client to retrieve the remainder in a subsequent request. 

The value and format of the string are implementation specific. 
If the request contains a valid fromCursor, the server SHOULD make best efforts to start the response from at or near the position indicated by fromCursor, or from the start of the matches if this is not possible.

The cursor encapsulates server state information which might be volatile, especially in a multi-device environment. Therefore the cursor mechanism makes no guarantee on the integral continuity of object lists returned in subsequent requests.

If the fromCursor is invalid (e.g., through client alteration, or because it came from a request with different SelectionCriteria except for the fromCursor element), the server MAY return either an HTTP error response or an arbitrary subset of matches.

Complete list retrieval

If the list of objects in the response is complete the server MUST NOT provide a cursor in the response.

If the request does not contain a fromCursor, the server MUST start the response from the start of the matches.

[add example]
6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.8 Resource: Resource URLs of a selected set of objects in the storage
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/pathToId
This resource is used for retrieving the resource URL for an object based on its pathname or a list of objects, based on their pathnames.
6.8.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.
6.8.3 GET

This operation is used for retrieving the resource URL for an object based on its pathname.

[add example]

6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.8.5 POST

This operation is used for retrieving the resource URLs for a list of objects based on their pathnames.

 [add example]
6.8.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.9 Resource: Resource containing all folders
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders
This resource is used for creating a new folder.

6.9.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

Editor’s note: FFS add the following errors to section 7:

The parent folder must exist. A request to create folder within a non-existent folder SHOULD be rejected with an HTTP 4xx response.

Implementations MAY prevent clients from creating folders in certain locations. Such prohibited requests SHOULD be rejected with an HTTP 4xx response..
6.9.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9.5 POST
This operation is used for creating a new folder.

6.9.5.1 Example 1: Folder creation by path, response with a location of created resource
(Informative)
The following example shows a request for creation of a new folder, to be stored under the folder with path “/main”.
This example assumes that a folder with path “/main” already exists. 
6.9.5.1.1  Request

	POST /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders HTTP/1.1

Accept: application/xml


Host: example.com


Content-Type: application/xml

Content-Length: nnnn

MIME-Version: 1.0

<?xml version="1.0" encoding="UTF-8"?>

<nms:folder xmlns:nms="urn:oma:xml:rest:netapi:nms:1">

  <parentFolderPath>/main</parentFolderPath>
  <name>BoardMeeting</name>
</nms:folder>


6.9.5.1.2 Response

	HTTP/1.1 201 Created

Date: Tue, 20 Aug 2013 02:51:59 GMT

Location: http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

  http://example.com/exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456

</common:resourceReference>


6.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.10 Resource: A folder
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}
This resource is used for managing a folder such as retrieving information about the contents of a folder or deleting a folder, including contained folders and objects (with their payload).

6.10.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	folderId
	Folder identifier.




See section 6 for a statement on the escaping of reserved characters in URL variables.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.10.3 GET
This operation is used for retrieval of a folder’s properties such as its location and the list of contained subfolders and objects.
[add example]
6.10.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.10.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.10.6 DELETE

This operation is used to delete a folder. All the contained folders and objects (including their payload) in the targeted folder SHALL be deleted as well.
6.10.6.1 Delete a folder
(Informative)
6.10.6.1.1  Request
	DELETE /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fId567  HTTP/1.1
Host: example.com

Accept: application/xml


6.10.6.1.2 Response


	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT



6.11 Resource: Individual folder data
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/{folderId}/[ResourceRelPath]
This resource is used for changing a folder’s name. It can also be used to retrieve the folder’s name.

6.11.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	folderId
	Folder identifier.

“root” is a reserved folderId value referring to user’s root folder. 

	[ResourceRelPath]
	Relative resource path for a Light-weight Resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable, see 6.9.1.1.


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.11.1.1 Light-weight relative resource paths

The following table describes the type of Light-weight Resources that can be accessed by using this resource, applicable methods, and the link to a data structure that contains values (strings) for those relative resource paths.

	Light-weight Resource type
	Method supported
	Description

	Individual folder data
	GET, PUT
	Enables access to folderName data element of a folder.

See column [ResourceRelPath] for element “name” in section 5.2.2.9 for possible values for the light-weight relative resource path.  


6.11.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.11.3 GET
This operation is used for retrieval of a folder’s name.

6.11.3.1 Example: Retrieve a folder’s name 
(Informative)
6.11.3.1.1 Request

	GET /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456/folderName
HTTP/1.1
Host: example.com
Accept: application/xml


6.11.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<nms:name xmlns:nms="urn:oma:xml:rest:netapi:nms:1">BoardMeeting</nms:name>


6.11.4 PUT

This operation is used for changing a folder’s name

6.11.4.1 Example 1: Enable an individual own service capability 
(Informative)

6.11.4.1.1 Request

	PUT /exampleAPI/nms/v1/myStore/tel%3A%2B19585550100/folders/fld456/folderName HTTP/1.1
Host: example.com

Accept: application/xml


Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nms:name xmlns:nms="urn:oma:xml:rest:netapi:nms:1">BoardSession1</nms:name>


6.11.4.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Jun 2012 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>


<nms:name xmlns:nms="urn:oma:xml:rest:netapi:nms:1">BoardSession1</nms:name>


6.11.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].
6.11.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].
6.12 Resource: Information about a selected set of folders in the storage
The resource used is: 

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/search
This resource is used for retrieving information about a set of selected folders. 
6.12.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.12.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.12.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.12.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.12.5 POST
This operation is used for retrieving information about a set of selected folders, where the set is defined by selection criteria.
 [add example]

6.12.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.13 Resource: Resource URLs of a selected set of folders in the storage
The resource used is:
//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/pathToId
This resource is used for retrieving the resource URL for a folder based on its pathname or a list of folders, based on their pathnames.
6.13.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.13.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.13.3 GET

This operation is used for retrieving the resource URL for a folder based on its pathname.

[add example].
6.13.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.13.5 POST
This operation is used for retrieving the resource URLs for a list of folders based on their pathnames.
 [add example]

6.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.14 Resource: All subscriptions in the storage
The resource used is: 
//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions
This resource is used to manage subscriptions to NMS event notifications .

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.

6.14.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.14.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.14.3 GET

This operation is used for reading the list of active NMS notification subscriptions. 
[add example].

6.14.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.14.5 POST
This operation is used to create a new subscription for NMS notifications.
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]). 

 [add example]

6.14.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.15 Resource: Individual subscription

The resource used is: 
//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/subscriptions/{subscriptionId}
This resource is used to manage an individual event subscription. This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.

6.15.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. user-id). 

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

	subscriptionId
	Identifier of the subscription


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.15.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.15.3 GET
This operation is used for reading an individual subscription.

6.15.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.15.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.15.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.16 Resource: Client notification about storage changes 
This resource is a callback URL provided by the client for notification about change in the storage. The RESTful NMS API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.16.5.


The following table gives detailed information about NMS storage notification. 

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/nms/{apiVersion}/ {storeName}/{boxId}

	
	
	
	
	
	


Table 2: 1-1 NMS event notification
6.16.1 Request URL variables

Client provided.
6.16.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Network Message Storage, see section 7.

6.16.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.16.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.16.5 POST
This operation is used to notify the client about NMS storage events.
[add example].

6.16.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].

7. Fault definitions

7.1 Service Exceptions

<< This section provides details about Service Exception type of faults specific for that particular API. Some APIs do have specific Service Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Service Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful Network Message Storage  API.
<< If API has specific Service Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s). 
Service Exception codes consists of a prefix “SVC” followed by 4 digit code number.  
The original Service Exception codes from the baseline product (if any) are included unchanged. 
For a new Service Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment >>
For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful Network Message Storage API.
7.1.1 SVC[code number]: [Text for exception header]
	Name
	Description

	MessageID
	SVC[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <Variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”] 

	HTTP status code(s)
	[HTTP status code(s) where that particular Service Exception code can be used with]


7.2 Policy Exceptions

<< This section provides details about Policy Exception type of faults specific for that particular API. Some APIs do have specific Policy Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Policy Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful Network Message Storage API.
<< If API has specific Policy Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s). 
Policy Exception code consists of a prefix “POL” followed by 4 digit code number.  
The original Policy Exception codes from the baseline product (if any) are included unchanged. 
For a new Policy Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful [Functional Area] API.
7.2.1 POL[code number]: [Text for exception header]
	Name
	Description

	MessageID
	POL[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”] 

	HTTP status code(s)
	[HTTP status code(s) where that particular Policy Exception code can be used with]


                                          << Example - DELETE this row and the following table. >>
7.2.2 POL1003: Refund exceeds original charge amount
	Name
	Description

	MessageID
	POL1003

	Text
	The refund amount exceeds the original amount charged %1

	Variables
	%1 – the original amount charged

	HTTP status code(s)
	403 Forbidden


Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA


A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _NMS-V1_0
	[19 mar-2013]
	All
	Initial baseline

	
	[06 Jun 2013]
	Sections: 4.1 and 5.0
	Incorporates: OMA-ARC-REST-NMS-2013-0005R01-CR_introduction and OMA-ARC-REST-NMS-2013-0006R01-CR_section_5

	
	[27 Jun 2013]
	5.1, 5.2.x, 6.x
	OMA-ARC-REST-NMS-2013-0004R03
OMA-ARC-REST-NMS-2013-0007R02

OMA-ARC-REST-NMS-2013-0008R02

	
	[16 July 2013]
	5.1
	Incorporates: OMA-ARC-REST-NMS-2013-0009R01 and
OMA-ARC-REST-NMS-2013-0011

	
	[08 Aug 2013]
	5.1
	Incorporates:  OMA-ARC-REST-NMS-2013-0013R01-CR_set-clear-individual-flags

	
	[20 Aug 2013]
	5.1, 5.2.2.x
Editorials in sections 6.x
	Incorporates:  

OMA-ARC-REST-NMS-2013-0012-CR_selection
OMA-ARC-REST-NMS-2013-0014R01-CR_set-clear-individual-flags,

OMA-ARC-REST-NMS-2013-0015R02-CR_Filesystem_tree_discovery_and_traversal 

OMA-ARC-REST-NMS-2013-0018-CR_Request_URL_variable_table_edits 



	
	[03 Sep 2013]
	4.1, 5, 5.1, 5.2.2.x

6.1.x, 6.7.x, 6.8
	Incorporates:  

OMA-ARC-REST-NMS-2013-0016R03-CR_Creation
OMA-ARC-REST-NMS-2013-0017R02-CR_search_criteria_enhancement
OMA-ARC-REST-NMS-2013-0019R01-CR_Selection_cleanup

OMA-ARC-REST-NMS-2013-0022R01-CR_Example_titles

OMA-ARC-REST-NMS-2013-0021-CR_Object_format

OMA-ARC-REST-NMS-2013-0025R01-CR_Fixing_section_6_for objects_folders



	
	[30 Sep 2013]
	Many sections throughout the document
	Incorporates:  

OMA-ARC-REST-NMS-2013-0023R03-CR_newFolderName
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR24R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR27R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR31R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR32
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR34R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130903-D_CR35R02
OMA-ARC-REST-NMS-2013-0036R01-CR_Mod_sequence
OMA-ARC-REST-NMS-2013-0037R01-CR_Notifications_mod_seq
OMA-ARC-REST-NMS-2013-0038R01-CR_Subscriptions_mod_seq
OMA-ARC-REST-NMS-2013-0039R01-CR_Expose_mod_seq
OMA-ARC-REST-NMS-2013-0040R01-CR_Deletion_synchronization
OMA-ARC-REST-NMS-2013-0042R01-CR_CopyMove

	
	[11 Nov 2013]
	Many sections throughout the document
	Incorporates:  

OMA-ARC-REST-NMS-2013-0020R03-CR_root
OMA-ARC-REST-NMS-2013-0045R01-CR_Concepts_section
OMA-ARC-REST-NMS-2013-0046-CR_Modification_definition
OMA-ARC-REST-NMS-2013-0048R01-CR_Update_section_4
OMA-ARC-REST-NMS-2013-0049R01-CR_search_date_format
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR47R02
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR51R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR54R01
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR58
OMA-TS-REST_NetAPI_NMS-V1_0-20130930-D_CR59
Also many editorials (table 5.1 format, cross-references and font changes) throughout the document


Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.NMS Server

	Item
	Function
	Reference
	Requirement

	REST-NMS-SUPPORT-S-001-M
	Support for the RESTful NMS  API
	[section(s)]
	

	REST- NMS-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST- NMS-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST- NMS-SUPPORT-S-004-O
	Support for the application/x-www-form-urlencoded format
	[section(s)]
	


B.1.1 SCR for REST.NMS.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]


<< If an Item is MANDATORY (-M) it has no requirement. 

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND” 

Example: optional resource with conditional GET and DELETE operations. Delete this comment and the following table.>>
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE 
	5.8.6
	


Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
<< Some APIs do support application/x-www-form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of application/x-www-formurlencoded >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type. 

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for application/x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no application/x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of application/x-www-form-urlencoded.>>

This section defines a format for the RESTful [FuncArea] API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type. 

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for the following [FuncArea] REST operations which are based on POST requests:
<< List the operations for which url-encoded is supported. For those TSs where ALL the POST operations are described in the Appendix C, it is left to the editor to use either the sentence above, followed by a list operations, or alternatively use the sentence: “The encoding is defined for all [Functional Area] REST operations which are based on POST requests.” , in which case the list of operations can be omitted in this section.
Note that the parameters are all of simple types. In case a parameter is of complex type in the original XML data structure, the structure needs to be “flattened” >>
C.1  [Operation]
This operation is used for [description of operation], see section 6.z.w. . 6.z.w to be replaced by the reference to section where the equivalent method is defined in section 6 (e.g. 6.1.5).
If the resource supports creating a subscription for notifications (i.e. includes a notifyURL parameter), and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows: 

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description] 

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>


C.1.1 Example 



(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]


C.1.1.2 Response

	[HTTP headers]
[xml response] 


Appendix D. JSON examples 
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1  [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request: 
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]


Response: 

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]


Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)
As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight Resources
(Informative)

<< This appendix lists Light-weight Resources defined in this specification. Delete this comment>>

<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this comment.>>

As this version of the specification does not define any Light-weight Resources, this appendix is empty.
<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this comment.>>

The following table lists all NMS data structure elements that can be accessed individually as Light-weight Resources. 
For each Light-weight Resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string. 

	Type of Light-weight Resources (and references to data structures)
	Element/attribute
that can be accessed as Light-weight Resource
	Root element name for the Light-weight Resource
	Root element type for the Light-weight Resource
	[ResourceRelPath] string that needs to be appended to the corresponding Heavy-weight Resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this Row and the following table>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}


<<If [ResourceRelPath] strings in the above table include variables in curly brackets “{}” then the following paragraph shall be included also; otherwise it should be deleted. Delete this comment >>

Note: When appending [ResourceRelPath] string to its Heavy-weight Resource URL, all variables within curly brackets “{}” such as: [list of variable names from ResourceRelPath strings]  have to be replaced by their real values.
Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty. Delete this comment. >>

<< If there are no Authorization aspects specified for the specs, the following wording is used. Delete this comment. >>
None specified in this version of the specification.

<< If there are Authorization aspects specified for the specs, the following wording is used. Delete this comment. >>
This appendix specifies how to use the RESTful Messaging API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful NMS API MAY support the authorization framework defined in [Autho4API_10].

A RESTful NMS API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common]; 

· SHALL conform to this section G.1. 

G.1.1 Scope values
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful NMS API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	[Scope value]
	[Scope value description] 
	[No/Yes]

	[Scope value]
	[Scope value description] 
	[No/Yes]

	<< Example - DELETE this and next two Rows>>

	oma_rest_messaging.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_messaging.in_regist
	Provide access to all defined operations on inbound messages using registration
	No


Table 2: Scope values for RESTful NMS API
G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_nms.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· [list of scope values]
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful NMS API map to the REST resources and methods of this API. In these tables, the root “oma_rest_nms” of scope values is omitted for readability reasons.
<< Note: this part of the TS uses a landscape layout, started and terminated by a section break.  Delete this comment. >>
	Resource
	URL
Base URL: 

http://{serverRoot}/Functional Area/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	[Description of the resource]
	[URL for the resource]
	[Section refrerence]
	[supported scope value(s)] 
	[supported scope value(s)]
	[supported scope value(s)]
	[supported scope value(s)]

	<< Example below - DELETE this and the following Row>>

	Inbound messages for a given registration
	/inbound/registrations/{registrationId}/messages
	6.1
	all_{apiVersion}
or 

in_regist
	n/a
	n/a
	n/a


Table 3: Required scope values for: [text describing function(s) associated with that particular scope values] 

G.1.2 Use of ‘acr:Authorization’

<< Some APIs do have user identifiers in resource URL that could be a subject for ‘acr:Authirization’, some don’t have. Pick the right text block. Delete this comment. >>

<<If there are no user identifiers candidate for ‘acr:Authorization’, the following wording is used. Delete this comment. >>

As this version of the specification does not define any parameter that could be a candidate for ‘acr:Authorization’, this appendix is empty

<< The text below is a blueprint of Appendix G.1.2 if there are user identifiers candidate for ‘acr:Authorization’. Delete this comment. >>
This section specifies the use of ‘acr:Authorization’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:Authorization’, where ‘Authorization’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:Authorization’ in a resource URL in place of a {senderAddress} replace/adapt “senderAddress” with a variable name of end user identifier which is a candidate for acr:Authorization. If multiple identifiers are candidate they shall be separated by comma. when the the RESTful NMSAPI is used in combination with [Autho4API_10].
In the case the RESTful NMS API supports [Autho4API_10], the server:

· SHALL accept ‘acr:Authorization’ as a valid value for the resource URL variable {senderAddress} replace/adapt “senderAddress” with a name of end user identifier which is a candidate for acr:Authorization. If multiple identifiers are candidate they shall be separated by comma.
· SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:Authorization’.
Appendix H. Flag Names Table
(Normative)

The following table lists the most common flag names as defined by [RFC3501], [RFC5788] and [OMA-CPM_TS_MessageStorage].

	Flag Name
	Description
	 References

	\Seen

	Message has been read
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Answered
	Message has been answered
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Flagged
	Message is "flagged" for urgent and/or special attention
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Deleted
	Message is "deleted" for removal by later internal message store process
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Draft
	Message has not completed composition (marked as a draft)
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	\Recent
	Message is "recently" arrived in this mailbox
	[RFC3501],[OMA-CPM_TS_MessageStorage]

	$MDNSent
	A disposition notification has been sent for this message
	[RFC5788],[OMA-CPM_TS_MessageStorage]

	$Forwarded
	Message has been forwarded
	[RFC5788],[OMA-CPM_TS_MessageStorage]

	\read-report-sent
	A read receipt has been sent for this message
	[OMA-CPM_TS_MessageStorage]


Table 1 Flag Names
Note that in addition to the strings listed in the above table, deployments MAY also support other strings.
( 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130226-I]
( 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130226-I]

Base URL: //{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/





/flags

































/payload

































/{objectId}

































/folders

































/{folderId}



































/objects

































subscriptions

































/{subscriptionId}

































/pathToId





























/batch





/pathToId





























/batch





/attributes

































/attributes



































/{flagName}





























Reserved value: “root” for user’s root folder







/[ResourceRelPath]





/copyToFolder

































/moveToFolder





























/payloadParts







/{payloadpartId}




































Base URL: //{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/





/flags

































/payload

































/{objectId}

































/folders

































/{folderId}



































/objects

































subscriptions

































/{subscriptionId}

































/pathToId





























/operations





/pathToId





























/operations





/search

































/search



































/{flagName}



































/[ResourceRelPath]





/copyToFolder

































/moveToFolder





























/payloadParts







/{payloadpartId}




































_1357634611/example-flow.zip


example-flow.ppt




3. Remove a call participant  (including 


resourceURL with participantId) from the session





Application





Server


1. POST CallSessionInformation


Response with created call session 


resource incl. callSessionId


2. POST CallParticipantInformation to 


resourceURL of new call session


Response with information about added call 


Participant incl. resourceURL with participantId


Create a new call 


session


Add participant to


session 


4. GET participant list for callSessionId


Response with information about each


participant incl. their status 


Fetch participants 


5. Terminate the call session


Response or error message


Terminate call


session


Request removal 


of participant


Response whether removal was successful


Delete participant 


from session


















































