OMA-TS-REST_NetAPI_VVoIP-V1_0-20130909-D
Page 94  V(155)


	[image: image1.jpg]
	

	RESTful Network API for Voice and Video over IP

	Draft Version 1.0 –  09 September 2013

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_VVoIP-V1_0-20130909-D

	
	

	

	
	


Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner.  Information contained in this document may be used, at your sole risk, for any purposes.  You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance.  The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms.  This copyright permission does not constitute an endorsement of the products or services.  The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.  However, the members do not have an obligation to conduct IPR searches.  The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html.  The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights.  This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions.  Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

111.
Scope

2.
References
12
2.1
Normative References
12
2.2
Informative References
13
3.
Terminology and Conventions
14
3.1
Conventions
14
3.2
Definitions
14
3.3
Abbreviations
14
4.
Introduction
16
4.1
Version 1.0
16
5.
Voice and Video over IP (VVoIP) API definition
17
5.1
Resources Summary
17
5.2
Data Types
24
5.2.1
XML Namespaces
24
5.2.2
Structures
24
5.2.2.1
Type: VvoipSubscriptionList
24
5.2.2.2
Type: VvoipNotificationSubscription
24
5.2.2.3
Type: VvoipSession
25
5.2.2.4
Type: VvoipAnswer
27
5.2.2.5
Type: VvoipOffer
27
5.2.2.6
Type: VvoipMediaIndicator
28
5.2.2.7
Type: VvoipPayloadIndicator
29
5.2.2.8
Type: VvoipIceCandidateList
29
5.2.2.9
Type: VvoipIceCandidate
29
5.2.2.10
Type: VvoipIceStatus
30
5.2.2.11
Type: VvoipSessionStatus
30
5.2.2.12
Type: VvoipEventNotification
30
5.2.2.13
Type: VvoipSessionInvitationNotification
31
5.2.2.14
Type: VvoipAcceptanceNotification
31
5.2.2.15
Type: VvoipOfferNotification
32
5.2.2.16
Type: VvoipAnswerNotification
32
5.2.2.17
Type: VvoipIceCandidateNotification
33
5.2.2.18
Type: VvoipSubscriptionCancellationNotification
33
5.2.2.19
Type: VvoipConflictNotification
34
5.2.3
Enumerations
34
5.2.3.1
Enumeration: EventType
34
5.2.3.2
Enumeration: SessionStatus
35
5.2.3.3
Enumeration: OfferAnswerType
35
5.2.3.4
Enumeration: IceStatus
35
5.2.3.5
Enumeration: MediaType
36
5.2.3.6
Enumeration: MediaDirection
36
5.2.4
Values of the Link “rel” attribute
36
5.3
Sequence Diagrams
36
5.3.1
Subscription to VVoIP notifications
37
5.3.2
Handling offers and answers
38
5.3.3
Normal flow of a VVoIP session - Originator
41
5.3.4
Normal flow of a VVoIP session – Terminating Participant
46
5.3.5
VVoIP session with delayed alerting requested in session invitation
48
5.3.6
Offerless Session Invitation
53
5.3.7
Cancelling a VVoIP session invitation - Originator
56
5.3.8
Cancelling a VVoIP session invitation – Terminating Participant
57
5.3.9
Rejecting a VVoIP session invitation – Terminating Participant
58
5.3.10
Rejecting a VVoIP session invitation - Originator
58
5.3.11
VVoIP session modification – Update Originator
59
5.3.12
VVoIP session modification – Update Recipient
61
5.3.13
Resolving an offer conflict
64
5.3.14
Trickle ICE in a VVoIP session
65
6.
Detailed specification of the resources
67
6.1
Resource: All audio and/or video subscriptions
67
6.1.1
Request URL variables
67
6.1.2
Response Codes and Error Handling
68
6.1.3
GET
68
6.1.3.1
Example: Reading all active VVoIP notification subscriptions  (Informative)
68
6.1.3.1.1
Request
68
6.1.3.1.2
Response
68
6.1.4
PUT
68
6.1.5
POST
68
6.1.5.1
Example: Creating a new subscription to VVoIP notifications, response with copy of created resource (Informative)
69
6.1.5.1.1
Request
69
6.1.5.1.2
Response
69
6.1.5.2
Example: Creating a new subscription to VVoIP notifications, response with location of created resource  (Informative)
69
6.1.5.2.1
Request
69
6.1.5.2.2
Response
70
6.1.6
DELETE
70
6.2
Resource: Individual audio and/or video subscription
70
6.2.1
Request URL variables
70
6.2.2
Response Codes and Error Handling
71
6.2.3
GET
71
6.2.3.1
Example: Reading an individual subscription   (Informative)
71
6.2.3.1.1
Request
71
6.2.3.1.2
Response
71
6.2.4
PUT
71
6.2.5
POST
71
6.2.6
DELETE
72
6.2.6.1
Example: Cancelling a subscription (Informative)
72
6.2.6.1.1
Request
72
6.2.6.1.2
Response
72
6.3
Resource: All audio and/or video sessions
72
6.3.1
Request URL variables
72
6.3.2
Response Codes and Error Handling
72
6.3.3
GET
72
6.3.4
PUT
72
6.3.5
POST
73
6.3.5.1
Example: Creating a new VVoIP session – audio only, using tel URI (Informative)
73
6.3.5.1.1
Request
73
6.3.5.1.2
Response
73
6.3.5.2
Example: Creating a new VVoIP session – audio only, using SIP URI (Informative)
74
6.3.5.2.1
Request
75
6.3.5.2.2
Response
75
6.3.5.3
Example: Creating a new VVoIP session – audio and video, using ACR (Informative)
76
6.3.5.3.1
Request
76
6.3.5.3.2
Response
77
6.3.5.4
Example: Creating a new VVoIP session – audio and video, using acr:auth (Informative)
79
6.3.5.4.1
Request
79
6.3.5.4.2
Response
80
6.3.6
DELETE
81
6.4
Resource: Individual audio and/or video session
81
6.4.1
Request URL variables
81
6.4.2
Response Codes and Error Handling
82
6.4.3
GET
82
6.4.3.1
Example: Retrieving VVoIP session information  (Informative)
82
6.4.3.1.1
Request
82
6.4.3.1.2
Response
82
6.4.4
PUT
82
6.4.5
POST
82
6.4.6
DELETE
82
6.4.6.1
Example: Cancelling or terminating a VVoIP session  (Informative)
82
6.4.6.1.1
Request
82
6.4.6.1.2
Response
83
6.5
Resource: Status of an audio and/or video session
83
6.5.1
Request URL variables
83
6.5.2
Response Codes and Error Handling
83
6.5.3
GET
83
6.5.3.1
Example: Reading the status of a VVoIP session (Informative)
83
6.5.3.1.1
Request
83
6.5.3.1.2
Response
83
6.5.4
PUT
84
6.5.4.1
Example: Accepting a VVoIP session invitation (Informative)
84
6.5.4.1.1
Request
84
6.5.4.1.2
Response
84
6.5.4.2
Example: Indicating the alerting of the Terminating Participant (“Ringing”) (Informative)
84
6.5.4.2.1
Request
84
6.5.4.2.2
Response
85
6.5.5
POST
85
6.5.6
DELETE
85
6.6
Resource: Initial or most recent offer in an audio and/or video session
85
6.6.1
Request URL variables
85
6.6.2
Response Codes and Error Handling
86
6.6.3
GET
86
6.6.3.1
Example: Reading initial or most recent offer in a VVoIP session (Informative)
86
6.6.3.1.1
Request
86
6.6.3.1.2
Response
86
6.6.4
PUT
87
6.6.4.1
Example: Providing an offer to an offerless session invitation (Informative)
87
6.6.4.1.1
Request
87
6.6.4.1.2
Response
87
6.6.5
POST
88
6.6.6
DELETE
88
6.7
Resource: Most recent answer in an audio and/or video session
89
6.7.1
Request URL variables
89
6.7.2
Response Codes and Error Handling
89
6.7.3
GET
89
6.7.3.1
Example: Reading most recent answer in a VVoIP session (Informative)
89
6.7.3.1.1
Request
89
6.7.3.1.2
Response
89
6.7.4
PUT
90
6.7.4.1
Example: Providing an answer to an offer (Informative)
90
6.7.4.1.1
Request
90
6.7.4.1.2
Response
91
6.7.5
POST
91
6.7.6
DELETE
91
6.8
Resource: Update offer in an audio and/or video session
91
6.8.1
Request URL variables
91
6.8.2
Response Codes and Error Handling
91
6.8.3
GET
92
6.8.3.1
Example: Reading the update offer in a VVoIP session (Informative)
92
6.8.3.1.1
Request
92
6.8.3.1.2
Response
92
6.8.4
PUT
92
6.8.4.1
Example: Initiating an update offer in a VVoIP session to upgrade from audio-only to audio+video (Informative)
92
6.8.4.1.1
Request
92
6.8.4.1.2
Response
92
6.8.4.2
Example: Initiating an update offer in a VVoIP session to downgrade from audio+video to audio-only (Informative)
93
6.8.4.2.1
Request
93
6.8.4.2.2
Response
93
6.8.5
POST
93
6.8.6
DELETE
93
6.8.6.1
Example: Cancelling or terminating a VVoIP session  (Informative)
93
6.8.6.1.1
Request
93
6.8.6.1.2
Response
93
6.9
Resource: ICE status
94
6.9.1
Request URL variables
94
6.9.2
Response Codes and Error Handling
94
6.9.3
GET
94
6.9.3.1
Example: Reading the ICE status of a VVoIP session (Informative)
94
6.9.3.1.1
Request
94
6.9.3.1.2
Response
94
6.9.4
PUT
95
6.9.4.1
Example: Initiating an update offer in a VVoIP session to upgrade from audio-only to audio+video (Informative)
95
6.9.4.1.1
Request
95
6.9.4.1.2
Response
95
6.9.5
POST
95
6.9.6
DELETE
95
6.10
Resource: List of own ICE candidates
95
6.10.1
Request URL variables
96
6.10.2
Response Codes and Error Handling
96
6.10.3
GET
96
6.10.4
PUT
96
6.10.5
POST
96
6.10.6
DELETE
96
6.11
Resource: Client notification about audio and/or video session events
96
6.11.1
Request URL variables
97
6.11.2
Response Codes and Error Handling
97
6.11.3
GET
97
6.11.4
PUT
97
6.11.5
POST
98
6.11.5.1
Example: Notify a client about VVoIP session events (Informative)
98
6.11.5.1.1
Request
98
6.11.5.1.2
Response
98
6.11.6
DELETE
98
6.12
Resource: Client notification about audio and/or video session invitation
98
6.12.1
Request URL variables
99
6.12.2
Response Codes and Error Handling
99
6.12.3
GET
99
6.12.4
PUT
99
6.12.5
POST
99
6.12.5.1
Example: Notify a client about VVoIP session invitations (Informative)
99
6.12.5.1.1
Request
99
6.12.5.1.2
Response
100
6.12.6
DELETE
100
6.13
Resource: Client notification about acceptance of audio and/or video session invitation or session update
100
6.13.1
Request URL variables
101
6.13.2
Response Codes and Error Handling
101
6.13.3
GET
101
6.13.4
PUT
101
6.13.5
POST
101
6.13.5.1
Example: Notify a client about VVoIP session invitation/update acceptance (Informative)
101
6.13.5.1.1
Request
101
6.13.5.1.2
Response
101
6.13.6
DELETE
101
6.14
Resource: Client notification about offer in a session
102
6.14.1
Request URL variables
102
6.14.2
Response Codes and Error Handling
102
6.14.3
GET
102
6.14.4
PUT
103
6.14.5
POST
103
6.14.5.1
Example: Notify a client about an update offer in a VVoIP session (Informative)
103
6.14.5.1.1
Request
103
6.14.5.1.2
Response
103
6.14.6
DELETE
103
6.15
Resource: Client notification about answer in a session
103
6.15.1
Request URL variables
104
6.15.2
Response Codes and Error Handling
104
6.15.3
GET
104
6.15.4
PUT
104
6.15.5
POST
104
6.15.5.1
Example: Notify a client about an answer in a VVoIP session (Informative)
104
6.15.5.1.1
Request
104
6.15.5.1.2
Response
105
6.15.6
DELETE
105
6.16
Resource: Client notification about ICE candidates
105
6.16.1
Request URL variables
105
6.16.2
Response Codes and Error Handling
105
6.16.3
GET
105
6.16.4
PUT
106
6.16.5
POST
106
6.16.6
DELETE
106
6.17
Resource: Client notification about subscription cancellation
106
6.17.1
Request URL variables
106
6.17.2
Response Codes and Error Handling
106
6.17.3
GET
107
6.17.4
PUT
107
6.17.5
POST
107
6.17.5.1
Example: Notify a client about subscription cancellation (Informative)
107
6.17.5.1.1
Request
107
6.17.5.1.2
Response
107
6.17.6
DELETE
107
6.18
Resource: Client notification about conflicts
107
6.18.1
Request URL variables
108
6.18.2
Response Codes and Error Handling
108
6.18.3
GET
108
6.18.4
PUT
108
6.18.5
POST
108
6.18.5.1
Example: Notify a client about a conflict (Informative)
108
6.18.5.1.1
Request
108
6.18.5.1.2
Response
109
6.18.6
DELETE
109
7.
Fault definitions
110
7.1
Service Exceptions
110
7.1.1
SVC1007: Offer rejected due to conflict
110
7.2
Policy Exceptions
110
7.2.1
POL[code number]: [Text for exception header]
110
Appendix A.
Change History (Informative)
112
A.1
Approved Version History
112
A.2
Draft/Candidate Version 1.0 History
112
Appendix B.
Static Conformance Requirements (Normative)
113
B.1
SCR for REST.FUNCAREA Server
113
B.1.1
SCR for REST.FUNCAREA.FUNCTION Server
113
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
114
Appendix D.
JSON examples  (Informative)
115
D.1
[Example Title] (section [section number cross reference])
115
Appendix E.
Operations mapping to pre-existing baseline specifications  (Informative)
116
Appendix F.
Light-weight Resources (Informative)
117
Appendix G.
Authorization aspects (Normative)
118
G.1
Use with OMA Authorization Framework for Network APIs
118
G.1.1
Scope values
118
G.1.1.1
Definitions
118
G.1.1.2
Downscoping
119
G.1.1.3
Mapping with resources and methods
119
G.1.2
Use of ‘acr:auth’
121
Appendix H.
SIP mapping (Informative)
122
H.1
Session set-up with ICE from Originator’s point of view
122
H.1.1
Call set-up with ICE: Delaying the INVITE in the Originator’s Server without provisional response from Terminating Participant
122
H.1.2
Call set-up with ICE: Delaying the INVITE in the Originator’s Server with provisional response from Terminating Participant, sent reliably
123
H.1.3
Call set-up with ICE: Delaying the INVITE in the Originator’s Server with provisional response from Terminating Participant, sent non-reliably
124
H.1.4
Call set-up with ICE: Originator is using SIP preconditions
125
H.2
Session set-up with ICE from Terminating Participant’s point of view
126
H.2.1
Session set-up with ICE from Terminating Participant’s point of view without SIP Preconditions
127
H.2.2
Session set-up with ICE from Terminating Participant’s point of view using SIP Preconditions
128
H.3
Handling of offerless invitations
130
H.4
Handling of session updates
130
H.4.1
Handling of session updates by the Update Originator
130
H.4.2
Handling of session updates by the Update Recipient
131


Figures

14Figure 1: Resource structure defined by this specification


32Figure 2: Legend for the sequence diagrams


33Figure 3: Subscribing to and unsubscribing from VVoIP notifications


34Figure 4: Offer and answer handling


36Figure 5: VVoIP session - Originator


39Figure 6: VVoIP session – Terminating Participant


43Figure 7: VVoIP session with delayed alerting requested in session invitation


45Figure 8: Offerless session invitation


46Figure 9: VVoIP session cancellation - Originator


47Figure 10: VVoIP session cancellation – Terminating Participant


48Figure 10: Rejecting a VVoIP session invitation – Terminating Participant


49Figure 9: Rejecting a VVoIP session invitation - Originator


50Figure 11: VVoIP session modification – Update Originator


52Figure 12: VVoIP session modification – Update Receiver


54Figure 15: Resolving an offer conflict


54Figure 16: Trickle ICE in a VVoIP session


75Figure 17: Legend for the sequence diagrams


76Figure 18: Call set-up with ICE: Delaying the INVITE in the Server without provisional response from Terminating Participant


77Figure 19: Call set-up with ICE: Delaying the INVITE in the Server with provisional response from Terminating Participant, sent reliably


78Figure 20: Call set-up with ICE: Delaying the INVITE in the Server with provisional response from Terminating Participant, sent non-reliably


79Figure 21: Call set-up with ICE: Using SIP preconditions


80Figure 22: Session set-up with ICE from Terminating Participant’s point of view without SIP Preconditions


83Figure 23 Session set-up with ICE from Terminating Participant’s point of view using SIP Preconditions


83Figure 24: Handling of offerless invitations


84Figure 24: Handling of session updates by the Update Originator


85Figure 25: Handling of session updates by the Update Receiver




Tables

No table of figures entries found.
1. Scope

This specification defines a RESTful API for Voice and Video over IP using HTTP protocol bindings. 
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, January 2010, URL: http://tools.ietf.org/html/draft-uri-acr-extension-04 

	[IETF_RTCWeb_JSEP]
	“Javascript Session Establishment Protocol”, J. Uberti, C. Jennings, February 25, 2013, http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-03

	[IETF_SCTP_SDP_draft]
	“Stream Control Transmission Protocol (SCTP)-Based Media Transport in the Session Description Protocol (SDP)”, S. Loreto and G. Camarillo, June 2013, URL: http://tools.ietf.org/html/draft-ietf-mmusic-sctp-sdp-04

	[REQ_RCS_API]
	“Rich Communication Suite RCS API Detailed Requirements Version 2.3”, URL: http://www.gsma.com/rcs/wp-content/uploads/2012/10/RCS_API_requirements_v2_3.pdf/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel] 
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_VVoIP]
	“XML schema for the RESTful Network API for Voice and Video over IP (VVoIP)”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_vvoip-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3264]
	“An Offer/Answer Model with the Session Description Protocol (SDP)”, J. Rosenberg and H. Schulzrinne, June 2002, URL: http://www.ietf.org/rfc/rfc3264.txt

	[RFC3388]
	“Grouping of Media Lines in the Session Description Protocol (SDP)”, G. Camarillo et al., December 2002, URL: http://www.ietf.org/rfc/rfc3388.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt  

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC4566]
	“SDP: Session Description Protocol”, M. Handley et al., July 2006, URL: http://www.ietf.org/rfc/rfc4566.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt 

	[RFC5245]
	“Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols.”, J. Rosenberg, April 2010, URL: http://www.ietf.org/rfc/rfc5245.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_WebRTC]
	WebRTC 1.0: Real-time Communication Between Browsers, W3C Working Draft, 21 August 2012, The World Wide Web Consortium, URL: http://www.w3.org/TR/webrtc/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/ 

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Data types Second Edition, URL: http://www.w3.org/TR/xmlschema-2/ 



2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[IETF_RTCWeb_Overview]
	“Overview: Real Time Protocols for Brower-based Applications”, H. Alvestrand, February 20, 2013, URL: http://tools.ietf.org/html/draft-ietf-rtcweb-overview-06

	[IETF_RTCWeb_RTP]
	“Web Real-Time Communication (WebRTC): Media Transport and Use of RTP”, C. Perkins et al., February 25, 2013, URL: http://tools.ietf.org/html/draft-ietf-rtcweb-rtp-usage-06

	[IETF_RTCWeb_Trickle]
	“Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connectivity Establishment (ICE) Protocol”, E. Ivov et al., March 11, 2013, URL: http://tools.ietf.org/html/draft-ivov-mmusic-trickle-ice-01

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL: http://www.openmobilealliance.org/

	[RFC3261]
	“SIP: Session Initiation Protocol”, J. Rosenberg et al., June 2002, URL: http://www.ietf.org/rfc/rfc3261.txt

	[RFC3262]
	“Reliability of Provisional Responses in the Session Initiation Protocol (SIP)”, J. Rosenberg and H. Schulzrinne, June 2002, URL: http://www.ietf.org/rfc/rfc3262.txt

	[RFC3312]
	“Integration of Resource Management and Session Initiation Protocol (SIP)”, G. Camarillo et al., October 2002, URL: http://www.ietf.org/rfc/rfc3312.txt 

	[RFC6337]
	“Session Initiation Protocol (SIP) Usage of the Offer/Answer Model”, S. Okumura et al., August 2011, URL: http://www.ietf.org/rfc/rfc6337.txt


3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. 

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms. 

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Originator
	The party that initiates a session.

	Participant
	A party that participates in a session, including the Originator.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

	Terminating Participant
	A Participant in a session that is not the Originator.

	Update Originator
	The Participant that requests an update of the session parameters.

	Update Recipient
	The Participant that receives an update request.


3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	ICE
	Interactive Connectivity Establishment

	IETF
	Internet Engineering Task Force

	JSEP
	Javascript session establishment protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	RTCWeb
	Real-time communication on the Web

	SCR
	Static Conformance Requirements

	SDP
	Session Description Protocol

	SIP
	Session Initiation Protocol

	SRTP
	Secure Real-Time Transport Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
VVoIP
	Uniform Resource Locator
Voice and Video Over IP

	W3C
	World-wide web consortium

	WebRTC
	Web real-time communication

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition


4. Introduction

The Technical Specification of the RESTful Network API for Voice and Video over IP contains HTTP protocol bindings for Voice and Video over IP functionality, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON). 
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

<< Include a list of supported operations >>

In addition, this specification provides:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in an ACR 
5.  Voice and Video over IP (VVoIP) API definition
This section is organized to support a comprehensive understanding of the VVoIP API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
This Network API provides a method for the signalling of voice and video over IP sessions under the assumption that the applications which use this signalling are based on JSEP [IETF_RTCWeb_JSEP], e.g. as specified by WebRTC [W3C_WebRTC] which defines a Javascript API for use in the web browser. RTCWeb/WebRTC is a suite of IETF and W3C standards (see e.g. [IETF_RTCWeb_Overview]) that allow web browsers to run real-time communication sessions (containing audio, video, and data channels) in a peer-to-peer fashion. Based on the WebRTC specifications, a web browser can act as an end point for media streams that are transmitted over SRTP [IETF_RTCWeb_RTP]. The specifications fully define how the media are transmitted, however, they do only partially specify the signalling. In particular, WebRTC requires SDP [RFC4566] to be used to describe the media streams involved in the session, and the offer-answer model to negotiate the media. Also, WebRTC uses ICE [RFC5245] to penetrate firewalls, and defines a new mode called “trickle ICE” [IETF_RTCWeb_Trickle] to speed up session set-up in case of ICE usage. These three items define which information needs to be provided by the application to the browser, and by the browser to the application, in order to set up the browser as the end point of a communication session. It is however not specified how this information is transmitted.

This gap is filled by the present specification, which defines a RESTful Network API that allows a web application (e.g. a JavaScript running in a WebRTC-enabled browser) to signal a video and/or voice over IP session with another communication endpoint in the network. Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body, while JSON examples are provided in Appendix D. 
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions. 
Appendix B provides the Static Conformance Requirements (SCR).
Appendix C provides application/x-www-form-urlencoded examples, where applicable. 
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all Light-weight Resources, where applicable. 
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document, client and application, as well as WebRTC and RTCWeb, can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Voice and Video over IP.  
The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
[image: image2.png]
Figure 1: Resource structure defined by this specification 
Purpose: To allow client to manage subscriptions for notifications of new audio and/or video sessions or changes to existing sessions
	Resource
	URL 
Base URL:
http://{serverRoot}/vvoip/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All audio and/or video subscriptions
	/{userId}/subscriptions
	VvoipSubscriptionList
(Used for GET)

VvoipNotificationSubscription
(Used for POST)

common:ResourceReference (optional alternative for POST response)
	Retrieves the list of active VVoIP notification subscriptions 
	no
	Creates a new subscription for notification for audio and/or video sessions
	no

	Individual audio and/or video subscription
	/{userId}/subscriptions/{subscriptionId}
	VvoipNotificationSubscription
(Used for GET/PUT)
	Retrieves an individual audio and/or video subscription
	Updates an individual audio and/or video subscription

Ed.Note: This is a preliminary solution and it needs to be determined whether subscription updates shall be supported
	no
	Terminates a n individual audio and/or video subscription


Purpose: To allow client to manage audio and/or video sessions 
	Resource
	URL 
Base URL:
http://{serverRoot}/vvoip/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All audio and/or video sessions
	/{userId}/sessions
	VvoipSession


common:ResourceReference (optional alternative for POST response)
	no
	no
	Create a new audio and/or video session
	no

	Individual audio and/or video session
	/{userId}/sessions/{sessionId}
	VvoipSession

	Retrieve an audio and/or video session
	no
	no
	Terminate an audio and/or video session 

Reject invitation (Terminating Participant)

Cancel invitation (Originator)

	Status of an audio and/or video session
	/{userId}/sessions/{sessionId}/status
	VvoipSessionStatus
	Retrieve the status
	Indicate Alerting of the user (“Ringing”)

Accept a session invitation
	no
	no

	Initial or most recent offer in an audio and/or video session
	/{userId}/sessions/{sessionId}/offer
	VvoipOffer
	Retrieve the offer
	Provide an offer to an offerless  session invitation 
	no
	no

	Most recent answer in an audio and/or video session
	/{userId}/sessions/{sessionId}/answer
	VvoipAnswer
	Retrieve the answer
	Provide an answer to a session invitation or session modification 
	no
	no

	Update offer in an audio and/or video session
	/{userId}/sessions/{sessionId}/update
	VvoipOffer
	Retrieve the update offer
	Initiate an update
	no
	Cancel an update (Update Originator)

Decline an update (Update Recipient)

	ICE status
	/{userId}/sessions/{sessionId}/ice/status
	VvoipIceStatus 
	Retrieve the ICE status
	Update the ICE status
	no
	no

	List of own ICE candidates
Ed. Note: Trickle ICE support in this version of the specification  is FFS.

	/{userId}/sessions/{sessionId}/ice/candidates
	VvoipIceCandidateList 
(used for GET)

VvoipIceCandidate
(used for POST)
	Retrieve the list of ICE candidates
	no
	Add an ICE Candidate
	no


Ed. Note: Trickle ICE support may not be necessary in all deployments, and can be optional.

Purpose: To allow client to receive notifications regarding audio and/or video sessions
	Resource
	URL
Base URL: 
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about audio and/or video session events
	Specified by client when subscription is created or provisioned
	VvoipEventNotification


	no
	no
	This operation notifies a client about audio and/or video session event

	no

	Client notification about audio and/or video session invitation
	Specified by client when subscription is created or provisioned
	VvoipSessionInvitationNotification


	no
	no
	This operation notifies a client about audio and/or video session invitation


	no

	Client notification about audio and/or video session invitation or session update acceptance
	Specified by client when subscription is created or provisioned
	VvoipAcceptanceNotification


	no
	no
	This operation notifies a client the acceptance of a session invitation by the Terminating Participant, or a session update by the Update Recipient. 
	no

	Client notification about update offer in a session
	Specified by client when subscription is created or provisioned
	VvoipOfferNotification
	no
	no
	This operation notifies a client about a new offer 
	no

	Client notification about answer in a session
	Specified by client when subscription is created or provisioned
	VvoipAnswerNotification
	no
	no
	This operation notifies a client about an answer
	no

	Client notification about ICE candidates
	Specified by client when subscription is created or provisioned
	VvoipIceCandidateNotification

Ed. Note: Trickle ICE support in this version of the specification  is FFS.

	no
	no
	This operation notifies a client about new  ICE candidates 
	no

	Client notification about subscription cancellation
	Specified by client when subscription is created or provisioned
	VvoipSubscriptionCancellationNotification
	no
	no
	This operation notifies a client about the cancellation of a subscription 
	no

	Client notification about conflicts
	Specified by client when subscription is created or provisioned
	VvoipConflictNotification
	no
	no
	This operation notifies a client about the cancellation of a subscription 
	no


Ed. Note: Trickle ICE support may not be necessary in all deployments, and can be optional.
Ed. Note: Is there a need to signal signal “180 Ringing”with an SDP? If there is, signal it using “SessionProgressNotification”. If there is not, signal it using “VvoipEventNotification”. To be evaluated. 

Ed. Note: Subscription should be modelled after Chat.
5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the VVoIP data types is:


urn:oma:xml:rest:netapi:vvoip:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common] .The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_VVoIP].
5.2.2 Structures

The subsections of this section define the data structures used in the VVoIP API. 
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.2.2.1 Type: VvoipSubscriptionList 
 This type represents a list of voice and/or video over IP notification subscriptions. 
	Element
	Type
	Optional
	Description

	vvoipNotificationSubscription
	VvoipNotificationSubscription[0..unbounded]
	Yes
	Array of VVoIP notification subscriptions

	resourceURL
	xsd:anyURI 
	No 
	Self referring URL. 


A root element named vvoipSubscriptionList of type VvoipSubscriptionList is allowed in request and/or response bodies.

5.2.2.2 Type: VvoipNotificationSubscription
This type represents a subscription to VVoIP-related event notifications targeted at a particular user.
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference 
	No
	Client's Notification URL and OPTIONAL callbackData

	duration
	xsd:int
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications. 
This element MAY be given by the client during resource creation in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server. 

This element MAY be present. 
Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscriptions in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI 
	Yes 
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.


A root element named vvoipNotificationSubscription of type VvoipNotificationSubscription is allowed in request and/or response bodies.

5.2.2.3 Type: VvoipSession
This type represents a VVoIP session.
	Element
	Type
	Optional
	Description

	originatorAddress

	xsd:anyURI
	Yes
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator.

If originatorAddress is also part of the request URL, the two MUST have the same value.
If this is omitted by the client it will be filled in by the server. 
The server MAY modify this field according to policies.

	originatorName
	xsd:string
	Yes
	Human readable name of the Originator. 

If this is omitted by the client it will be filled in by the server. 
The server MAY modify this field according to policies.

	tParticipantAddress

	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Terminating Participant
If tParticipantAddress is also part of the request URL, the two MUST have the same value.

	tParticipantName
	xsd:string
	Yes
	Human readable name of the Terminating Participant. 
MAY be omitted in resource-creating requests.

The server MAY modify this field according to policies.

	status
	SessionStatus
	Yes
	Status of the session. 
MAY be omitted in resource creation request, and MUST be included in all responses.
Default: Initiated.

	offer
	VvoipOffer
	Yes
	The offer, which MUST be present in a request from the application to the server to create a session. 

Note that the offer can be absent in a session created by the server as part of an offerless INVITE [RFC3261].

	answer
	VvoipAnswer
	Yes
	The answer. This element is not present in case there is no answer yet, or the session invitation has been declined by the Terminating Participant.

	update
	VvoipOffer
	Yes
	The last pending session update request. 

Once an update request has been accepted by the Update Recipient, it moves into the “offer” element. 

Once an update request has been rejected by the Update Recipient it is removed from the “VvoipSession” structure.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server. 

This element SHOULD be present. 
Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate session creations in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI 
	Yes 
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.


A root element named vvoipSession of type VvoipSession is allowed in request and/or response bodies.

5.2.2.4 Type: VvoipAnswer
This type represents a VVoIP answer.
	Element
	Type
	Optional
	Description

	type
	OfferAnswerType
	Yes
	The type of the answer (i.e. whether this is a local or remote answer). This element is populated by the server and MUST NOT be populated by the application.
Ed. note: it is FFS whether this information is needed in the data structure, or whether the client can figure out himself. Definitely this information is needed to correctly operate the PeerConnection API.

	isProvisional
	xsd:boolean
	No
	If set to “true”, this element signals that the answer is provisional (i.e. a pranswer according to [W3C_WebRTC]). If set to “false”, this element signals that the answer is final.
The application SHALL always set this element to “false”.

Note that it is assumed that an answer generated by the application cannot be provisional, however, that the server is allowed to mark answers as provisional.

	sdp
	xsd:string
	Choice
	An inlined session description in SDP format [RFC4566]. 

If XML syntax is used, the content of this element SHALL be embedded in a CDATA section. Further in this case, this element SHALL instantiate the "xml:space" standard XML attribute with the fixed value "preserve".

	sdpBase64
	xsd:base64Binary
	Choice
	An inlined session description in SDP format [RFC4566] base64-encoded.

	mediaIndicators
	VvoipMediaIndicator

[0..unbounded]
	Yes
	An indication of the media described in the offer or answer. This element SHOULD be instantiated by the server and MUST NOT be instantiated by the client.


A root element named vvoipAnswer of type VvoipAnswer is allowed in request bodies.

XSD modelling uses a “choice” to select either “sdp” or “sdpBase64”, but neither both nor none of them.
Ed. Note: we need to define the concept of pranswer.
5.2.2.5 Type: VvoipOffer
This type represents a VVoIP offer (which is either the initial offer in a session, or an update request).
	Element
	Type
	Optional
	Description

	Type
	OfferAnswerType
	Yes
	The type of the offer (i.e. whether this is a local or remote offer). This element is populated by the server and MUST NOT be populated by the application.
Ed. note: same as for “type” in VvoipAnswer

	holdAlerting
	xsd:boolean
	Yes
	If this element is present and set to “true”, the application is requested not to alert the user yet until another offer is provided with this flag set to “false” or absent.
This element is only meaningful in notifications. Hence, it is filled by the server and has no meaning in requests from the client.
Note: The purpose of this flag is to avoid alerting the user as long as there is no path for the media of this call.

	Sdp
	xsd:string
	Choice
	An inlined session description in SDP format [RFC4566]. 
If XML syntax is used, the content of this element SHALL be embedded in a CDATA section. Further in this case, this element SHALL instantiate the "xml:space" standard XML attribute with the fixed value "preserve".

	sdpBase64
	xsd:base64Binary
	Choice
	An inlined session description in SDP format [RFC4566] base64-encoded.

	mediaIndicators
	VvoipMediaIndicator
[0..unbounded]
	Yes
	An indication of the media described in the offer or answer. This element SHOULD be instantiated by the server and MUST NOT be instantiated by the client.


A root element named vvoipOffer of type VvoipOffer is allowed in request bodies.

XSD modelling uses a “choice” to select either “sdp” or “sdpBase64”, but neither both nor none of them.

5.2.2.6 Type: VvoipMediaIndicator
This type represents a media indicator. Typically, this corresponds to one distinct stream of media (audio, video) as usually indicated in an m-line in SDP [RFC4566]. 
	Element
	Type
	Optional
	Description

	Type
	MediaType
	No
	Indicates whether this is an audio, video or data stream.

	Index
	xsd:unsignedInt
	No
	The index of the entry in the SDP for correlation purposes, starting at 0.

	Payload
	VvoipPayloadIndicator
[0..unbounded]
	Yes
	The payload type from the SDP. MUST be instantiated if “type” is equal to “audio” or “video”.

	Direction
	MediaDirection
	Yes
	The direction of the media. MUST be instantiated if “type” is equal to “audio” or “video”. The default is “SendRecv”.


5.2.2.7 Type: VvoipPayloadIndicator
This type represents a payload indicator. Typically, this corresponds to the payload type number and associated format parameters in SDP [RFC4566]. 
	Element
	Type
	Optional
	Description

	payloadType
	xsd:unsignedInt
	No
	Payload type identifier from SDP [RFC4566]

	Encoding
	xsd:string
	Yes
	Encoding of the media. Maps to the “a=rtpmap” information in the SDP as defined in [RFC4566] excluding the <payload type> field.

	formatParams
	xsd:string
	Yes
	Media format parameters. Maps to the “a=fmtp” information in the SDP as defined in [RFC4566] excluding the <payload type> field.


5.2.2.8 Type: VvoipIceCandidateList
This type represents the list of ICE candidates.
Support for this type is only needed in case of Trickle ICE [IETF_RTCWeb_Trickle], and therefor this type is OPTIONAL.
	Element
	Type
	Optional
	Description

	candidate
	VvoipIceCandidate[0..unbounded]
	Yes
	The list of ICE candidates

	resourceURL
	xsd:anyURI 
	No 
	Self referring URL. 


A root element named vvoipIceCandidateList of type VvoipIceCandidateList is allowed in request and/or response bodies.

Ed. Note: Trickle ICE support in this version of the specification  is FFS.
5.2.2.9 Type: VvoipIceCandidate
This type represents an ICE candidate, as defined in [W3C_WebRTC].

Support for this type is only needed in case of Trickle ICE [IETF_RTCWeb_Trickle], and therefore this type is OPTIONAL.
Ed. Note: This needs to be aligned with the final version of RTCIceCandidate in the PeerConnection API (during CONR, and when W3C spec is stable).
	Element
	Type
	Optional
	Description

	candidate
	xsd:string
	No
	The candidate-attribute as defined in section 15.1 of [RFC5245].

	sdpMLineIndex
	xsd:unsignedShort
	No
	This indicates the zero-based index of the m-line in the SDP this candidate is associated with.

	sdpMid
	xsd:string
	Yes
	If present, this contains the identifier of the "media stream identification" as defined in [RFC3388] for the m-line this candidate is associated with.


A root element named vvoipIceCandidate of type VvoipIceCandidate is allowed in request bodies.
Ed. Note: Trickle ICE support in this version of the specification  is FFS.
5.2.2.10 Type: VvoipIceStatus
This type represents the ICE status.

	Element
	Type
	Optional
	Description

	status
	IceStatus
	No
	The ICE status.


A root element named vvoipIceStatus of type VvoipIceStatus is allowed in request and/or response bodies.
The application MUST report the finalization of ICE to the Server, using this structure. 
5.2.2.11 Type: VvoipSessionStatus
This type represents the ICE status.

	Element
	Type
	Optional
	Description

	status
	SessionStatus
	No
	The session status.


A root element named vvoipSessionStatus of type VvoipSessionStatus is allowed in request and/or response bodies.
5.2.2.12 Type: VvoipEventNotification
This type represents a general VVoIP notification.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about VVoIP events
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related VVoIP session)

Depending on the value of eventType, the server MUST include links as defined by the actual Notification resource in section 6.11.


Further, the server SHOULD include a link to the related subscription.

	eventType
	EventType
	No
	Type of event

	eventDescription
	xsd:string
	Yes
	Textual description of the event


A root element named vvoipEventNotification of type VvoipEventNotification is allowed in notification request bodies.

5.2.2.13 Type: VvoipSessionInvitationNotification
This type represents the notification for a session invitation.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about VVoIP events

See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related VVoIP session)

The server MUST include links as defined by the actual Notification resource in section 6.12.

Further, the server SHOULD include a link to the related subscription.

	originatorAddress

	xsd:anyURI
	Yes
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator. If this element is missing, the originator is unknown.

	originatorName
	xsd:string
	Yes
	Human readable name of the Originator

	tParticipantAddress

	xsd:anyURI
	Yes
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Terminating Participant

	tParticipantName
	xsd:string
	Yes
	Human readable name of the Terminating Participant

	offer
	VvoipOffer
	Yes
	The actual offer from the Originator. 
This MUST be present, unless the notification represents an offerless INVITE [RFC3261].


A root element named vvoipSessionInvitationNotification of type VvoipSessionInvitationNotification is allowed in notification request bodies.

5.2.2.14 Type: VvoipAcceptanceNotification
This type represents the notification about acceptance of a session invitation / session update. 
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about VVoIP events

See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related VVoIP session)

The server MUST include links as defined by the actual Notification resource in section 6.13.

Further, the server SHOULD include a link to the related subscription.

	answer
	VvoipAnswer
	Yes
	The actual answer from the Terminating Participant or Update Recipient.
Note that it depends on the network status whether or not this element is present.  If it is not present, the Server MUST have provided an answer to the client already in an earlier VvoipAnswerNotification. 


A root element named vvoipAcceptanceNotification of type VvoipAcceptanceNotification is allowed in notification request bodies.

5.2.2.15 Type: VvoipOfferNotification
This type represents the notifications that carry an offer from the network to the application. 
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about VVoIP events

See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related VVoIP session)

The server MUST include links as defined by the actual Notification resource in section 6.14.

Further, the server SHOULD include a link to the related subscription.

	offer
	VvoipOffer
	No
	The actual offer.

	
	
	
	


A root element named vvoipOfferNotification of type VvoipOfferNotification is allowed in notification request bodies.

5.2.2.16 Type: VvoipAnswerNotification
This type represents the notifications that carry an answer from the network to the application. 
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about VVoIP events

See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related VVoIP session)

The server MUST include links as defined by the actual Notification resource in section 6.15.
Further, the server SHOULD include a link to the related subscription.

	answer
	VvoipAnswer
	No
	The actual (provisional or final) answer.


A root element named vvoipAnswerNotification of type VvoipAnswerNotification is allowed in notification request bodies.
5.2.2.17 Type: VvoipIceCandidateNotification
This type represents the notification to inform the client about newly-discovered ICE candidates. 
Support for this type is only needed in case of Trickle ICE [IETF_RTCWeb_Trickle], and therefor this type is OPTIONAL.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about VVoIP events

See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related VVoIP session)

The server MUST include links as defined by the actual Notification resource in section 6.16.

Further, the server SHOULD include a link to the related subscription.

	candidate
	IceCandidate[0..unbounded]
	Yes
	The list of newly-discovered ICE candidates.

	endOfCandidates
	xsd:boolean
	Yes
	If set to “true”, this signals that the discovery of ICE candidates has ended. 


A root element named vvoipIceCandidateNotification of type VvoipIceCandidateNotification is allowed in notification request bodies.

5.2.2.18 Type: VvoipSubscriptionCancellationNotification
A type containing the subscription cancellation notification.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application in the receiptRequest element during the associated subscription operation.

See [REST_NetAPI_Common] for details.

	link
	common:Link[1..unbounded]
	No
	Link to other resources that are in relationship with the resource.
There MUST be a link to the subscription that is cancelled (see section 6.17).

	reason
	common:ServiceError
	Yes
	Reason why subscription is being discontinued. SHOULD be present if the reason is different from a regular expiry of the subscription.


A root element named vvoipSubscriptionCancellationNotification of type VvoipSubscriptionCancellationNotification is allowed in notification request bodies.

5.2.2.19 Type: VvoipConflictNotification
A type containing the conflict notification.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application in the receiptRequest element during the associated subscription operation.

See [REST_NetAPI_Common] for details.

	link
	common:Link[1..unbounded]
	No
	Link to other resources that are in relationship with the resource.
The server MUST include links as defined by the actual Notification resource in section 6.18.

Further, the server SHOULD include a link to the related subscription.

	reason
	common:ServiceError
	Yes
	Exception payload that indicates an offer conflict.


A root element named vvoipConflictNotification of type VvoipConflictNotification is allowed in notification request bodies.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the VVoIP API. 
5.2.3.1 Enumeration: EventType

This enumeration is defines the types of events. It is used in notifications.
	Enumeration
	Description

	Cancelled
	The Originator has cancelled the session during the invite phase, or has cancelled an unanswered update offer.

	SessionEnded
	The session has ended.

	Declined
	The Terminating Participant has declined the session invitation, or the Update Recipient has declined the update.

	Timeout
	The session invitation to the Participant has timed out.

	Unreachable
	The Participant could not be reached or is unknown.

	Ringing
	The Participant is being alerted of the incoming call invitation (“phone ringing”).

	Busy
	The Participant is busy.


Ed. Note: to be elaborated whether the set above is complete, and whether all events are feasible with SIP.
FFS whether SIP allows a distinction between busy and declined.

5.2.3.2 Enumeration: SessionStatus
This enumeration defines the status of a VVoIP session.
	Enumeration
	Description

	Initiated
	The session was initiated but is not yet connected. 

	Ringing
	The terminating participant is being alerted.

	Connected
	The session is established. 

	Closed
	The session was closed. 
Resources representing closed sessions can be removed from the server immediately, or after a time period defined by service provider policies.


5.2.3.3 Enumeration: OfferAnswerType
This enumeration determines whether an offer resp. answer is local or remote.
	Enumeration
	Description

	Local
	The offer or answer is a local one.

	Remote
	The offer or answer is a remote one.


Ed. Note: FFS whether this is needed (see VvoipAnswer for long version of this note)
5.2.3.4 Enumeration: IceStatus

This enumeration provides the possible values of the ICE status in a VVoIP session based on the definitions in [W3C_WebRTC].
	Enumeration
	Description

	New
	The ICE status is “new” [W3C_WebRTC].

	Checking
	The ICE status is “checking” [W3C_WebRTC].

	Connected
	ICE connectivity checks have established one connection for each flow [W3C_WebRTC].

	Completed
	The ICE status is “completed” [W3C_WebRTC].

	Failed
	ICE connectivity checks have finished and connectivity could not be established for all flows (but possibly for some) [W3C_WebRTC].

	Disconnected
	The ICE status is “disconnected” [W3C_WebRTC].

	Closed
	The ICE status is “closed” [W3C_WebRTC].


5.2.3.5 Enumeration: MediaType
This enumeration defines the possible media types in VVoIP media indicators.
	Enumeration
	Description

	Audio
	Represents an audio stream (m=audio in SDP [RFC4566])

	Video
	Represents a video stream (m=video in SDP [RFC4566])

	Data
	Represents a data channel [IETF_SCTP_SDP_draft]


5.2.3.6 Enumeration: MediaDirection

This enumeration defines the possible media directions in VVoIP media indicators.

	Enumeration
	Description

	SendRecv
	The stream is bidirectional [RFC3264].

	SendOnly
	The stream is send-only [RFC3264].

	RecvOnly
	The stream is receive-only [RFC3264].

	Inactive
	The stream is currently not active [RFC3264].


5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· VvoipSubscriptionList 
· VvoipNotificationSubscription
· VvoipSession
· VvoipIceCandidateList 
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
The VVoIP API has been designed to work closely with the WebRTC API [W3C_WebRTC] in web browsers. Typically, the application is running in the web browser, and the web browser serves as the media engine for the call. Therefore, many of the diagrams in this section include the web browser as an actor, and mention the PeerConnection object of the WebRTC API. 
This version of the specification has been designed under the assumption that the Server acts as a gateway towards a SIP [RFC3261] infrastructure. Appendix H provides a mapping from API calls to SIP messages. In the flows in this section, only the API view is shown, i.e. the messages between the Server and the SIP infrastructure are not depicted.
The flows in the sections below contain messages and participants that are defined in this specification, as well as those that are not defined in this specification, but that informatively show the interworking with external components and systems. The legend below introduces the graphical styles used to distinguish between these categories.

[image: image3.png]
Figure 2: Legend for the sequence diagrams
5.3.1 Subscription to VVoIP notifications 
This figure below shows a scenario for an application subscribing to and unsubscribing from VVoIP notifications. 
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and the use of that Notification Channel by the client.
The resources: 
· To subscribe to VVoIP notifications, create a new  resource under http://{serverRoot}/vvoip/{apiVersion}/{userId}/subscriptions
· To cancel subscription to VVoIP notifications delete the resource under http://{serverRoot}/vvoip/{apiVersion}/{userId}/subscriptions/{subscriptionId}

[image: image4.png]
Figure 3: Subscribing to and unsubscribing from VVoIP notifications 
Outline of the flows:
1. An application subscribes to VVoIP notifications using the POST method to submit the VvoipNotificationSubscription data structure to the resource containing all subscriptions and receives the result resource URL containing the subscriptionId. 
2. The application stops receiving notifications using DELETE with the resource URL containing the subscriptionId. 
5.3.2 Handling offers and answers

The VVoIP API is based on the offer-answer model. This means that the communicating parties control the media session by exchanging offers and answers which request and confirm changes to the connectivity, the media formats, which media flows are used (e.g. audio-only or also video) belong to the session etc. In addition to offers and answers [RFC3264] which always occur in pairs in SIP [RFC3261], the WebRTC specification [W3C_WebRTC] also allows provisional answers (pranswer). To respond to an offer, zero or more pranswers can be provided before the final answer. Pranswers MAY be provided by the Server to the Application in a notification, but MUST NOT be provided by the Application to the Server. It is the responsibility of the Server to ensure the correct mapping between SIP answers and WebRTC pranswer / answer primitives. The application MUST NOT generate answers of type pranswer.
The figure below shows how an application MUST handle offers, pranswers and answers. Note that the HTTP responses have been omitted for brevity reasons.
The resources: 

· To submit an answer to an incoming offer, update the resource
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/answer
· To submit an offer to modify the current session, update the resource
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/update
[image: image5.png]
Figure 4: Offer and answer handling
Outline of the flows when receiving an offer:
1. The application receives a VvoipOfferNotification that carries the offer. 
2. The application provides this offer as the remote description to the PeerConnection object in the browser which is associated with the session.
3. The application requests the PeerConnection object to create an answer.

4. The application provides the answer to the server by updating the resource representing the answer in the session. 

5. The server returns a response. Subsequently, the server takes care of sending the answer in an appropriate way to the network infrastructure.

Outline of the flows when initiating an offer:
6. After modifying some aspect of the session locally in the browser (e.g. adding a video stream), the application requests the PeerConnection object in the browser that is associated with this session to create an offer which reflects the changes.

7. The application provides the offer to the server by updating the resource representing the update offer in the session. 

8. The server returns a response. Subsequently, the server takes care of sending the offer in an appropriate way to the network infrastructure, and waits for an answer.

Outline of the flows when receiving a provisional answer. Note that subsequent to an offer, zero or more provisional answers may be received.
9. After the server has received an answer from the network infrastructure and has detected that it qualifies as a pranswer, the server sends to the application a VvoipAnswerNotification that carries the provisional answer. 
10. The application provides this provisional answer as the remote description to the PeerConnection object in the browser which is associated with the session.
Outline of the flows when receiving an answer. Note that subsequent to an answer and prior to the next offer, more provisional answers MUST NOT be received.
11. After the server has received an answer from the network infrastructure, the server sends to the application a VvoipAnswerNotification that carries the answer. 
12. The application provides this provisional answer as the remote description to the PeerConnection object in the browser which is associated with the session.
5.3.3 Normal flow of a VVoIP session - Originator
The figure below shows a scenario for a VVoIP session with successful result from the point of view of the Originator.

The resources: 

· To start a VVoIP session, create a new  resource with the VvoipSession data structure under http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions
· To report successful completion of the ICE procedures, update the resource 
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
· To end a VVoIP session delete the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}
· To indicate to the server changes of the ICE status, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/status

[image: image7.png]
Figure 5: VVoIP session - Originator
Outline of the flows:
1. The application creates a PeerConnection object in the browser and sets up the media sources. 

2. The application retrieves from the PeerConnection object the initial offer that describes the media sources.

3. The application set the initial offer as the local session description in the PeerConnection object.  

4. The application creates a new VVoIP session on the server using the POST method on the resource containg all VVoIP sessions, passing the identity of the Terminating Participant and the initial offer.

5. The server returns in the response to the POST request a resource URL that contains a session Id. This resource URL can be used in subsequent HTTP methods to identify the session. 

6. Eventually, the server receives from the network infrastructure an answer or provisional answer to the initial offer which contains a session description that has been derived from the session description in the initial offer using the offer-answer model [RFC3264]. The server notifies the application of the answer or provisional answer by sending a VvoipAnswerNotification to the application. 

7. The application sets the received answer or provisional answer as the remote description in the PeerConnection object. Triggered by that, the browser starts the ICE connectivity checks.
8. The browser reports to the application that a media path has been established by doing ICE connectivity checks with the media endpoint that was signalled in the remote session description from the provisional answer. Note that this can be a media gateway, or the browser of the Terminating Participant, depending on network topology.
9. The application reports the successful ICE checks by updating the ICE status using the PUT method.

10. The server returns an HTTP response.

Alternative flow 1:

11. Another answer from the Terminating Participant arrives, which is forwarded to the Application using a VvoipAnswerNotification. Note that if the answer in step 6 was not provisional, this step is omitted.

12. The application sets the received answer or provisional answer as the remote description in the PeerConnection object. Note that if the answer in step 6 was not provisional, this step is omitted.
13. Eventually, the server receives from the network infrastructure a message that the Terminating Participant is now being alerted of the incoming call. The server notifies the application of the fact that the Terminating Participant is being alerted by sending a VvoipEventNotification of type “Alerting” to the application. 

14. Eventually, the server receives from the network infrastructure a message that the Terminating Participant has accepted the invitation to the call. The server notifies the application of the fact that the Terminating Participant has accepted the call by sending a VvoipAcceptanceNotification to the application.  Since the answer was already sent, the notification does not contain an answer. The call is now established.

Alternative flow 2:

15. Eventually, the server receives from the network infrastructure a message that the Terminating Participant is now being alerted of the incoming call. The server notifies the application of the fact that the Terminating Participant is being alerted by sending a VvoipEventNotification of type “Alerting” to the application. 

16. Eventually, the server receives from the network infrastructure a message that the Terminating Participant has accepted the invitation to the call. This notification also includes the answer. The server notifies the application of the fact that the Terminating Participant has accepted the call by sending a VvoipAcceptanceNotification to the application.  Since the answer was already sent, the notification does not contain an answer.

17. The application sets the received session description as the remote description in the PeerConnection object. The call is now established.

End of alternatives. 
18. To terminate the call, the application uses the DELETE method on the session resource, addressed by the resourceURL containing the session Id.

19. The server indicates in the response that the deletion was successful, and sends a termination request towards the network infrastructure. 

20.  The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

Appendix H describes how this flow can be mapped to SIP.Note that other combinations of pranswer and answer are possible depending on the message exchange taking place in the underlying infrastructure. In those cases, the general rules for handling offers, pranswers and answers in section 5.3.2 apply.

5.3.4 Normal flow of a VVoIP session – Terminating Participant
The figure below shows a scenario for a VVoIP session with successful result from the point of view of the Terminating Participant.

The resources: 

· To accept a VVoIP session invitation, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/status
· To provide an answer without accepting the session invitation, update the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/answer
· To indicate that the user is being alerted of an incoming call, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/status
· To end a VVoIP session delete the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}
· To indicate to the server changes of the ICE status, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
[image: image9.png]
Figure 6: VVoIP session – Terminating Participant
Outline of the flows:
1. The server receives from the network infrastructure an invitation to participate in a real-time media session, containing an initial offer according to the offer-answer model [RFC3264]. The server informs the application of that invitation by sending it a VvoipSessionInvitationNotification which includes the offer’s session description and a resource URL that identifies the session to be used in subsequent requests. 

2. The application creates a PeerConnection object in the browser, sets up the local media sources and adds these to the PeerConnection object.

3. The application sets the session description received in the initial offer as the remote description in the PeerConnection object.

4. The application retrieves an answer to the offer from the PeerConnection object.  

5. The application sets the retrieved session description as the local description in the PeerConnection object, marked as answer. Triggered by that, the browser starts the ICE connectivity checks.
6. The application uses the PUT method on the resource containing the answer to provide that session description to the server as the answer. 

7. The server returns an HTTP response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator.
8. The browser reports to the application that a media path has been established by doing ICE connectivity checks with the media endpoint that was signalled in the remote session description from the offer. Note that this can be a media gateway, or the browser of the Originator, depending on network topology.
9. The application reports the successful ICE checks by updating the ICE status using the PUT method.

10. The server returns an HTTP response to the request.

11. The application can now alert the user. First, the application reports to the server that it is alerting the user, by setting the session status resource to “Ringing” using the PUT method.

12. The server returns an HTTP response to the request. Subsequently, the server sends towards the network infrastructure an indication that the Terminating Participant is being alerted. The network infrastructure takes care of routing the request to the Originator.
13. The application now alerts the user, who eventually accepts the call.

14. The application uses the PUT method on the resource containing the session status to accept the call by updating the status.
15. The server returns a response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator. The call is now established.

16. Eventually, the server receives from the network infrastructure a message that the Originator is requesting to terminate the call. The server notifies the application of the call session termination by sending a VvoipEventNotification of type “SessionEnded” to the application. 

17. The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

5.3.5 VVoIP session with delayed alerting requested in session invitation

The following flow shows how the Terminating Participant’s application responds to a session invitation in which the Originator has requested to delay the alerting of the Terminating Participant until the Originator sends an updated offer. Using this pattern, the originator requests the Terminating Participant to delay the alerting of the user until the Originator reports that media connectivity is possible (e.g. ICE checks have been succeeded, or QoS reservations have been granted).

The flow is shown from the Terminating Participant’s point of view. Note that it is assumed that the Originator’s Server handles the necessary steps at the Originator side, i.e. an Originator using the API defined by this specification will never have to generate an invitation requesting delayed alerting. It is however necessary that a terminating participant is able to handle invitation of this type.

The resources:

· To provide an answer to a session invitation without accepting it (yet), or to provide an answer to an offer, update the resource http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/answer
· To accept a VVoIP session invitation, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/status
· To indicate that the user is being alerted of an incoming call, update the resource   http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/status
· To indicate to the server changes of the ICE status, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
[image: image10.png]
Figure 7: VVoIP session with delayed alerting requested in session invitation
Outline of the flows:
1. The server receives from the network infrastructure an invitation to participate in a real-time media session, containing an initial offer according to the offer-answer model [RFC3264]. This offer includes information that certain preconditions for opening the media connection such as QoS reservation or ICE checks, are not yet met. The server informs the application of that offer by sending it a VvoipSessionInvitationNotification which includes the offer’s session description, a resource URL that identifies the session to be used in subsequent requests, and an indicator that tells the application that it can go ahead processing the offer contained in the invitation, but should refrain from alerting the user. 

2. The application creates a PeerConnection object in the browser, sets up the local media sources and adds these to the PeerConnection object.

3. The application sets the session description received in the initial offer as the remote description in the PeerConnection object.

4. The application retrieves an answer to the offer from the PeerConnection object.  

5. The application sets the retrieved session description as the local description in the PeerConnection object, marked as answer. Triggered by that, the browser starts the ICE connectivity checks.
6. The application uses the PUT method on the resource containing the answer to provide that session description to the server as the answer. 

7. The server returns an HTTP response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator. Subsequently, ICE connectivity checks are performed to set up media connectivity.

8. The browser reports to the application that a media path has been established by doing ICE connectivity checks with the media endpoint that was signalled in the remote session description from the offer. Note that this can be a media gateway, or the browser of the Originator, depending on network topology.
9. The application reports the successful ICE checks by updating the ICE status using the PUT method.

10. The server returns an HTTP response to the request. Subsequently, the application’s own ICE procedures have finished, and a media path is available for the call leg of the Terminating Participant. However, there is no information yet available whether there is also media connectivity available for the call leg of the Originator; therefore, the Application still cannot alert the user.

11. Eventually, the server receives information from the network infrastructure that media connectivity is now also available for the Originator’s call leg. The server sends to the application a VvoipOfferNotification which contains an updated offer without the “holdAlerting” flag instantiated.

12. The application sets the session description received in the updated offer as the remote description in the PeerConnection object.

13. The application retrieves an answer to the offer from the PeerConnection object.  

14. The application sets the retrieved session description as the local description in the PeerConnection object, marked as answer. 

15. The application uses the PUT method on the resource containing the answer to provide that session description to the server as the answer. 

16. The server returns an HTTP response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator. 

17. As the Originator has withdrawn the request to hold alerting, and as locally the ICE procedures have also succeeded, the application can now alert the user. First, the application reports to the server that it is alerting the user, by setting the session status resource to “Ringing” using the PUT method.

18. The server returns an HTTP response to the request. Subsequently, the server sends towards the network infrastructure an indication that the Terminating Participant is being alerted. The network infrastructure takes care of routing the request to the Originator.
19. The application now alerts the user, who eventually accepts the call.

20. The application uses the PUT method on the resource containing the session status to accept the call by updating the status.
21. The server returns a response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator. The call is now established.

Appendix Error! Reference source not found.describes how this flow can be mapped to SIP.
5.3.6 Offerless Session Invitation
The figure below shows a scenario where the Terminating Participant receives a VVoIP session invitation that contains no offer. Such invitations occur for instance in third-party call control scenarios, when the network expects the Terminating Participant to make an offer as response to the invitation. The flow is shown from the Terminating Participant’s point of view.

Note: In third-party call control scenarios, the invites both call participants (so, strictly speaking, there are two Terminating Participants but no Originator). To do this, the network typically first invites one participant and asks it to declare its media properties, i.e. to provide an offer. This mechanism is known as offerless invite. The offer received by the network in the response to the invitation is then included in the invitation sent to the second participant. 
The resources: 

· To provide an offer responding to an offerless session invitation, update the resource http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/offer
· To accept a VVoIP session invitation, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/status
· To indicate that the user is being alerted of an incoming call, update the resource  Error! Hyperlink reference not valid.
· To indicate to the server changes of the ICE status, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
[image: image12.png]
Figure 8: Offerless session invitation
Outline of the flows:
1. The server receives from the network infrastructure an invitation to participate in a real-time media session. This invitation does not include an offer. The server informs the application of that invitation by sending it a VvoipSessionInvitationNotification which includes a resource URL that identifies the session to be used in subsequent requests, but no offer. 

2. The application creates a PeerConnection object in the browser, sets up the local media sources and adds these to the PeerConnection object.

3. The application retrieves a session description from the PeerConnection object as an offer.  

4. The application sets the retrieved session description as the local description in the PeerConnection object, marked as offer. 

5. The application uses the PUT method on the resource containing the offer to provide that session description to the server as the offer. 

6. The server returns an HTTP response to the request. It sends the offer towards the network infrastructure and subsequently waits for an answer. 

7. Eventually, an answer arrives from the network which is forwarded by the server to the application in a VvoipAnswerNotification.

8. The application sets the session description contained in the notification as the remote description in the PeerConnection object, marked as answer. ICE connectivity checks can subsequently start.

9. The browser reports to the application that a media path has been established by doing ICE connectivity checks with the media endpoint that was signalled in the remote session description from the answer. 
10. The application reports the successful ICE checks by updating the ICE status using the PUT method.

11. The server returns an HTTP response to the request. 

12. As the ICE procedures have succeeded, the application can now alert the user. First, the application reports to the server that it is alerting the user, by setting the session status resource to “Ringing” using the PUT method.

13. The server returns an HTTP response to the request. Subsequently, the server sends towards the network infrastructure an indication that the participant is being alerted. The network infrastructure takes care of routing the request appropriately.
14. The application now alerts the user, who eventually accepts the call.

15. The application uses the PUT method on the resource containing the session status to accept the call by updating the status.
16. The server returns a response to the request and sends the answer towards the network infrastructure, which takes care of routing the request appropriately. The call is now established.

5.3.7 Cancelling a VVoIP session invitation - Originator
The figure below shows a scenario where the originator cancels a VVoIP session invitation before the Terminating Participant has accepted the invitation. The flow is shown from the Originator’s point of view.
The resources: 

· To cancel a VVoIP session, delete the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}

[image: image14.emf]
Figure 9: VVoIP session cancellation - Originator
Outline of the flows:
It is assumed that the Originator has performed all steps up to including step 5.3.3 in section 5.3.3, but has not yet received a VvoipAcceptanceNotification. 
1. To cancel the call, the application uses the DELETE method on the session resource, addressed by the resourceURL containing the session Id.

2. The server indicates in the response that the deletion was successful, and sends a cancellation request towards the network infrastructure. 

3.  The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

An update request (see 5.3.11) can be cancelled using the same flow.

5.3.8 Cancelling a VVoIP session invitation – Terminating Participant
The figure below shows a scenario where the Originator cancels a VVoIP session invitation before the Terminating Participant has accepted the invitation. The flow is shown from the Terminating Participant’s point of view.
There are no resources defined in this section, as the Terminating Participant can only react locally to the cancellation notification. 

[image: image15.emf]
Figure 10: VVoIP session cancellation – Terminating Participant
Outline of the flows:
It is assumed that the Terminating Participant has received a VvoipSessionInvitationNotification (step 1 in section 5.3.4) but has not yet successfully indicated acceptance of that invitation (step 15 in section 5.3.4)
1. Eventually, the server receives from the network infrastructure a message that the Originator is requesting to cancel the session invitation. The server notifies the application of the call session cancelation by sending a VvoipEventNotification of type “Canceled” to the application. 

2. The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

An update request (see5.3.12) can be cancelled using the same flow.
5.3.9 Rejecting a VVoIP session invitation – Terminating Participant
The figure below shows a scenario where the Terminating Participant rejects a VVoIP session invitation. The flow is shown from the Terminating Participant’s point of view.
It is assumed that the Terminating Participant has received a VvoipSessionInvitationNotification (step 1 in section 5.3.4) but has not yet successfully indicated acceptance of that invitation (step 15 in section 5.3.4)
The resources: 

· To reject a VVoIP session invitation, delete the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}

[image: image16.emf]
Figure 10: Rejecting a VVoIP session invitation – Terminating Participant
Outline of the flows:
1. To reject the call invitation, the application uses the DELETE method on the session resource, addressed by the resourceURL containing the session Id.

2. The server indicates in the response that the deletion was successful, and sends a rejection request towards the network infrastructure. 

5.3.10 Rejecting a VVoIP session invitation - Originator
The figure below shows a scenario where the originator is informed that the Terminating Participant has declined a VVoIP session invitation. The flow is shown from the Originator’s point of view.
There are no resources defined in this section, as the Originator can only react locally to the rejection notification. 

[image: image17.emf]
Figure 9: Rejecting a VVoIP session invitation - Originator
Outline of the flows:
It is assumed that the Originator has performed all steps up to including step 5 in section 5.3.3, but has not yet received a VvoipAcceptanceNotification. 
1. Eventually, the server receives from the network infrastructure a message that the Terminating Participant has rejected the session invitation. The server notifies the application of the session invitation rejection by sending a VvoipEventNotification of type “Declined” to the application. 

2. The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

5.3.11 VVoIP session modification – Update Originator
The figure below shows a scenario where a VVoIP session is modified (e.g. to add or remove a video stream). The flow is shown from the Update Originator’s point of view.
The resources: 

· To modify  a session, update the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/update
· To indicate to the server changes of the ICE status, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/status

[image: image18.emf]
Figure 11: VVoIP session modification – Update Originator
Outline of the flows:
1. After the user has requested from the application to update the session (e.g. to add or remove video), the application updates the PeerConnection object accordingly.

2. The application requests an offer from the updated PeerConnection, reflecting the update.

3. The application installs this offer as the new local offer in the PeerConnection object.

4. Using the PUT method, the application updates the resource representing the update offer in the session with the new offer

5. The server returns a response. After that, the server passes on the offer to the Update Recipient via the network, and waits for an answer. When the answer eventually arrives, it can contain one of the following responses: a rejection of the update offer or an acceptance of the update offer. 

6. If the Update Recipient has rejected the update request, the server sends to the application a VvoipEventNotification with the eventType set to “Declined”. After that, the call goes ahead without modification.

7. If the Update Recipient has accepted the update request, the server sends to the application a VvoipAcceptanceNotification including the answer.

8. The application installs the answer as the remote description in the PeerConnection object. 

9. In case a stream was added, the previous step triggers a restart of the ICE procedures. The browser reports this change by sending an “oniceconnectionstatechange” message to the application. 

10. The application reports the change of the ICE status to the server by updating the ICE status resource, using the PUT method.

11. The server returns a response. 

12. Eventually, the ICE connectivity checks run and succeed. The browser reports the successful ICE run by sending an “oniceconnectionstatechange” message to the application. 

13. The application reports the change of the ICE status to the server by updating the ICE status resource, using the PUT method.

14. The server returns a response. As the media path is established now for the added streams as well, the call goes ahead with the modified data streams.

5.3.12 VVoIP session modification – Update Recipient
The figure below shows a scenario where a VVoIP session is modified (e.g. to add or remove a video stream). The flow is shown from the Update Recipient’s point of view.
The resources: 

· To accept  a session modification request, update the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/answer
· To reject a session update request, delete the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/update

· To indicate to the server changes of the ICE status, update the resource  http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/status

[image: image19.png]
Figure 12: VVoIP session modification – Update Recipient
Outline of the flows:
1. The server sends to the application a VvoipOfferNotification containing an update offer. The application decides based on that offer whether or not to accept it. Such decision might or might not include a dialog with the user.

2. If the application has decided to reject the update offer, it deletes the resource representing the update offer, using the DELETE method. 

3. The server returns a response. After that, the call goes ahead without modification.
4. On the other hand, if the application has decided to accept the update offer, it installs the received update offer in the PeerConnection object as remote offer. 

5. The PeerConnection object informs the application of the addition and/or removal of media streams.

6. The application takes notice of the changes and adapts its internal state. Details of how this is done are out of scope of this specification.

7. The application asks the PeerConnection object to create an answer.

8. The application updates the answer resource using the PUT method, replacing it with the new answer returned by the PeerConnection object. 

9. The server returns a response. Also, the server takes care of sending the answer back to the Update Originator via the network infrastructure. 

10. In case a stream was added, the previous step triggers a restart of the ICE procedures. The browser reports this change by sending an “oniceconnectionstatechange” message to the application. 

11. The application reports the change of the ICE status to the server by updating the ICE status resource, using the PUT method.

12. The server returns a response. 

13. Eventually, the ICE connectivity checks run and succeed. The browser reports the successful ICE run by sending an “oniceconnectionstatechange” message to the application. 

14. The application reports the change of the ICE status to the server by updating the ICE status resource, using the PUT method.

15. The server returns a response. As the media path is established now for the added streams as well, the call goes ahead with the modified data streams.

5.3.13 Resolving an offer conflict

The figure below shows a scenario where both parties in a call have sent an offer concurrently, i.e. an offer conflict occurs. The reason for this may be that one of the clients has erroneously sent a new offer before a previous one was accepted/rejected, or that a network-internal race condition has led to that state. In any case, the server that detects the problem will decline the second offer as depicted below.
There are no resources defined in this section, as the application can only react locally to the cancellation notification. 

The resources: 

· To create an update offer, update the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/update 
[image: image21.emf]
Figure 15: Resolving an offer conflict
Outline of the flows:
1. The Update Originator creates an update offer by modifying the “offer” resource in the VVoIP session using the PUT method.

Alternative 1: Synchronous case
2. The server immediately detects a conflict and returns SVC1007 exception immediately with the HTTP response.
Alternative 2: Asynchronous case
3. The server returns a “success” response

4. The server later detects a conflict and sends a VvoipConflictNotification to the application.

5. The application rolls back the session state to the state before the offer was sent.
5.3.14 Trickle ICE in a VVoIP session
The figure below shows a scenario when Trickle ICE [???] is used during the set-up of a VVoIP session.
The resources: 

· To send an ICE candidate, update the resource  
http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/iceCandidates
Figure 16: Trickle ICE in a VVoIP session
Outline of the flows:
1. TBD 

Ed. Note: Trickle ICE support in this version of the specification  is FFS.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
Offers and answers in the examples below contain Session Description Protocol (SDP) instances [RFC3264]. These instances can be treated by the application as opaque blobs that need to be extracted from and passed to the web browser in order to allow media communication (see section 5.3.2). Compared to SDP instances in a real-world WebRTC deployment, the instances in this specification are simplified, in particular, the details of ICE usage, media stream identification and RTP multiplexing signalling have been omitted. Anyway these can be seen as details that concern the underlying layers, not the API. 
6.1 Resource: All audio and/or video subscriptions

The resource used is: 

http://{serverRoot}/vvoip/{apiVersion}/{userId}/subscriptions

This resource is used to manage subscriptions to VVoIP event notifications. Note that there is one subscription per client instance.


This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.1.3 GET
This operation is used for reading the list of active VVoIP notification subscriptions.
6.1.3.1 Example: Reading all active VVoIP notification subscriptions 
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com


6.1.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSubscriptionList xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <vvoipNotificationSubscription>

        <callbackReference>

            <notifyURL>http://application.example.com/vvoip/notifications/77777</notifyURL>

            <callbackData>abcd</callbackData>

        </callbackReference>

        <duration>7037</duration>

        <clientCorrelator>12345</clientCorrelator>

        <resourceURL>http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

    </vvoipNotificationSubscription>

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions</resourceURL>

</vvoip:vvoipSubscriptionList>



6.1.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

6.1.5 POST
This operation is used to create a new subscription for VVoIP notifications.

The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]). 

6.1.5.1 Example: Creating a new subscription to VVoIP notifications, response with copy of created resource
(Informative)

6.1.5.1.1 Request

	POST /exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipNotificationSubscription xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackReference>

        <notifyURL>http://application.example.com/vvoip/notifications/77777</notifyURL>

        <callbackData>abcd</callbackData>

    </callbackReference>

    <duration>7200</duration>

    <clientCorrelator>12345</clientCorrelator>

</vvoip:vvoipNotificationSubscription>


6.1.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipNotificationSubscription xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackReference>

        <notifyURL>http://application.example.com/vvoip/notifications/77777</notifyURL>

        <callbackData>abcd</callbackData>

    </callbackReference>

    <duration>7200</duration>

    <clientCorrelator>12345</clientCorrelator>

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</vvoip:vvoipNotificationSubscription>  


6.1.5.2 Example: Creating a new subscription to VVoIP notifications, response with location of created resource 
(Informative)
Besides showing subscription creation, this example illustrates a technique to return only a reference to the created resource, rather than a copy of it (defined in [REST_NetAPI_Common] as an alternative way of resource creation responses).
6.1.5.2.1 Request

	POST /exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipNotificationSubscription xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackReference>

        <notifyURL>http://application.example.com/vvoip/notifications/77777</notifyURL>

        <callbackData>abcd</callbackData>

    </callbackReference>

    <duration>7200</duration>

    <clientCorrelator>12345</clientCorrelator>

</vvoip:vvoipNotificationSubscription>


6.1.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</common:resourceReference>



6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

6.2 Resource: Individual audio and/or video subscription

The resource used is: 

http://{serverRoot}/vvoip/{apiVersion/{userId}/subscriptions/{subscriptionId}

This resource represents an individual subscription to VVoIP event notifications..

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	subscriptionId
	Identifier of the subscription

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.2.3 GET
This operation is used for reading an individual subscription.

6.2.3.1 Example: Reading an individual subscription  
(Informative)

6.2.3.1.1 Request

	GET /exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com


6.2.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipNotificationSubscription xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackReference>

        <notifyURL>http://application.example.com/vvoip/notifications/77777</notifyURL>

        <callbackData>abcd</callbackData>

    </callbackReference>

    <duration>7200</duration>

    <clientCorrelator>12345</clientCorrelator>

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</vvoip:vvoipNotificationSubscription>



6.2.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.2.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.2.6.1 Example: Cancelling a subscription
(Informative)
6.2.6.1.1 Request

	DELETE /exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com


6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT



6.3 Resource: All audio and/or video sessions
The resource used is: 

http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions

This resource contains information about all VVoIP sessions available to a particular client instance.


6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.3.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.3.5 POST
This operation is used to create a new VVoIP session with the user represented by {userId} as Originator.
Apart from illustrating the creation of different types of sessions (audio-only and audio+video), this section also illustrates the different user identity options and response options after resource creation. In fact, these three dimensions are orthogonal.
6.3.5.1 Example: Creating a new VVoIP session – audio only, using tel URI
(Informative)

Besides illustrating the creation of an audio-only VVoIP session, this example illustrates how a tel URI can be used to identify the user. 

6.3.5.1.1 Request

	POST /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions HTTP/1.1
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <originatorAddress>tel:+19585550100</originatorAddress>

    <originatorName>Alice</originatorName>

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 96

            a=rtpmap:0 PCMU/8000

            a=rtpmap:96 opus/48000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        </sdp>

    </offer>

    <clientCorrelator>4567</clientCorrelator>

</vvoip:vvoipSession>


6.3.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT 

Location: http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <originatorAddress>tel:+19585550100</originatorAddress>

    <originatorName>Alice</originatorName>

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <status>Initiated</status>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 96

            a=rtpmap:0 PCMU/8000

            a=rtpmap:96 opus/48000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <payload>

                <payloadType>96</payloadType>

                <encoding>opus</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </offer>

    <clientCorrelator>4567</clientCorrelator>

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>

</vvoip:vvoipSession>


6.3.5.2 Example: Creating a new VVoIP session – audio only, using SIP URI and encoding the SDP with base64
(Informative)

Besides illustrating the creation of an audio-only VVoIP session, this example illustrates how a SIP URI can be used to identify the user, and how an SDP can be base64-encoded to be robust against the case that it contains characters which break the structure of XML or JSON. 

6.3.5.2.1 Request

	POST /exampleAPI/vvoip/v1/sip%3Aalice%40example.com/sessions HTTP/1.1
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <offer>

        <sdpBase64>

            ICAgICAgICAgICAgdj0wDQogICAgICAgICAgICBvPWFsaWNlc19icm93c2VyIDI4OTA4NDQ1MjYg

            Mjg5MDg0MjgwNyBJTiBJUDQgMTAuMC4xLjENCiAgICAgICAgICAgIHM9DQogICAgICAgICAgICB0

            PTAgMA0KICAgICAgICAgICAgYz1JTiBJUDQgMTkyLjAuMi4zMA0KICAgICAgICAgICAgYT1pY2Ut

            cHdkOmFzZDg4ZmdwZGQ3Nzd1empZaGFnWmcNCiAgICAgICAgICAgIGE9aWNlLXVmcmFnOjhoaFkN

            CiAgICAgICAgICAgIGE9ZmluZ2VycHJpbnQ6c2hhLTEgOTk6NDE6NDk6ODM6NGE6OTc6MGU6MWY6

            ZWY6NmQ6Zjc6Yzk6Yzc6NzA6OWQ6MWY6NjY6Nzk6YTg6MDcNCiAgICAgICAgICAgIA0KICAgICAg

            ICAgICAgbT1hdWRpbyAxMDAwMCBSVFAvU0FWUEYgMCA5Ng0KICAgICAgICAgICAgYT1ydHBtYXA6

            MCBQQ01VLzgwMDANCiAgICAgICAgICAgIGE9cnRwbWFwOjk2IG9wdXMvNDgwMDANCiAgICAgICAg

            ICAgIGE9c2VuZHJlY3YNCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjEgMSBVRFAgMjEzMDcwNjQz

            MSAxMC4wLjEuMSA4MDAwIHR5cCBob3N0DQogICAgICAgICAgICBhPWNhbmRpZGF0ZToxIDIgVURQ

            IDIxMzA3MDY0MzAgMTAuMC4xLjEgODAwMSB0eXAgaG9zdA0KICAgICAgICAgICAgYT1jYW5kaWRh

            dGU6MiAxIFVEUCAxNjk0NDk4ODE1IDE5Mi4wLjIuMzAgMTAwMDAgdHlwIHNyZmx4IHJhZGRyIDEw

            LjAuMS4xIHJwb3J0IDgwMDANCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjIgMiBVRFAgMTY5NDQ5

            ODgxNCAxOTIuMC4yLjMwIDEwMDAxIHR5cCBzcmZseCByYWRkciAxMC4wLjEuMSBycG9ydCA4MDAx

            DQo=

        </sdpBase64>

    </offer>

    <clientCorrelator>4567</clientCorrelator>

</vvoip:vvoipSession>


6.3.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT 

Location: http://example.com/exampleAPI/vvoip/v1/sip%3Aalice%40example.com/sessions/sess001
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <originatorAddress>sip:alice@example.com</originatorAddress>

    <originatorName>Alice</originatorName>

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <status>Initiated</status>

    <offer>

        <sdpBase64>

            ICAgICAgICAgICAgdj0wDQogICAgICAgICAgICBvPWFsaWNlc19icm93c2VyIDI4OTA4NDQ1MjYg

            Mjg5MDg0MjgwNyBJTiBJUDQgMTAuMC4xLjENCiAgICAgICAgICAgIHM9DQogICAgICAgICAgICB0

            PTAgMA0KICAgICAgICAgICAgYz1JTiBJUDQgMTkyLjAuMi4zMA0KICAgICAgICAgICAgYT1pY2Ut

            cHdkOmFzZDg4ZmdwZGQ3Nzd1empZaGFnWmcNCiAgICAgICAgICAgIGE9aWNlLXVmcmFnOjhoaFkN

            CiAgICAgICAgICAgIGE9ZmluZ2VycHJpbnQ6c2hhLTEgOTk6NDE6NDk6ODM6NGE6OTc6MGU6MWY6

            ZWY6NmQ6Zjc6Yzk6Yzc6NzA6OWQ6MWY6NjY6Nzk6YTg6MDcNCiAgICAgICAgICAgIA0KICAgICAg

            ICAgICAgbT1hdWRpbyAxMDAwMCBSVFAvU0FWUEYgMCA5Ng0KICAgICAgICAgICAgYT1ydHBtYXA6

            MCBQQ01VLzgwMDANCiAgICAgICAgICAgIGE9cnRwbWFwOjk2IG9wdXMvNDgwMDANCiAgICAgICAg

            ICAgIGE9c2VuZHJlY3YNCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjEgMSBVRFAgMjEzMDcwNjQz

            MSAxMC4wLjEuMSA4MDAwIHR5cCBob3N0DQogICAgICAgICAgICBhPWNhbmRpZGF0ZToxIDIgVURQ

            IDIxMzA3MDY0MzAgMTAuMC4xLjEgODAwMSB0eXAgaG9zdA0KICAgICAgICAgICAgYT1jYW5kaWRh

            dGU6MiAxIFVEUCAxNjk0NDk4ODE1IDE5Mi4wLjIuMzAgMTAwMDAgdHlwIHNyZmx4IHJhZGRyIDEw

            LjAuMS4xIHJwb3J0IDgwMDANCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjIgMiBVRFAgMTY5NDQ5

            ODgxNCAxOTIuMC4yLjMwIDEwMDAxIHR5cCBzcmZseCByYWRkciAxMC4wLjEuMSBycG9ydCA4MDAx

            DQo=

        </sdpBase64>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <payload>

                <payloadType>96</payloadType>

                <encoding>opus</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </offer>

    <clientCorrelator>4567</clientCorrelator>

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/sip%3Aalice%40example.com/sessions/sess001</resourceURL>

</vvoip:vvoipSession>


6.3.5.3 Example: Creating a new VVoIP session – audio and video, using ACR
(Informative)

Besides illustrating the creation of a VVoIP session which contains audio and video, this example illustrates how an ACR (Anonymized Customer Reference) can be used to identify the user.

6.3.5.3.1 Request

	POST /exampleAPI/vvoip/v1/acr%3Apseudonym123/sessions HTTP/1.1
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 96

            a=rtpmap:0 PCMU/8000

            a=rtpmap:96 opus/48000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

            m=video 10100 RTP/SAVPF 97 98

            a=rtpmap:97 H264/90000

            a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

            a=rtpmap:98 VP8/90000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

        </sdp>

    </offer>

    <clientCorrelator>4567</clientCorrelator>

</vvoip:vvoipSession>


6.3.5.3.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT 

Location: http://example.com/exampleAPI/vvoip/v1/acr%3Apseudonym123/sessions/sess001
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <originatorAddress>acr:pseudonym123</originatorAddress>

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <status>Initiated</status>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 96

            a=rtpmap:0 PCMU/8000

            a=rtpmap:96 opus/48000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

            m=video 10100 RTP/SAVPF 97 98

            a=rtpmap:97 H264/90000

            a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

            a=rtpmap:98 VP8/90000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <payload>

                <payloadType>96</payloadType>

                <encoding>opus</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

        <mediaIndicator>

            <type>Video</type>

            <index>1</index>

            <payload>

                <payloadType>97</payloadType>

                <encoding>H264</encoding>

                <formatParams>profile-level-id=4d0028;packetization-mode=1</formatParams>

            </payload>

            <payload>

                <payloadType>98</payloadType>

                <encoding>VP8</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </offer>

    <clientCorrelator>4567</clientCorrelator>

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/acr%3Apseudonym123/sessions/sess001</resourceURL>

</vvoip:vvoipSession>


 
6.3.5.4 Example: Creating a new VVoIP session – audio and video, using acr:auth
(Informative)

Besides illustrating the creation of a VVoIP session which contains audio and video, this example illustrates how an OAuth 2.0 bearer token can be used to identify the user. In the request URL, the string “acr:auth” indicates that the user identity can be obtained by evaluating the access token. 
6.3.5.4.1 Request

	POST /exampleAPI/vvoip/v1/acr%3Aauth/sessions HTTP/1.1
Authorization: Bearer mF_9.B5f-4.1JqM
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 96

            a=rtpmap:0 PCMU/8000

            a=rtpmap:96 opus/48000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

            m=video 10100 RTP/SAVPF 97 98

            a=rtpmap:97 H264/90000

            a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

            a=rtpmap:98 VP8/90000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

        </sdp>

    </offer>

    <clientCorrelator>4567</clientCorrelator>

</vvoip:vvoipSession>


6.3.5.4.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT 

Location: http://example.com/exampleAPI/vvoip/v1/acr%3Aauth/sessions/sess001
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <originatorAddress>acr:pseudonym123</originatorAddress>

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <status>Initiated</status>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 96

            a=rtpmap:0 PCMU/8000

            a=rtpmap:96 opus/48000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

            m=video 10100 RTP/SAVPF 97 98

            a=rtpmap:97 H264/90000

            a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

            a=rtpmap:98 VP8/90000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <payload>

                <payloadType>96</payloadType>

                <encoding>opus</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

        <mediaIndicator>

            <type>Video</type>

            <index>1</index>

            <payload>

                <payloadType>97</payloadType>

                <encoding>H264</encoding>

                <formatParams>profile-level-id=4d0028;packetization-mode=1</formatParams>

            </payload>

            <payload>

                <payloadType>98</payloadType>

                <encoding>VP8</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </offer>

    <clientCorrelator>4567</clientCorrelator>

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/acr%3Apseudonym123/sessions/sess001</resourceURL>

</vvoip:vvoipSession>


6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.4 Resource: Individual audio and/or video session
The resource used is: 

http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}
This resource represents a VVoIP session.


6.4.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the VVoIP session

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.4.3 GET
This operation is used to retrieve information about a VVoIP session.

6.4.3.1 Example: Retrieving VVoIP session information 
(Informative)
6.4.3.1.1 Request

	GET /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1
Accept: application/xml
Host: example.com


6.4.3.1.2 Response
The body of this response illustrates a session with an offer, the associated answer and a pending update. 
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT 

<?xml version="1.0" encoding="UTF-8"?>
<vvoip:vvoipSession xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <originatorAddress>tel:+19585550100</originatorAddress>

    <originatorName>Alice</originatorName>

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <status>Connected</status>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 96

            a=rtpmap:0 PCMU/8000

            a=rtpmap:96 opus/48000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <payload>

                <payloadType>96</payloadType>

                <encoding>opus</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </offer>

    <answer>

        <isProvisional>false</isProvisional>

        <sdp xml:space="preserve">

            v=0

            o=bob_via_gw 2808844564 2808844564 IN IP4 192.0.2.1

            s=

            t=0 0

            c=IN IP4 192.0.2.1

            a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

            a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

            a=ice-ufrag:9uB6

            a=ice-lite

            m=audio 20000 RTP/SAVPF 0

            a=rtpmap:0 PCMU/8000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

            a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </answer>

    <update>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842808 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0

            a=rtpmap:0 PCMU/8000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

            m=video 10100 RTP/SAVPF 97 98

            a=rtpmap:97 H264/90000

            a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

            a=rtpmap:98 VP8/90000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

        <mediaIndicator>

            <type>Video</type>

            <index>1</index>

            <payload>

                <payloadType>97</payloadType>

                <encoding>H264</encoding>

            </payload>

            <payload>

                <payloadType>98</payloadType>

                <encoding>VP8</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </update>

    <clientCorrelator>4567</clientCorrelator>

    <resourceURL>http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>

</vvoip:vvoipSession>



6.4.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.4.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.4.6 DELETE

This operation is used by any Participant to terminate a VVoIP session, by the Terminating Participant to decline a VVoIP session invitation, or by the Originator to cancel a VVoIP session invitation before it has been accepted. 
6.4.6.1 Example: Cancelling or terminating a VVoIP session, or declining a VVoIP session invitation 
(Informative)
6.4.6.1.1 Request

	DELETE /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1

Accept: application/xml

Host: example.com


6.4.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT


6.5 Resource: Status of an audio and/or video session
The resource used is: 

http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/status

This resource represents the status of a VVoIP session.


6.5.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the VVoIP session

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.5.3 GET
This operation is used to read the status of a VVoIP session.
6.5.3.1 Example: Reading the status of a VVoIP session
(Informative)

6.5.3.1.1 Request

	GET /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/status HTTP/1.1

Accept: application/xml

Host: example.com 


6.5.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSessionStatus xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <status>Ringing</status>

</vvoip:vvoipSessionStatus>


6.5.4 PUT
This operation is used to update the status of a VVoIP session, in order to accept a VVoIP session invitation, or to indicate that the Terminating Participant is being alerted (“Ringing”).
200 OK and 204 No Content are valid success responses.

6.5.4.1 Example: Accepting a VVoIP session invitation
(Informative)

6.5.4.1.1 Request

	PUT /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSessionStatus xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <status>Connected</status>

</vvoip:vvoipSessionStatus>


6.5.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSessionStatus xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <status>Connected</status>

</vvoip:vvoipSessionStatus>


6.5.4.2 Example: Indicating the alerting of the Terminating Participant (“Ringing”)
(Informative)

6.5.4.2.1 Request

	PUT /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSessionStatus xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <status>Ringing</status>

</vvoip:vvoipSessionStatus>


6.5.4.2.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSessionStatus xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <status>Ringing</status>

</vvoip:vvoipSessionStatus>


6.5.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.6 Resource: Initial or most recent offer in an audio and/or video session
The resource used is: 

http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/offer

This resource represents the initial or most recent offer in a VVoIP session. In case it represents the initial offer in the session, the offer may be answered or still unanswered, depending on whether or not the sibling resource “answer” exists. In case it does not represent the initial offer, the “answer” sibling always exists, i.e. the contents of this resource always represents the most recent answered offer.
Note that an additional sibling resource “update” may exist, which represents an update to the offer represented by the resource defined in the current section. More details can be found in section 6.8.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the VVoIP session

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.6.3 GET
This operation is used to read the initial or most recent offer in a VVoIP session.

6.6.3.1 Example: Reading initial or most recent offer in a VVoIP session
(Informative)

6.6.3.1.1 Request

	GET /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/offer HTTP/1.1

Accept: application/xml

Host: example.com 


6.6.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOffer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <sdp xml:space="preserve">

        v=0

        o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

        s=

        t=0 0

        c=IN IP4 192.0.2.30

        a=ice-pwd:asd88fgpdd777uzjYhagZg

        a=ice-ufrag:8hhY

        a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

        m=audio 10000 RTP/SAVPF 0 96

        a=rtpmap:0 PCMU/8000

        a=rtpmap:96 opus/48000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

    </sdp>

    <mediaIndicator>

        <type>Audio</type>

        <index>0</index>

        <payload>

            <payloadType>0</payloadType>

            <encoding>PCMU</encoding>

        </payload>

        <payload>

            <payloadType>96</payloadType>

            <encoding>opus</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

</vvoip:vvoipOffer>



6.6.4 PUT

This operation is used to provide an offer to an offerless session invitation.
200 OK and 204 No Content are valid success responses.

6.6.4.1 Example: Providing an offer to an offerless session invitation
(Informative)

6.6.4.1.1 Request

	PUT /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/offer HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOffer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <sdp xml:space="preserve">

        v=0

        o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

        s=

        t=0 0

        c=IN IP4 192.0.2.30

        a=ice-pwd:asd88fgpdd777uzjYhagZg

        a=ice-ufrag:8hhY

        a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

        m=audio 10000 RTP/SAVPF 0 96

        a=rtpmap:0 PCMU/8000

        a=rtpmap:96 opus/48000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

    </sdp>

</vvoip:vvoipOffer>


6.6.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOffer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <sdp xml:space="preserve">

        v=0

        o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

        s=

        t=0 0

        c=IN IP4 192.0.2.30

        a=ice-pwd:asd88fgpdd777uzjYhagZg

        a=ice-ufrag:8hhY

        a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

        m=audio 10000 RTP/SAVPF 0 96

        a=rtpmap:0 PCMU/8000

        a=rtpmap:96 opus/48000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

    </sdp>

    <mediaIndicator>

        <type>Audio</type>

        <index>0</index>

        <payload>

            <payloadType>0</payloadType>

            <encoding>PCMU</encoding>

        </payload>

        <payload>

            <payloadType>96</payloadType>

            <encoding>opus</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

</vvoip:vvoipOffer>


6.6.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.6.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.7 Resource: Most recent answer in an audio and/or video session
The resource used is: 

http://{serverRoot}/vvoip/{apiVersion/{userId}/sessions/{sessionId}/answer
This resource represents the most recent answer in a VVoIP session. This resource does not exist in the initial stages in the lifecycle of a session when an answer has not yet been received.

6.7.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the VVoIP session

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.7.3 GET

This operation is used to read the most recent answer in a VVoIP session.

6.7.3.1 Example: Reading most recent answer in a VVoIP session
(Informative)

6.7.3.1.1 Request

	GET /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/answer HTTP/1.1

Accept: application/xml

Host: example.com 


6.7.3.1.2 Response
The answer in the example below corresponds e.g. to the offer in section 6.3.5.1. 
	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipAnswer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <isProvisional>false</isProvisional>

    <sdp xml:space="preserve">

        v=0

        o=bob_via_gw 2808844564 2808844564 IN IP4 192.0.2.1

        s=

        t=0 0

        c=IN IP4 192.0.2.1

        a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

        a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

        a=ice-ufrag:9uB6

        a=ice-lite

        m=audio 20000 RTP/SAVPF 0

        a=rtpmap:0 PCMU/8000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

        a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host

    </sdp>

    <mediaIndicator>

        <type>Audio</type>

        <index>0</index>

        <payload>

            <payloadType>0</payloadType>

            <encoding>PCMU</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

</vvoip:vvoipAnswer>


6.7.4 PUT
This operation is used to provide an answer to an offer, such as a session invitation (initial offer) or session modification (update offer).

200 OK and 204 No Content are valid success responses.

6.7.4.1 Example: Providing an answer to an offer
(Informative)

6.7.4.1.1 Request
The answer in this example corresponds e.g. to the offer in section 6.3.5.3.
	PUT /exampleAPI/vvoip/v1/tel%3A%2B19585550101/sessions/sess001/answer HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipAnswer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <isProvisional>false</isProvisional>

    <sdp xml:space="preserve">

        v=0

        o=bob_via_gw 2808844564 2808844565 IN IP4 192.0.2.1

        s=

        t=0 0

        c=IN IP4 192.0.2.1

        a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

        a=ice-ufrag:9uB6

        a=ice-lite

        a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

        m=audio 20000 RTP/SAVPF 0

        a=rtpmap:0 PCMU/8000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

        a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host

        m=video 20200 RTP/SAVPF 97

        a=rtpmap:97 H264/90000

        a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 192.0.2.1 20200 typ host

        a=candidate:1 2 UDP 2130706430 192.0.2.1 20201 typ host

    </sdp>

</vvoip:vvoipAnswer>


6.7.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipAnswer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <isProvisional>false</isProvisional>

    <sdp xml:space="preserve">

        v=0

        o=bob_via_gw 2808844564 2808844565 IN IP4 192.0.2.1

        s=

        t=0 0

        c=IN IP4 192.0.2.1

        a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

        a=ice-ufrag:9uB6

        a=ice-lite

        a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

        m=audio 20000 RTP/SAVPF 0

        a=rtpmap:0 PCMU/8000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

        a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host

        m=video 20200 RTP/SAVPF 97

        a=rtpmap:97 H264/90000

        a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 192.0.2.1 20200 typ host

        a=candidate:1 2 UDP 2130706430 192.0.2.1 20201 typ host

    </sdp>

    <mediaIndicator>

        <type>Audio</type>

        <index>0</index>

        <payload>

            <payloadType>0</payloadType>

            <encoding>PCMU</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

    <mediaIndicator>

        <type>Video</type>

        <index>1</index>

        <payload>

            <payloadType>97</payloadType>

            <encoding>H264</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>
</vvoip:vvoipAnswer>



6.7.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.8 Resource: Update offer in an audio and/or video session
The resource used is: 

http://{serverRoot}/vvoip/{apiVersion/{userId}/sessions/{sessionId}/update
This resource represents the most recent unanswered update offer in the VVoIP session. The content of this resource is moved to the sibling “offer” resource once an answer has been received for this offer.

6.8.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the VVoIP session

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.8.3 GET
This operation is used to read the update offer in a VVoIP session.

6.8.3.1 Example: Reading the update offer in a VVoIP session
(Informative)

6.8.3.1.1 Request

	GET /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Accept: application/xml

Host: example.com 


6.8.3.1.2 Response
The update offer in this example updates an audio-only session (e.g. section 6.3.5.1) with video.
	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOffer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <sdp xml:space="preserve">

        v=0

        o=alices_browser 2890844526 2890842808 IN IP4 10.0.1.1

        s=

        t=0 0

        c=IN IP4 192.0.2.30

        a=ice-pwd:asd88fgpdd777uzjYhagZg

        a=ice-ufrag:8hhY

        a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

        m=audio 10000 RTP/SAVPF 0

        a=rtpmap:0 PCMU/8000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        m=video 10100 RTP/SAVPF 97 98

        a=rtpmap:97 H264/90000

        a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

        a=rtpmap:98 VP8/90000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

    </sdp>

    <mediaIndicator>

        <type>Audio</type>

        <index>0</index>

        <payload>

            <payloadType>0</payloadType>

            <encoding>PCMU</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

    <mediaIndicator>

        <type>Video</type>

        <index>1</index>

        <payload>

            <payloadType>97</payloadType>

            <encoding>H264</encoding>

        </payload>

        <payload>

            <payloadType>98</payloadType>

            <encoding>VP8</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

</vvoip:vvoipOffer>



6.8.4 PUT
This operation is used to provide an update offer in a VVoIP session.

200 OK and 204 No Content are valid success responses.

6.8.4.1 Example: Initiating an update offer in a VVoIP session to upgrade from audio-only to audio+video
(Informative)

Note that the “upgrade” semantics is only visible in the SDP which in a typical WebRTC deployment has been emitted by the browser and is merely passed to the involved network elements using this API. Hence, active control of the streams involved in a session is achieved using the WebRTC APIs in the browser, not this API. 
6.8.4.1.1 Request

	PUT /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOffer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <sdp xml:space="preserve">

        v=0

        o=alices_browser 2890844526 2890842808 IN IP4 10.0.1.1

        s=

        t=0 0

        c=IN IP4 192.0.2.30

        a=ice-pwd:asd88fgpdd777uzjYhagZg

        a=ice-ufrag:8hhY

        a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

        m=audio 10000 RTP/SAVPF 0

        a=rtpmap:0 PCMU/8000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        m=video 10100 RTP/SAVPF 97 98

        a=rtpmap:97 H264/90000

        a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

        a=rtpmap:98 VP8/90000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

    </sdp>

</vvoip:vvoipOffer>


6.8.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOffer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <sdp xml:space="preserve">

        v=0

        o=alices_browser 2890844526 2890842808 IN IP4 10.0.1.1

        s=

        t=0 0

        c=IN IP4 192.0.2.30

        a=ice-pwd:asd88fgpdd777uzjYhagZg

        a=ice-ufrag:8hhY

        a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

        m=audio 10000 RTP/SAVPF 0

        a=rtpmap:0 PCMU/8000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        m=video 10100 RTP/SAVPF 97 98

        a=rtpmap:97 H264/90000

        a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

        a=rtpmap:98 VP8/90000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

    </sdp>

    <mediaIndicator>

        <type>Audio</type>

        <index>0</index>

        <payload>

            <payloadType>0</payloadType>

            <encoding>PCMU</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

    <mediaIndicator>

        <type>Video</type>

        <index>1</index>

        <payload>

            <payloadType>97</payloadType>

            <encoding>H264</encoding>

        </payload>

        <payload>

            <payloadType>98</payloadType>

            <encoding>VP8</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

</vvoip:vvoipOffer>



6.8.4.2 Example: Initiating an update offer in a VVoIP session to downgrade from audio+video to audio-only
(Informative)
Note that the “downgrade” semantics is only visible in the SDP which in a typical WebRTC deployment has been emitted by the browser and is merely passed to the involved network elements using this API. Hence, active control of the streams involved in a session is achieved using the WebRTC APIs in the browser, not this API. 
6.8.4.2.1 Request

	PUT /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOffer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <sdp xml:space="preserve">

        v=0

        o=alices_browser 2890844526 2890842809 IN IP4 10.0.1.1

        s=

        t=0 0

        c=IN IP4 192.0.2.30

        a=ice-pwd:asd88fgpdd777uzjYhagZg

        a=ice-ufrag:8hhY

        a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

        m=audio 10000 RTP/SAVPF 0 

        a=rtpmap:0 PCMU/8000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        m=video 0 RTP/SAVPF 97 

        a=rtpmap:97 H264/90000

        a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

    </sdp>

</vvoip:vvoipOffer>


6.8.4.2.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOffer xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <sdp xml:space="preserve">

        v=0

        o=alices_browser 2890844526 2890842809 IN IP4 10.0.1.1

        s=

        t=0 0

        c=IN IP4 192.0.2.30

        a=ice-pwd:asd88fgpdd777uzjYhagZg

        a=ice-ufrag:8hhY

        a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

        m=audio 10000 RTP/SAVPF 0 

        a=rtpmap:0 PCMU/8000

        a=sendrecv

        a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

        a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

        a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

        a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        m=video 0 RTP/SAVPF 97 

        a=rtpmap:97 H264/90000

        a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

    </sdp>

    <mediaIndicator>

        <type>Audio</type>

        <index>0</index>

        <payload>

            <payloadType>0</payloadType>

            <encoding>PCMU</encoding>

        </payload>

        <direction>SendRecv</direction>

    </mediaIndicator>

</vvoip:vvoipOffer>


6.8.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].

6.8.6 DELETE

This operation is used by the Update Originator to cancel an update offer, and by the Update Recipient to decline an update offer.
6.8.6.1 Example: Cancelling or declining a VVoIP update 
(Informative)
6.8.6.1.1 Request

	DELETE /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Accept: application/xml

Host: example.com


6.8.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT


6.9 Resource: ICE status
The resource used is: 

http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
This resource represents the status of the ICE connectivity checks for the VVoIP session.


6.9.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the VVoIP session

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.9.3 GET
This operation is used to retrieve the ICE status of the VVoIP session.
6.9.3.1 Example: Reading the ICE status of a VVoIP session
(Informative)

6.9.3.1.1 Request

	GET /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/ice/status HTTP/1.1

Accept: application/xml

Host: example.com 


6.9.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipIceStatus xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <status>New</status>

</vvoip:vvoipIceStatus>


6.9.4 PUT
This operation is used for updating the ICE status of the VVoIP session.
200 OK and 204 No Content are valid success responses.
6.9.4.1 Example: Initiating an update offer in a VVoIP session to upgrade from audio-only to audio+video
(Informative)

Note that the “upgrade” semantics is only visible in the SDP which in a typical WebRTC deployment has been emitted by the browser and is merely passed to the involved network elements using this API. Hence, active control of the streams involved in a session is achieved using the WebRTC APIs in the browser, not this API. 
6.9.4.1.1 Request

	PUT /exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/ice/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com 

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipIceStatus xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <status>Connected</status>

</vvoip:vvoipIceStatus>


6.9.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipIceStatus xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <status>Connected</status>

</vvoip:vvoipIceStatus>


6.9.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC 2616].

6.10 Resource: List of own ICE candidates
Ed. Note: Trickle ICE support in this version of the specification  is FFS.

The resource used is: 

http://{serverRoot}/vvoip/{apiVersion}/{userId}/sessions/{sessionId}/ice/candidates 
This resource is used for [descriptive explanation of the resource].


6.10.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL. 
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use.  The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the VVoIP session

	


See section 6 for a statement on the escaping of reserved characters in URL variables.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.10.3 GET
[add stuff]
6.10.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

6.10.5 POST
[add stuff]
6.10.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].

6.11 Resource: Client notification about audio and/or video session events
This resource is a callback URL provided by the client for notifications about VVoIP session event notifications.

The RESTful VVoIP API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.11.5.

To VVoIP event notifications, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/vvoip/{apiVersion}/{userId}/sessions

	Cancelled
	VvoipEventNotification
	Participant, Update Recipient
	n/a
	VvoipSession
	/{sessionId}

	SessionEnded
	VvoipEventNotification
	Participants
	n/a
	VvoipSession
	/{sessionId}

	Declined
	VvoipEventNotification
	Originator, Update Originator
	n/a
	VvoipSession
	/{sessionId}

	NoAnswer
	VvoipEventNotification
	Originator
	n/a
	VvoipSession
	{sessionId}

	NotReachable
	VvoipEventNotification
	Originator
	n/a
	VvoipSession
	/{sessionId}

	Alerting
	VvoipEventNotification
	Originator
	n/a
	VvoipSession
	/{sessionId}

	Busy
	VvoipEventNotification
	Originator
	n/a
	VvoipSession
	/{sessionId}



6.11.1 Request URL variables

Client provided if any.

	
	

	
	

	
	

	



6.11.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.11.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.11.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.11.5 POST
This operation is used to notify the client about VVoIP session events.
6.11.5.1 Example: Notify a client about the “Alerting” VVoIP session event
(Informative)
6.11.5.1.1 Request

	POST /vvoip/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipEventNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="VvoipSession"

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001"/>

    <link rel="VvoipNotificationSubscription" 

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

    <eventType>Ringing</eventType>

    <eventDescription>The called party is being alerted.</eventDescription>

</vvoip:vvoipEventNotification>


6.11.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT



6.11.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.12 Resource: Client notification about audio and/or video session invitation
This resource is a callback URL provided by the client for notifications about VVoIP session invitations.

The RESTful VVoIP API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.12.5.

To VVoIP session invitation notifications, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/vvoip/{apiVersion}/{userId}/sessions

	n/a
	VvoipSessionInvitationNotification
	Terminating Participant
	accept (6.5.4)

decline (6.4.6)
	VvoipSession
	/{sessionId}


The resource URL of the resource representing the underlying VVoIP session is passed in the “href” attribute of the “link” element with rel=”VvoipSession”.

To accept the session invitation request, the application of the Receiver MUST update the status of the session as defined in section 6.5.4. The status is represented by the child “/status” of the resource representing the VVoIP session. 

To decline the session invitation request, the application of the Receiver MUST destroy the resource representing the underlying VVoIP session as defined in section 6.4.6.

6.12.1 Request URL variables

Client provided if any.

	
	

	
	

	
	

	



6.12.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.12.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.12.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.12.5 POST
This operation is used to notify the client about VVoIP session invitations.
6.12.5.1 Example: Notify a client about a VVoIP session invitation
(Informative)
6.12.5.1.1 Request

	POST /vvoip/notifications/88888 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-bob.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSessionInvitationNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="VvoipSession"

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550101/sessions/sess002"/>

    <link rel="VvoipNotificationSubscription" 

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550101/subscriptions/sub002"/>

    <originatorAddress>tel:+19585550100</originatorAddress>

    <originatorName>Alice</originatorName>

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842807 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 96

            a=rtpmap:0 PCMU/8000

            a=rtpmap:96 opus/48000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <payload>

                <payloadType>96</payloadType>

                <encoding>opus</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </offer>

</vvoip:vvoipSessionInvitationNotification>


6.12.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT


6.12.5.2 Example: Notify a client about a VVoIP session invitation without offer (aka offerless invite)
(Informative)
6.12.5.2.1 Request

	POST /vvoip/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSessionInvitationNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="VvoipSession"

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess002"/>

    <link rel="VvoipNotificationSubscription" 

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

    <originatorAddress>tel:+19585550101</originatorAddress>

    <originatorName>Alice</originatorName>

    <tParticipantAddress>tel:+19585550101</tParticipantAddress>

    <tParticipantName>Bob</tParticipantName>

</vvoip:vvoipSessionInvitationNotification>


6.12.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT


 
6.12.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.13 Resource: Client notification about acceptance of audio and/or video session invitation or session update
This resource is a callback URL provided by the client for notifications about the acceptance of session invitations or session updates.

The RESTful VVoIP API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.13.5.
To VVoIP session invitation / update acceptance notifications, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/vvoip/{apiVersion}/{userId}/sessions

	n/a
	VvoipAcceptanceNotification
	Originator
	n/a
	VvoipSession
	/{sessionId}


The resource URL of the resource representing the underlying VVoIP session is passed in the “href” attribute of the “link” element with rel=”VvoipSession”.
The accepted offer can be found in the “offer” child element of the session referenced by the above link.
The notification includes an “answer” child element if an answer was provided by the underlying network as part of declaring acceptance. Note that an answer can also be sent earlier than declaring acceptance; in such a case the notification does not include an “answer” child element.  The “answer” child MUST also be available in the session resource referenced from the notification, regardless of whether or not it has been embedded in the notification. 

6.13.1 Request URL variables

Client provided if any.

	
	

	
	

	
	

	



6.13.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.13.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.13.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.13.5 POST
This operation is used to notify the client about VVoIP session invitation / session update acceptance.
6.13.5.1 Example: Notify a client about VVoIP session invitation/update acceptance, including answer
(Informative)
6.13.5.1.1 Request

	POST /vvoip/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipAcceptanceNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="VvoipSession"

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001"/>

    <link rel="VvoipNotificationSubscription" 

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

    <answer>

        <isProvisional>false</isProvisional>

        <sdp xml:space="preserve">

            v=0

            o=bob_via_gw 2808844564 2808844564 IN IP4 192.0.2.1

            s=

            t=0 0

            c=IN IP4 192.0.2.1

            a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

            a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

            a=ice-ufrag:9uB6

            a=ice-lite

            m=audio 20000 RTP/SAVPF 0

            a=rtpmap:0 PCMU/8000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

            a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </answer>

</vvoip:vvoipAcceptanceNotification>


6.13.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT


6.13.5.2 Example: Notify a client about VVoIP session invitation/update acceptance, without answer
(Informative)
6.13.5.2.1 Request

	POST /vvoip/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipAcceptanceNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="VvoipSession"

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001"/>

    <link rel="VvoipNotificationSubscription" 

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

    <answer>

        <isProvisional>false</isProvisional>

        <sdp xml:space="preserve">

            v=0

            o=bob_via_gw 2808844564 2808844564 IN IP4 192.0.2.1

            s=

            t=0 0

            c=IN IP4 192.0.2.1

            a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

            a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

            a=ice-ufrag:9uB6

            a=ice-lite

            m=audio 20000 RTP/SAVPF 0

            a=rtpmap:0 PCMU/8000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

            a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </answer>

</vvoip:vvoipAcceptanceNotification>


6.13.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT


 
6.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.14 Resource: Client notification about update offer in a session
This resource is a callback URL provided by the client for notifications about update offers in a VVoIP session.
The RESTful VVoIP API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.14.5.
To VVoIP update offer notifications, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/vvoip/{apiVersion}/{userId}/sessions

	n/a
	VvoipOfferNotification
	Update Recipient
	accept (6.7.4)

decline (6.8.6)
	VvoipSession

	/{sessionId}



The resource URL of the resource representing the underlying VVoIP session is passed in the “href” attribute of the “link” element with rel=”VvoipSession”.
The application MUST either accept or decline the offer contained in the notification.

· To accept the offer, the application MUST create an answer, and update the “answer” object of the session as defined in section 6.7.4. The “answer” object of the session is represented by the child “answer” of the resource representing the VVoIP session. 

· To decline the offer, the application MUST destroy the resource representing the “update offer” object in the underlying VVoIP session as defined in section 6.8.6. The “update offer” object of the session is represented by the child “update” of the resource representing the VVoIP session.

6.14.1 Request URL variables

Client provided if any.

	
	

	
	

	
	

	



6.14.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.14.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.14.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.14.5 POST
This operation is used to notify the client about an update offer in a VVoIP session.
6.14.5.1 Example: Notify a client about an update offer in a VVoIP session, adding video
(Informative)
This example illustrates an update offer that adds video to an audio-only session. 
6.14.5.1.1 Request

	POST /vvoip/notifications/88888 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-bob.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOfferNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="VvoipSession"

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550101/sessions/sess002"/>

    <link rel="VvoipNotificationSubscription" 

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550101/subscriptions/sub002"/>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842808 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0

            a=rtpmap:0 PCMU/8000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

            m=video 10100 RTP/SAVPF 97 98

            a=rtpmap:97 H264/90000

            a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

            a=rtpmap:98 VP8/90000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

        <mediaIndicator>

            <type>Video</type>

            <index>1</index>

            <payload>

                <payloadType>97</payloadType>

                <encoding>H264</encoding>

            </payload>

            <payload>

                <payloadType>98</payloadType>

                <encoding>VP8</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </offer>

</vvoip:vvoipOfferNotification>


6.14.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT


6.14.5.2 Example: Notify a client about an update offer in a VVoIP session, removing video
(Informative)
This example illustrates an update offer that removes video from an audio/video session. 
6.14.5.2.1 Request

	POST /vvoip/notifications/88888 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-bob.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipOfferNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="VvoipSession"

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550101/sessions/sess002"/>

    <link rel="VvoipNotificationSubscription" 

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550101/subscriptions/sub002"/>

    <offer>

        <sdp xml:space="preserve">

            v=0

            o=alices_browser 2890844526 2890842809 IN IP4 10.0.1.1

            s=

            t=0 0

            c=IN IP4 192.0.2.30

            a=ice-pwd:asd88fgpdd777uzjYhagZg

            a=ice-ufrag:8hhY

            a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

            m=audio 10000 RTP/SAVPF 0 

            a=rtpmap:0 PCMU/8000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

            a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

            a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

            a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

            m=video 0 RTP/SAVPF 97 

            a=rtpmap:97 H264/90000

            a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </offer>

</vvoip:vvoipOfferNotification>


6.14.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT


 
6.14.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.15 Resource: Client notification about answer in a session
This resource is a callback URL provided by the client for notifications about answers in a VVoIP session.

The RESTful VVoIP API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.14.5.

To VVoIP answer notifications, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/vvoip/{apiVersion}/{userId}/sessions

	n/a
	VvoipAnswerNotification
	Originator,

Terminating Participant,

Update Originator
	n/a
	VvoipSession

	/{sessionId}



The resource URL of the resource representing the underlying VVoIP session is passed in the “href” attribute of the “link” element with rel=”VvoipSession”.
Depending on the actual flow, this notification may be sent to Originator (answer to a session invitation), Terminating Participant (answer to an offer in an offerless session invitation) or Update Originator (answer to an update offer).

The application needs to take notice of the state change of the session signalled by the answer. If the application runs in a web browser supporting WebRTC [W3C_WebRTC], this usually means to install the answer in the PeerConnection object representing the session.

6.15.1 Request URL variables

Client provided if any.
6.15.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.15.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.15.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.15.5 POST
This operation is used to notify the client about an update offer in a VVoIP session.
6.15.5.1 Example: Notify a client about an answer in a VVoIP session
(Informative)
6.15.5.1.1 Request

	POST /vvoip/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipAnswerNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="rel0" href="http://www.oxygenxml.com/"/>

    <answer>

        <isProvisional>false</isProvisional>

        <sdp xml:space="preserve">

            v=0

            o=bob_via_gw 2808844564 2808844565 IN IP4 192.0.2.1

            s=

            t=0 0

            c=IN IP4 192.0.2.1

            a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

            a=ice-ufrag:9uB6

            a=ice-lite

            a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

            m=audio 20000 RTP/SAVPF 0

            a=rtpmap:0 PCMU/8000

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

            a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host

            m=video 20200 RTP/SAVPF 97

            a=rtpmap:97 H264/90000

            a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

            a=sendrecv

            a=candidate:1 1 UDP 2130706431 192.0.2.1 20200 typ host

            a=candidate:1 2 UDP 2130706430 192.0.2.1 20201 typ host

        </sdp>

        <mediaIndicator>

            <type>Audio</type>

            <index>0</index>

            <payload>

                <payloadType>0</payloadType>

                <encoding>PCMU</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

        <mediaIndicator>

            <type>Video</type>

            <index>1</index>

            <payload>

                <payloadType>97</payloadType>

                <encoding>H264</encoding>

            </payload>

            <direction>SendRecv</direction>

        </mediaIndicator>

    </answer>

</vvoip:vvoipAnswerNotification>


6.15.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT


6.15.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.16 Resource: Client notification about ICE candidates
Ed. Note: Trickle ICE support in this version of the specification  is FFS.
This resource is a callback URL provided by the client for notifications about new ICE candidates.

The RESTful VVoIP API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.15.5.
[add table]
6.16.1 Request URL variables

Client provided if any.

	
	

	
	

	
	

	



6.16.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.16.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.16.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.16.5 POST
[add stuff]
6.16.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.17 Resource: Client notification about subscription cancellation
This resource is a callback URL provided by the client for notifications about subscription cancellation.

The RESTful VVoIP API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.16.5.
The notification is sent by the server to the user to whom the cancelled subscription belongs.

To VVoIP subscription cancellation notifications, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/vvoip/{apiVersion}/{userId}

	n/a
	VvoipSubscriptionCancellationNotification
	subscriber
	n/a
	VvoipNotificationSubscription
	/subscriptions/{subscriptionId}



6.17.1 Request URL variables

Client provided if any.

	
	

	
	

	
	

	



6.17.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.17.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.17.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.17.5 POST
This operation is used to notify the client about a cancelled subscription, e.g. due to expiry or an error.
6.17.5.1 Example: Notify a client about subscription cancellation
(Informative)
6.17.5.1.1 Request

	POST /vvoip/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipSubscriptionCancellationNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

<callbackData>abcd</callbackData>

<link rel="VvoipNotificationSubscription" 
      href="http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
</vvoip:vvoipSubscriptionCancellationNotification >


6.17.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT



6.17.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18 Resource: Client notification about conflicts
This resource is a callback URL provided by the client for notifications about conflicts.

The RESTful VVoIP API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.16.5.

To VVoIP conflict notifications, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/vvoip/{apiVersion}/{userId}/sessions

	n/a
	VvoipConflictNotification
	Depends
	n/a
	VvoipSession
VvoipOffer
	/{sessionId}
/{sessionId}/offer 
or
/{sessionId}/update 



The resource URL of the resource representing the underlying VVoIP session is passed in the “href” attribute of the “link” element with rel=”VvoipSession”.
A reference to the initial offer or update offer that needs to be rolled back to resolve the conflict is passed in the “href” attribute of the “link” element with rel=”VvoipOffer”.

6.18.1 Request URL variables

Client provided if any.

	
	

	
	

	
	

	



6.18.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Voice and Video over IP, see section 7.
6.18.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.18.5 POST
This operation is used to notify the client about a conflict that violates the offer-answer sequence rules. Such conflict is typically resolved by rolling back the offer that caused the conflict, which is referenced via a link from the notification. 
6.18.5.1 Example: Notify a client about a conflict
(Informative)
6.18.5.1.1 Request

	POST /vvoip/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application.example.com

<?xml version="1.0" encoding="UTF-8"?>

<vvoip:vvoipConflictNotification xmlns:vvoip="urn:oma:xml:rest:netapi:vvoip:1">

    <callbackData>abcd</callbackData>

    <link rel="VvoipSession"

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001"/>

    <link rel="VvoipOffer"

        href="http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/sessions/sess001/update"/>

    <link rel="VvoipNotificationSubscription" 

        href=" http://example.com/exampleAPI/vvoip/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

    <reason>

        <messageId>SVC1007</messageId>

        <text>Offer rejected due to conflict.</text>

    </reason>

</vvoip:vvoipConflictNotification>


6.18.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT



6.18.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful VVoIP API.
7.1.1 SVC1007: Offer rejected due to conflict
	Name
	Description

	MessageID
	SVC1007

	Text
	Offer rejected due to conflict

	Variables
	None

	HTTP status code(s)
	403 Forbidden


The offer-answer model mandates that there is at most one unanswered offer at any point in time during a session. The exception above is thrown if this constraint is violated by the client (e.g. by sending another offer while the answer to the previous offer is still pending), or if a race condition in the network has led to a violation of that constraint.
7.2 Policy Exceptions

<< This section provides details about Policy Exception type of faults specific for that particular API. Some APIs do have specific Policy Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Policy Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful VVoIP API.
<< If API has specific Policy Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s). 
Policy Exception code consists of a prefix “POL” followed by 4 digit code number.  
The original Policy Exception codes from the baseline product (if any) are included unchanged. 
For a new Policy Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful VVoIP API.
7.2.1 POL[code number]: [Text for exception header]
	Name
	Description

	MessageID
	POL[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”] 

	HTTP status code(s)
	[HTTP status code(s) where that particular Policy Exception code can be used with]


Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA


A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _VVoIP-V1_0
	26 March 2013
	ALL
	 First version based on OMA-ARC-2013-0029R01-INP_VVOIP_API_TS_baseline 

	
	07 May 2013
	2, 3, 5
	Incorporated OMA-ARC-REST-VVOIP-2013-0004-CR_References_Intro

	
	14 May 2013
	5.1
	Incorporated OMA-ARC-REST-VVOIP-2013-0005R01-CR_Resources_Methods

	
	22 May 2013
	5.1
	Incorporated OMA-ARC-REST-VVOIP-2013-0009-CR_VVOIP_TS_small_fixes

	
	05 June 2013
	Many
	Incorporated OMA-ARC-REST-VVOIP-2013-0006R03-CR_Data_structures

	
	02 July 2013
	5.1, 5.2
	Incorporated OMA-ARC-REST-VVOIP-2013-0012R01-CR_Ringing_indicator_TS

	
	15 July 2013
	Many
	Incorporated OMA-ARC-REST-VVOIP-2013-0008R01-CR_Flows 

	
	22 July 2013
	Many
	Incorporated OMA-ARC-REST-VVOIP-2013-0015R01-CR_More_Flows

	
	07 August 2013
	Many
	Incorporated CRs:

· OMA-ARC-REST-VVOIP-2013-0017-CR_Even_More_Flows
· OMA-ARC-REST-VVOIP-2013-0019R01-CR_Indicators
· OMA-ARC-VVOIP-2013-0020R01-CR_Final_Set_of_Flows

	
	09 Sept 2013
	5.1, 6
	Incorporated CR: OMA-ARC-REST-VVOIP-2013-0023-CR_Section_6_skeleton


Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.FUNCAREA Server

	Item
	Function
	Reference
	Requirement

	REST-FUNCAREA-SUPPORT-S-001-M
	Support for the RESTful [FuncArea]  API
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	


B.1.1 SCR for REST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]


<< If an Item is MANDATORY (-M) it has no requirement. 

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND” 

Example: optional resource with conditional GET and DELETE operations. Delete this comment and the following table.>>
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE 
	5.8.6
	


Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This specification does not define any API request based on application/x-www-form-urlencoded MIME type.

Appendix D. JSON examples 
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1  [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request: 
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]


Response: 

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]


Appendix E. Operations mapping to pre-existing baseline specifications 
(Informative)
As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight Resources
(Informative)

As this version of the specification does not define any Light-weight Resources, this appendix is empty.
Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty. Delete this comment. >>

<< If there are no Authorization aspects specified for the specs, the following wording is used. Delete this comment. >>
None specified in this version of the specification.

<< If there are Authorization aspects specified for the specs, the following wording is used. Delete this comment. >>
This appendix specifies how to use the RESTful Messaging API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful [FuncArea] API MAY support the authorization framework defined in [Autho4API_10].

A RESTful [FuncArea] API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common]; 

· SHALL conform to this section G.1. 

G.1.1 Scope values
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful [FuncArea] API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	[Scope value]
	[Scope value description] 
	[No/Yes]

	[Scope value]
	[Scope value description] 
	[No/Yes]

	<< Example - DELETE this and next two Rows>>

	oma_rest_messaging.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_messaging.in_regist
	Provide access to all defined operations on inbound messages using registration
	No


Table 2: Scope values for RESTful [FuncArea] API
G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_funcarea.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· [list of scope values]
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful [FuncArea] API map to the REST resources and methods of this API. In these tables, the root “oma_rest_funcarea.” of scope values is omitted for readability reasons.
<< Note: this part of the TS uses a landscape layout, started and terminated by a section break.  Delete this comment. >>
	Resource
	URL
Base URL: 

http://{serverRoot}/Functional Area/{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	[Description of the resource]
	[URL for the resource]
	[Section refrerence]
	[supported scope value(s)] 
	[supported scope value(s)]
	[supported scope value(s)]
	[supported scope value(s)]

	<< Example below - DELETE this and the following Row>>

	Inbound messages for a given registration
	/inbound/registrations/{registrationId}/messages
	6.1
	all_{apiVersion}
or 

in_regist
	n/a
	n/a
	n/a


Table 3: Required scope values for: [text describing function(s) associated with that particular scope values] 

G.1.2 Use of ‘acr:auth’

<< Some APIs do have user identifiers in resource URL that could be a subject for ‘acr:Authirization’, some don’t have. Pick the right text block. Delete this comment. >>

<<If there are no user identifiers candidate for ‘acr:Authorization’, the following wording is used. Delete this comment. >>

As this version of the specification does not define any parameter that could be a candidate for ‘acr:Authorization’, this appendix is empty

<< The text below is a blueprint of Appendix G.1.2 if there are user identifiers candidate for ‘acr:Authorization’. Delete this comment. >>
This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘Authorization’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of a {senderAddress} replace/adapt “senderAddress” with a variable name of end user identifier which is a candidate for acr:auth. If multiple identifiers are candidate they shall be separated by comma. when the the RESTful [FuncArea] API is used in combination with [Autho4API_10].
In the case the RESTful [FuncArea] API supports [Autho4API_10], the server:

· SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {senderAddress} replace/adapt “senderAddress” with a name of end user identifier which is a candidate for acr:auth. If multiple identifiers are candidate they shall be separated by comma.
· SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:auth’.
Appendix H. SIP mapping
(Informative)

This appendix describes how an implementation can map the REST requests to SIP. Apart from giving some guidance to Server developers, this appendix also provides rationale for some of the API designs. As the flows below give implementation examples, the appendix is informative.
The flows in the sections below contain messages and participants that are defined in this specification, as well as those that are not defined in this specification, but that show the interworking with external components and systems. The legend below introduces the graphical styles used to distinguish between these categories.

[image: image22.emf]
Figure 17: Legend for the sequence diagrams
H.1 Session set-up with ICE from Originator’s point of view

The flows in this section assume that the Originator needs to use ICE in order to set up the connectivity for the media streams. The flows further assume that the media streames are anchored at a media gateway, rather than going peer-to-peer. 

As the ICE procedures consume some time and may even fail, it is important that the Terminating Participant is not alerted before the ICE procedures have finished. Different options to achieve this are elaborated in this section. Essentially, there are two basic mechanisms: either to delay the INVITE, or to instruct the Terminating Participant not to alert the user until in both cases ICE has finished at the originator’s end. Sections H.1.1 - H.1.3 provide realizations of the first mechanism whereas section H.1.4 provides a realization of the second. 
The section assumes familiarity with the procedures defined in [RFC3261], [RFC3262], [RFC3312] and [RFC5245] and their use with the offer-answer model.

H.1.1 Call set-up with ICE: Delaying the INVITE in the Originator’s Server without provisional response from Terminating Participant

In this configuration, the Originator’s server cannot assume that the Terminating Participant’s terminal supports preconditions [RFC3312]. To avoid ghost rings [RFC5245], the server therefore synthesizes a provisional answer towards the Originator. Note that this approach works with the VVoIP API as this API supports provisional answers as defined in JSEP. It would be bad practice to use this pattern when SIP would be used as the communication protocol between Server and Application, as in SIP it is good practice to run offers and answers end to end.
Note that in the flow below, the Terminating Participant does not have to run the ICE procedures; therefore no provisional response is returned to the Originator, but the INVITE is responded to immediately with “Ringing” followed by “OK”.

The flow can be mapped to the second alternative in section 5.3.3.

[image: image23.png]
Figure 18: Call set-up with ICE: Delaying the INVITE in the Server without provisional response from Terminating Participant
H.1.2 Call set-up with ICE: Delaying the INVITE in the Originator’s Server with provisional response from Terminating Participant, sent reliably
Similar to the section above, the Originator’s server cannot assume that the Terminating Participant’s terminal supports preconditions [RFC3312]. To avoid ghost rings [RFC5245], the server therefore synthesizes a provisional answer towards the Originator. 
However, this flow shows an alternative for the steps in the answer phase: The Terminating Participant is assumed to send a provisional response reliably, e.g. to inform the Originator that it has to run ICE procedures locally and therefore has delayed the ringing.

As the answer is sent in a provisional response reliably, there is no answer in step 8.

The flow can be mapped to the first alternative in section 5.3.3.

[image: image25.png]
Figure 19: Call set-up with ICE: Delaying the INVITE in the Server with provisional response from Terminating Participant, sent reliably

H.1.3 Call set-up with ICE: Delaying the INVITE in the Originator’s Server with provisional response from Terminating Participant, sent non-reliably

This section is similar to the section above, with the difference that the provisional response is sent unreliably. Therefore, it must be repeated in step 6.

The flow below shows again an alternative for the steps in the answering phase in section H.1.1.
The flow has no direct correspondence in section 5.3.3, but could be realized as a synthesis of alternatives 1 and 2.
[image: image27.png]
Figure 20: Call set-up with ICE: Delaying the INVITE in the Server with provisional response from Terminating Participant, sent non-reliably

H.1.4 Call set-up with ICE: Originator is using SIP preconditions
The approach in the sections above has a performance penalty when the application of the Terminating Participant also needs to run ICE as part of the call set-up. The reason is that the INVITE will only arrive at the Terminating Participant once the Originator has finished its ICE procedures, thereby delaying the start of the ICE procedures at the Terminating Participant until that time. Note that with the signalling alternative provided here, ICE could run in parallel at both ends.
The idea is to instruct the Terminating Participant to delay alerting the user until certain preconditions (in this case the availability of connectivity) are met at the Originator’s side. These preconditions [RFC3312] are declared in the INVITE, and then updated using an offer-answer pair managed by the Server.

From the VVoIP API point of view, this flow corresponds to alternative 1 in section 5.3.3.

[image: image29.png]
Figure 21: Call set-up with ICE: Using SIP preconditions
H.2 Session set-up with ICE from Terminating Participant’s point of view

When the Terminating Participant’s application receives a session Invitation Notification, it will need to successfully run the ICE procedures before it can alert the user. It therefore uses a provisional response (183 Session Progress) to indicate to the Originator that the session setup goes forward silently, and to provide the answer which the Originator needs to possibly set up his own media channels.

H.2.1 Session set-up with ICE from Terminating Participant’s point of view without SIP Preconditions
The following flow shows how the Terminating Participant’s application responds to a session invitation in case the Originator has not signaled any preconditions. 
[image: image31.png]
Figure 22: Session set-up with ICE from Terminating Participant’s point of view without SIP Preconditions
H.2.2 Session set-up with ICE from Terminating Participant’s point of view using SIP Preconditions

The following flow shows how the Terminating Participant’s application responds to a session invitation in which the Originator has signaled preconditions. With these preconditions, the originator requests the Terminating Participant to delay the alerting of the user until the Originator reports that the preconditions have been met (e.g. ICE checks have been succeeded, or QoS reservations have been granted).
[image: image32.png]
Figure 23 Session set-up with ICE from Terminating Participant’s point of view using SIP Preconditions
H.3  Handling of offerless invitations 

When the Terminating Participant’s application receives a session Invitation Notification without an offer, it needs to respond with an offer which can then be used by the network to invite a second Terminating Participant and connect both of them. Such scenario is called third-party call control (3PCC).  

The figure below depicts a possible mapping of the flow in section 5.3.6 to SIP.
[image: image34.png]
Figure 24: Handling of offerless invitations
H.4 Handling of session updates

Session updates follow the offer-answer model. For elaborations on using the offer-answer with SIP, see [RFC6337].
H.4.1 Handling of session updates by the Update Originator

The following flow shows how the Update Originator’s application handles session updates, related to section 5.3.9.

[image: image36.emf]
Figure 24: Handling of session updates by the Update Originator
H.4.2 Handling of session updates by the Update Recipient
The following flow shows how the Update Originator’s application handles session updates, related to section 5.3.10.
[image: image37.png]
Figure 25: Handling of session updates by the Update Recipient
( 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20130101-I]
( 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20130101-I]

