OMA-TS-REST_NetAPI_WebRTCSignaling-V1_0-20140114-D
Page 7 V(176)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for WebRTC Signaling

	Draft Version 1.0 – 14 January 2014

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_WebRTCSignaling-V1_0-20140114-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

181.
Scope

2.
References
19
2.1
Normative References
19
2.2
Informative References
20
3.
Terminology and Conventions
21
3.1
Conventions
21
3.2
Definitions
21
3.3
Abbreviations
21
4.
Introduction
23
4.1
Version 1.0
23
5.
WebRTC Signaling API definition
24
5.1
Resources Summary
25
5.2
Data Types
31
5.2.1
XML Namespaces
31
5.2.2
Structures
31
5.2.2.1
Type: WrtcsSubscriptionList
31
5.2.2.2
Type: WrtcsNotificationSubscription
31
5.2.2.3
Type: WrtcsSession
32
5.2.2.4
Type: WrtcsAnswer
34
5.2.2.5
Type: WrtcsOffer
35
5.2.2.6
Type: MediaIndicator
36
5.2.2.7
Type: PayloadIndicator
37
5.2.2.8
Type: WrtcsIceStatus
37
5.2.2.9
Type: WrtcsSessionStatus
37
5.2.2.10
Type: WrtcsEventNotification
37
5.2.2.11
Type: WrtcsSessionInvitationNotification
38
5.2.2.12
Type: WrtcsAcceptanceNotification
38
5.2.2.13
Type: WrtcsOfferNotification
39
5.2.2.14
Type: WrtcsAnswerNotification
40
5.2.2.15
Type: WrtcsSubscriptionCancellationNotification
40
5.2.2.16
Type: WrtcsConflictNotification
40
5.2.3
Enumerations
41
5.2.3.1
Enumeration: EventType
41
5.2.3.2
Enumeration: SessionStatus
41
5.2.3.3
Enumeration: IceStatus
42
5.2.3.4
Enumeration: MediaType
42
5.2.3.5
Enumeration: MediaDirection
42
5.2.3.6
Enumeration: OfferAnswerType
43
5.2.4
Values of the Link “rel” attribute
43
5.3
Sequence Diagrams
43
5.3.1
Subscribing to and unsubscribing from WebRTC signaling notifications
44
5.3.2
Handling offers and answers
45
5.3.3
Normal signaling flow of a WebRTC session - Originator
47
5.3.4
Normal signaling flow of a WebRTC session – Terminating Participant
50
5.3.5
Signaling flow of a WebRTC session with delayed alerting
52
5.3.6
Signaling flow with an offerless session invitation
56
5.3.7
Signaling flow to cancel a WebRTC session invitation - Originator
58
5.3.8
Signaling flow to cancel a WebRTC session invitation – Terminating Participant
59
5.3.9
Signaling flow to reject a WebRTC session invitation – Terminating Participant
60
5.3.10
Signaling flow to reject a WebRTC session invitation - Originator
60
5.3.11
Signaling flow of a WebRTC session modification – Update Originator
61
5.3.12
Signaling flow of a WebRTC session modification – Update Recipient
63
5.3.13
Resolving an offer conflict
65
6.
Detailed specification of the resources
67
6.1
Resource: All subscriptions to WebRTC signaling notifications
67
6.1.1
Request URL variables
68
6.1.2
Response Codes and Error Handling
68
6.1.3
GET
68
6.1.3.1
Example: Reading all active subscriptions (Informative)
68
6.1.3.1.1
Request
68
6.1.3.1.2
Response
68
6.1.4
PUT
69
6.1.5
POST
69
6.1.5.1
Example: Creating a new subscription, response with copy of created resource (Informative)
69
6.1.5.1.1
Request
69
6.1.5.1.2
Response
69
6.1.5.2
Example: Creating a new subscription, response with location of created resource (Informative)
70
6.1.5.2.1
Request
70
6.1.5.2.2
Response
70
6.1.6
DELETE
70
6.2
Resource: Individual subscription to WebRTC signaling notifications
70
6.2.1
Request URL variables
71
6.2.2
Response Codes and Error Handling
71
6.2.3
GET
71
6.2.3.1
Example: Reading an individual subscription (Informative)
71
6.2.3.1.1
Request
71
6.2.3.1.2
Response
71
6.2.4
PUT
72
6.2.5
POST
72
6.2.6
DELETE
72
6.2.6.1
Example: Cancelling a subscription (Informative)
72
6.2.6.1.1
Request
72
6.2.6.1.2
Response
72
6.3
Resource: All WebRTC sessions
72
6.3.1
Request URL variables
72
6.3.2
Response Codes and Error Handling
73
6.3.3
GET
73
6.3.4
PUT
73
6.3.5
POST
73
6.3.5.1
Example: Creating a new WebRTC session – audio only, using tel URI (Informative)
73
6.3.5.1.1
Request
73
6.3.5.1.2
Response
74
6.3.5.2
Example: Creating a new WebRTC session – audio only, using SIP URI and encoding the SDP with base64 (Informative)
75
6.3.5.2.1
Request
75
6.3.5.2.2
Response
76
6.3.5.3
Example: Creating a new WebRTC session – audio and video, using ACR (Informative)
77
6.3.5.3.1
Request
77
6.3.5.3.2
Response
78
6.3.5.4
Example: Creating a new WebRTC session – audio and video, using acr:auth (Informative)
80
6.3.5.4.1
Request
80
6.3.5.4.2
Response
81
6.3.6
DELETE
83
6.4
Resource: Individual WebRTC session
83
6.4.1
Request URL variables
83
6.4.2
Response Codes and Error Handling
83
6.4.3
GET
83
6.4.3.1
Example: Retrieving WebRTC session information (Informative)
83
6.4.3.1.1
Request
83
6.4.3.1.2
Response
83
6.4.4
PUT
87
6.4.5
POST
87
6.4.6
DELETE
87
6.4.6.1
Example: Cancelling or terminating a WebRTC session, or declining a WebRTC session invitation (Informative)
87
6.4.6.1.1
Request
87
6.4.6.1.2
Response
87
6.5
Resource: Status of a WebRTC session
87
6.5.1
Request URL variables
87
6.5.2
Response Codes and Error Handling
88
6.5.3
GET
88
6.5.3.1
Example: Reading the status of a WebRTC session (Informative)
88
6.5.3.1.1
Request
88
6.5.3.1.2
Response
88
6.5.4
PUT
88
6.5.4.1
Example: Accepting a WebRTC session invitation (Informative)
88
6.5.4.1.1
Request
88
6.5.4.1.2
Response
89
6.5.4.2
Example: Indicating the alerting of the Terminating Participant (“Ringing”) (Informative)
89
6.5.4.2.1
Request
89
6.5.4.2.2
Response
89
6.5.5
POST
90
6.5.6
DELETE
90
6.6
Resource: Initial or most recent offer in a WebRTC session
90
6.6.1
Request URL variables
90
6.6.2
Response Codes and Error Handling
90
6.6.3
GET
90
6.6.3.1
Example: Reading initial or most recent offer in a WebRTC session (Informative)
91
6.6.3.1.1
Request
91
6.6.3.1.2
Response
91
6.6.4
PUT
92
6.6.4.1
Example: Providing an offer to an offerless session invitation (Informative)
92
6.6.4.1.1
Request
92
6.6.4.1.2
Response
93
6.6.5
POST
94
6.6.6
DELETE
94
6.7
Resource: Most recent answer in a WebRTC session
94
6.7.1
Request URL variables
94
6.7.2
Response Codes and Error Handling
94
6.7.3
GET
94
6.7.3.1
Example: Reading most recent answer in a WebRTC session (Informative)
94
6.7.3.1.1
Request
95
6.7.3.1.2
Response
95
6.7.4
PUT
96
6.7.4.1
Example: Providing an answer to an offer (Informative)
96
6.7.4.1.1
Request
96
6.7.4.1.2
Response
96
6.7.5
POST
97
6.7.6
DELETE
97
6.8
Resource: Update offer in a WebRTC session
98
6.8.1
Request URL variables
98
6.8.2
Response Codes and Error Handling
98
6.8.3
GET
98
6.8.3.1
Example: Reading the update offer in a WebRTC session (Informative)
98
6.8.3.1.1
Request
98
6.8.3.1.2
Response
98
6.8.4
PUT
100
6.8.4.1
Example: Initiating an update offer in a WebRTC session to upgrade from audio-only to audio+video (Informative)
100
6.8.4.1.1
Request
100
6.8.4.1.2
Response
101
6.8.4.2
Example: Initiating an update offer in a WebRTC session to downgrade from audio+video to audio-only (Informative)
102
6.8.4.2.1
Request
102
6.8.4.2.2
Response
103
6.8.5
POST
104
6.8.6
DELETE
104
6.8.6.1
Example: Cancelling or declining an update (Informative)
104
6.8.6.1.1
Request
104
6.8.6.1.2
Response
105
6.9
Resource: ICE status of a WebRTC session
105
6.9.1
Request URL variables
105
6.9.2
Response Codes and Error Handling
105
6.9.3
GET
105
6.9.3.1
Example: Reading the ICE status of a WebRTC session (Informative)
105
6.9.3.1.1
Request
105
6.9.3.1.2
Response
106
6.9.4
PUT
106
6.9.4.1
Example: Updating the ICE status of a WebRTC session (Informative)
106
6.9.4.1.1
Request
106
6.9.4.1.2
Response
106
6.9.5
POST
106
6.9.6
DELETE
107
6.10
Resource: Client notification about WebRTC signaling events
107
6.10.1
Request URL variables
108
6.10.2
Response Codes and Error Handling
108
6.10.3
GET
108
6.10.4
PUT
108
6.10.5
POST
108
6.10.5.1
Example: Notify a client about the “Ringing” event (Informative)
108
6.10.5.1.1
Request
108
6.10.5.1.2
Response
108
6.10.6
DELETE
109
6.11
Resource: Client notification about WebRTC session invitation
109
6.11.1
Request URL variables
109
6.11.2
Response Codes and Error Handling
110
6.11.3
GET
110
6.11.4
PUT
110
6.11.5
POST
110
6.11.5.1
Example: Notify a client about a WebRTC session invitation (Informative)
110
6.11.5.1.1
Request
110
6.11.5.1.2
Response
111
6.11.5.2
Example: Notify a client about a WebRTC session invitation without offer (aka offerless invite) (Informative)
111
6.11.5.2.1
Request
111
6.11.5.2.2
Response
112
6.11.6
DELETE
112
6.12
Resource: Client notification about session invitation acceptance or session update acceptance
112
6.12.1
Request URL variables
113
6.12.2
Response Codes and Error Handling
113
6.12.3
GET
113
6.12.4
PUT
113
6.12.5
POST
113
6.12.5.1
Example: Notify a client about session invitation acceptance / update acceptance, including answer (Informative)
113
6.12.5.1.1
Request
113
6.12.5.1.2
Response
114
6.12.5.2
Example: Notify a client about session invitation acceptance / update acceptance, without answer (Informative)
114
6.12.5.2.1
Request
114
6.12.5.2.2
Response
115
6.12.6
DELETE
115
6.13
Resource: Client notification about update offer in a WebRTC session
115
6.13.1
Request URL variables
115
6.13.2
Response Codes and Error Handling
116
6.13.3
GET
116
6.13.4
PUT
116
6.13.5
POST
116
6.13.5.1
Example: Notify a client about an update offer in a WebRTC session, adding video (Informative)
116
6.13.5.1.1
Request
116
6.13.5.1.2
Response
117
6.13.5.2
Example: Notify a client about an update offer in a WebRTC session, removing video (Informative)
118
6.13.5.2.1
Request
118
6.13.5.2.2
Response
119
6.13.6
DELETE
119
6.14
Resource: Client notification about answer in a WebRTC session
119
6.14.1
Request URL variables
120
6.14.2
Response Codes and Error Handling
120
6.14.3
GET
120
6.14.4
PUT
120
6.14.5
POST
120
6.14.5.1
Example: Notify a client about an answer in a WebRTC session (Informative)
120
6.14.5.1.1
Request
120
6.14.5.1.2
Response
121
6.14.6
DELETE
122
6.15
Resource: Client notification about subscription cancellation
122
6.15.1
Request URL variables
122
6.15.2
Response Codes and Error Handling
122
6.15.3
GET
122
6.15.4
PUT
122
6.15.5
POST
123
6.15.5.1
Example: Notify a client about subscription cancellation due to expiry (Informative)
123
6.15.5.1.1
Request
123
6.15.5.1.2
Response
123
6.15.5.2
Example: Notify a client about subscription cancellation due to an error (Informative)
123
6.15.5.2.1
Request
123
6.15.5.2.2
Response
123
6.15.6
DELETE
124
6.16
Resource: Client notification about conflicts
124
6.16.1
Request URL variables
124
6.16.2
Response Codes and Error Handling
124
6.16.3
GET
125
6.16.4
PUT
125
6.16.5
POST
125
6.16.5.1
Example: Notify a client about a conflict (Informative)
125
6.16.5.1.1
Request
125
6.16.5.1.2
Response
125
6.16.6
DELETE
125
7.
Fault definitions
126
7.1
Service Exceptions
126
7.1.1
SVC1007: Offer rejected due to conflict
126
7.2
Policy Exceptions
126
Appendix A.
Change History (Informative)
127
A.1
Approved Version History
127
A.2
Draft/Candidate Version 1.0 History
127
Appendix B.
Static Conformance Requirements (Normative)
129
B.1
SCR for REST.WRTCSIG Server
129
B.1.1
SCR for REST.WRTCSIG.Subscriptions Server
129
B.1.2
SCR for REST.WRTCSIG.IndSubscription Server
129
B.1.3
SCR for REST.WRTCSIG.Sessions Server
130
B.1.4
SCR for REST.WRTCSIG.IndSession Server
130
B.1.5
SCR for REST.WRTCSIG.IndSession.Status Server
130
B.1.6
SCR for REST.WRTCSIG.IndSession.Offer Server
130
B.1.7
SCR for REST.WRTCSIG.IndSession.Answer Server
131
B.1.8
SCR for REST.WRTCSIG.IndSession.Update Server
131
B.1.9
SCR for REST.WRTCSIG.IndSession.IceStatus Server
131
B.1.10
SCR for REST.WRTCSIG.Notifications.Event Server
132
B.1.11
SCR for REST.WRTCSIG.Notifications.Invite Server
132
B.1.12
SCR for REST.WRTCSIG.Notifications.Acceptance Server
132
B.1.13
SCR for REST.WRTCSIG.Notifications.Offer Server
132
B.1.14
SCR for REST.WRTCSIG.Notifications.Answer Server
132
B.1.15
SCR for REST.WRTCSIG.Notifications.SubscriptionCancellation Server
133
B.1.16
SCR for REST.WRTCSIG.Notifications.Conflict Server
133
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
134
Appendix D.
JSON examples (Informative)
135
D.1
Reading all active subscriptions (section 6.1.3.1)
135
D.2
Creating a new subscription, response with copy of created resource (section 6.1.5.1)
135
D.3
Creating a new subscription, response with location of created resource (section 6.1.5.2)
136
D.4
Reading an individual subscription (section 6.2.3.1)
137
D.5
Cancelling a subscription (section 6.2.6.1)
137
D.6
Creating a new WebRTC session – audio only, using tel URI (section 6.3.5.1)
138
D.7
Creating a new WebRTC session – audio only, using SIP URI and encoding the SDP with base64 (section 6.3.5.2)
139
D.8
Creating a new WebRTC session – audio and video, using ACR (section 6.3.5.3)
141
D.9
Creating a new WebRTC session – audio and video, using acr:auth (section 6.3.5.4)
143
D.10
Retrieving WebRTC session information (section 6.4.3.1)
145
D.11
Cancelling or terminating a WebRTC session, or declining a WebRTC session invitation (section 6.4.6.1)
148
D.12
Reading the status of a WebRTC session (section 6.5.3.1)
148
D.13
Accepting a WebRTC session invitation (section 6.5.4.1)
149
D.14
Indicating the alerting of the Terminating Participant (“Ringing”) (section 6.5.4.2)
149
D.15
Reading initial or most recent offer in a WebRTC session (section 6.6.3.1)
149
D.16
Providing an offer to an offerless session invitation (section 6.6.4.1)
150
D.17
Reading most recent answer in a WebRTC session (section 6.7.3.1)
152
D.18
Providing an answer to an offer (section 6.7.4.1)
153
D.19
Reading the update offer in a WebRTC session (section 6.8.3.1)
154
D.20
Initiating an update offer in a WebRTC session to upgrade from audio-only to audio+video (section 6.8.4.1)
156
D.21
Initiating an update offer in a WebRTC session to downgrade from audio+video to audio-only (section 6.8.4.2)
157
D.22
Cancelling or declining an update (section 6.8.6.1)
159
D.23
Reading the ICE status of a WebRTC session (section 6.9.3.1)
159
D.24
Updating the ICE status of a WebRTC session (section 6.9.4.1)
159
D.25
Notify a client about the “Ringing” event (section 6.10.5.1)
160
D.26
Notify a client about a WebRTC session invitation (section 6.11.5.1)
161
D.27
Notify a client about a WebRTC session invitation without offer (aka offerless invite) (section 6.11.5.2)
162
D.28
Notify a client about WebRTC session invitation acceptance / update acceptance, including answer (section 6.12.5.1)
162
D.29
Notify a client about WebRTC session invitation acceptance / update acceptance, without answer (section 6.12.5.2)
164
D.30
Notify a client about an update offer in a WebRTC session, adding video (section 6.13.5.1)
165
D.31
Notify a client about an update offer in a WebRTC session, removing video (section 6.13.5.2)
166
D.32
Notify a client about an answer in a WebRTC session (section 6.14.5.1)
167
D.33
Notify a client about subscription cancellation due to expiry (section 6.15.5.1)
169
D.34
Example: Notify a client about subscription cancellation due to an error (section 6.15.5.2)
169
D.35
Notify a client about a conflict (section 6.16.5.1)
170
Appendix E.
Operations mapping to pre-existing baseline specifications (Informative)
171
Appendix F.
Light-weight Resources (Informative)
172
Appendix G.
Authorization aspects (Normative)
173
G.1
Use with OMA Authorization Framework for Network APIs
173
G.1.1
Scope values
173
G.1.1.1
Definitions
173
G.1.1.2
Downscoping
173
G.1.1.3
Mapping with resources and methods
173
G.1.2
Use of ‘acr:auth’
174
Appendix H.
SIP mapping (Informative)
175
H.1
Session set-up with ICE from Originator’s point of view
175
H.1.1
Call set-up with ICE: Delaying the INVITE in the Originator’s server without provisional response from Terminating Participant
175
H.1.2
Call set-up with ICE: Delaying the INVITE in the Originator’s server with provisional response from Terminating Participant, sent reliably
176
H.1.3
Call set-up with ICE: Delaying the INVITE in the Originator’s server with provisional response from Terminating Participant, sent non-reliably
177
H.1.4
Call set-up with ICE: Originator is using SIP preconditions
178
H.2
Session set-up with ICE from Terminating Participant’s point of view
179
H.2.1
Session set-up with ICE from Terminating Participant’s point of view without SIP Preconditions
180
H.2.2
Session set-up with ICE from Terminating Participant’s point of view using SIP Preconditions
181
H.3
Handling of offerless invitations
183
H.4
Handling of session updates
183
H.4.1
Handling of session updates by the Update Originator
183
H.4.2
Handling of session updates by the Update Recipient
184

Figures

25Figure 1: Resource structure defined by this specification

45Figure 3: Subscribing to and unsubscribing from WebRTC signaling notifications

46Figure 4: Offer and answer handling

48Figure 5: WebRTC session signaling - Originator

51Figure 6: WebRTC session signaling – Terminating Participant

55Figure 7: Signaling flow of a WebRTC session with delayed alerting

57Figure 8: Signaling flow with an offerless session invitation

58Figure 9: Signaling flow to cancel a WebRTC session invitation - Originator

59Figure 10: Signaling flow to cancel a WebRTC session invitation– Terminating Participant

60Figure 11: Signaling flow to reject a WebRTC session invitation – Terminating Participant

61Figure 12: Signaling flow to reject a WebRTC session invitation - Originator

62Figure 13: Signaling flow of a WebRTC session modification – Update Originator

64Figure 14: Signaling flow of a WebRTC session modification – Update Recipient

66Figure 15: Resolving an offer conflict

175Figure 16: Legend for the sequence diagrams

176Figure 17: Call set-up with ICE: Delaying the INVITE in the server without provisional response from Terminating Participant

177Figure 18: Call set-up with ICE: Delaying the INVITE in the server with provisional response from Terminating Participant, sent reliably

178Figure 19: Call set-up with ICE: Delaying the INVITE in the server with provisional response from Terminating Participant, sent non-reliably

179Figure 20: Call set-up with ICE: Using SIP preconditions

180Figure 21: Session set-up with ICE from Terminating Participant’s point of view without SIP Preconditions

183Figure 22 Session set-up with ICE from Terminating Participant’s point of view using SIP Preconditions

183Figure 23: Handling of offerless invitations

184Figure 24: Handling of session updates by the Update Originator

185Figure 25: Handling of session updates by the Update Recipient

Tables

No table of figures entries found.
1. Scope

This specification defines a RESTful API for WebRTC Signaling using HTTP protocol bindings.
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, March 1, 2012, URL: http://tools.ietf.org/html/draft-uri-acr-extension-04
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[IETF_Msid_draft]
	“Cross Session Stream Identification in the Session Description Protocol”, H. Alvestrand, November 2013, URL: http://tools.ietf.org/html/draft-ietf-mmusic-msid-02
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[IETF_RTCWeb_JSEP]
	“Javascript Session Establishment Protocol”, J. Uberti, C. Jennings, October 22, 2013, http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-05
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[IETF_SCTP_SDP_draft]
	“Stream Control Transmission Protocol (SCTP)-Based Media Transport in the Session Description Protocol (SDP)”, S. Loreto and G. Camarillo, October 21, 2013, URL: http://tools.ietf.org/html/draft-ietf-mmusic-sctp-sdp-05
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[REQ_RCS_API]
	“Rich Communication Suite RCS API Detailed Requirements Version 2.3”, URL: http://www.gsma.com/rcs/wp-content/uploads/2012/10/RCS_API_requirements_v2_3.pdf/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_WRTCSig]
	“XML schema for the RESTful Network API for WebRTC Signaling”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_webrtcsignaling-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3264]
	“An Offer/Answer Model with the Session Description Protocol (SDP)”, J. Rosenberg and H. Schulzrinne, June 2002, URL: http://www.ietf.org/rfc/rfc3264.txt

	[RFC3388]
	“Grouping of Media Lines in the Session Description Protocol (SDP)”, G. Camarillo et al., December 2002, URL: http://www.ietf.org/rfc/rfc3388.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC4566]
	“SDP: Session Description Protocol”, M. Handley et al., July 2006, URL: http://www.ietf.org/rfc/rfc4566.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC5245]
	“Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols.”, J. Rosenberg, April 2010, URL: http://www.ietf.org/rfc/rfc5245.txt

	[RFC5888]
	“The Session Description Protocol (SDP) Grouping Framework”, G. Camarillo and H. Schulzrinne, June 2010, URL: http://www.ietf.org/rfc/rfc5888.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_WebRTC]
	WebRTC 1.0: Real-time Communication Between Browsers, W3C Working Draft, 21 August 2012, The World Wide Web Consortium, URL: http://www.w3.org/TR/webrtc/
Note: The referenced W3C draft is a work in progress, subject to change without notice.

	[XMLSchema1]
	W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures Second Edition, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-1/

	[XMLSchema2]
	W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[IETF_RTCWeb_Overview]
	“Overview: Real Time Protocols for Brower-based Applications”, H. Alvestrand, September 3, 20, 2013, URL: http://tools.ietf.org/html/draft-ietf-rtcweb-overview-08
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[IETF_RTCWeb_RTP]
	“Web Real-Time Communication (WebRTC): Media Transport and Use of RTP”, C. Perkins et al., October 21, 2013, URL: http://tools.ietf.org/html/draft-ietf-rtcweb-rtp-usage-10
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL: http://www.openmobilealliance.org/

	[RFC3261]
	“SIP: Session Initiation Protocol”, J. Rosenberg et al., June 2002, URL: http://www.ietf.org/rfc/rfc3261.txt

	[RFC3262]
	“Reliability of Provisional Responses in the Session Initiation Protocol (SIP)”, J. Rosenberg and H. Schulzrinne, June 2002, URL: http://www.ietf.org/rfc/rfc3262.txt

	[RFC3312]
	“Integration of Resource Management and Session Initiation Protocol (SIP)”, G. Camarillo et al., October 2002, URL: http://www.ietf.org/rfc/rfc3312.txt

	[RFC6337]
	“Session Initiation Protocol (SIP) Usage of the Offer/Answer Model”, S. Okumura et al., August 2011, URL: http://www.ietf.org/rfc/rfc6337.txt

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Originator
	The party that initiates a session.

	Participant
	A party that participates in a session, including the Originator.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

	Terminating Participant
	A Participant in a session that is not the Originator.

	Update Originator
	The Participant that requests an update of the session parameters.

	Update Recipient
	The Participant that receives an update request.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	CDATA
	Character Data

	HTTP
	HyperText Transfer Protocol

	ICE
	Interactive Connectivity Establishment

	IETF
	Internet Engineering Task Force

	IP
	Internet Protocol

	ISDN
	Integrated Services Digital Network

	JSEP
	Javascript Session Establishment Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	MSISDN
	Mobile Subscriber ISDN Number

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	RTCWeb
	Real-Time Communication on the Web

	SCR
	Static Conformance Requirements

	SDP
	Session Description Protocol

	SIP
	Session Initiation Protocol

	SRTP
	Secure Real-Time Transport Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	UTF
	Universal character set Transformation Format

	W3C
	World-Wide Web Consortium

	WebRTC
	Web Real-Time Communication

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for WebRTC Signaling contains HTTP protocol bindings for WebRTC Signaling functionality, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Managing subscriptions to event notifications related to WebRTC Signaling
· Creating and terminating WebRTC sessions

· Inviting a party to a WebRTC session, accepting, cancelling and rejecting such a session invitation
· Indicating that the invited party is being alerted (“Ringing”)

· Updating a WebRTC session, accepting, cancelling and rejecting session update requests

· Retrieving information about WebRTC sessions

· Retrieving and updating the ICE status of a session

· Sending and receiving event notifications related to WebRTC sessions
In addition, this specification provides:

· Support for scope values used with the authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in an ACR
5. WebRTC Signaling API definition
This section is organized to support a comprehensive understanding of the WebRTC Signaling API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
This Network API provides a method for the signaling of voice and video sessions over IP under the assumption that the applications which use this signaling are aligned with JSEP [IETF_RTCWeb_JSEP], e.g. as specified by WebRTC [W3C_WebRTC] which defines a Javascript API for use in the web browser. RTCWeb/WebRTC is a suite of IETF and W3C standards (see e.g. [IETF_RTCWeb_Overview]) primarily developed to allow web browsers to act as end points (source and/or sink) of real-time media (containing audio, video, and data channels) in a peer-to-peer fashion, or to communicate with another entity such as a media gateway or a media application. Media streams are transmitted over SRTP [IETF_RTCWeb_RTP].
The IETF RTCWeb specifications fully define how the media are transmitted. However, they do only partially specify the signaling [IETF_RTCWeb_JSEP]. In particular, JSEP requires SDP [RFC4566] to be used to describe the media streams involved in the session, and the offer-answer model [RFC3264] to negotiate the media. The offer-answer model mandates that an offer from one end point is followed by an answer from the other end point, after which a new offer can be initiated by any of the end points. Any other sequence (e.g. an answer followed by an answer) is considered a conflict. On top of the offer/answer model, JSEP introduces the concept of a provisional answer (“pranswer”) which adds states to the offer-answer state machine (see [W3C_WebRTC] for a graphical representation). The concept of provisional answers is helpful in situations when the server needs to send multiple answers to the application. Provisional answers are also useful when the server would have to otherwise convert an offer into an answer (and vice versa) as part of its mediation role (see H.1.4 for an example). Finally, JSEP uses ICE [RFC5245] to penetrate firewalls.

The above three items defined in JSEP (i.e. SDP, offer/answer with the additional pranswer state and ICE) determine which information needs to be provided by the application to the WebRTC endpoint (usually the browser), and by the WebRTC endpoint to the application, in order to set up the end point for a communication session. It is however not specified how this information is transmitted from one endpoint to the other. This gap is covered by the present specification, which defines a RESTful Network API that allows a web application (e.g. a JavaScript running in a WebRTC-enabled browser) to signal a video and/or voice session over IP with another communication endpoint in the network.

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body, while JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.
Appendix B provides the Static Conformance Requirements (SCR).
Appendix C provides application/x-www-form-urlencoded examples, where applicable.
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all Light-weight Resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Appendix H contains additional flows which illustrate mappings between REST requests and SIP protocol messages.

Note: Throughout this document, client and application, audio and voice, as well as WebRTC and RTCWeb, can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for WebRTC Signaling.
The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.
[image: image2.png]IAserverRoot}webrtcsignaling/{apiVersion}{userld}

=
=1

Figure 1: Resource structure defined by this specification
The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Purpose: To allow client to manage subscriptions for notifications of new WebRTC sessions or changes to existing sessions
	Resource
	URL
Base URL:
http://{serverRoot}/webrtcsignaling/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to WebRTC signaling notifications
	/{userId}/subscriptions
	WrtcsSubscriptionList
(Used for GET)

WrtcsNotificationSubscription
(Used for POST)

common:ResourceReference (optional alternative for POST response)
	Retrieves the list of active WebRTC Signaling notification subscriptions
	no
	Creates a new subscription for notification for audio and/or video sessions
	no

	Individual subscription to WebRTC signaling notifications
	/{userId}/subscriptions/{subscriptionId}
	WrtcsNotificationSubscription
(Used for GET/PUT)
	Retrieves an individual audio and/or video subscription
	no
	no
	Terminates a n individual audio and/or video subscription

Purpose: To allow client to manage audio and/or video sessions
	Resource
	URL
Base URL:
http://{serverRoot}/webrtcsignaling/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All WebRTC sessions
	/{userId}/sessions
	WrtcsSession

common:ResourceReference (optional alternative for POST response)
	no
	no
	Create a new audio and/or video session
	no

	Individual WebRTC session
	/{userId}/sessions/{sessionId}
	WrtcsSession

	Retrieve an audio and/or video session
	no
	no
	Terminate an audio and/or video session

Reject invitation (Terminating Participant)

Cancel invitation (Originator)

	Status of a WebRTC session
	/{userId}/sessions/{sessionId}/status
	WrtcsSessionStatus
	Retrieve the status
	Indicate alerting of the user (“Ringing”)

Accept a session invitation
	no
	no

	Initial or most recent offer in a WebRTC session
	/{userId}/sessions/{sessionId}/offer
	WrtcsOffer
	Retrieve the offer
	Provide an offer to an offerless session invitation
	no
	no

	Most recent answer in a WebRTC session
	/{userId}/sessions/{sessionId}/answer
	WrtcsAnswer
	Retrieve the answer
	Provide an answer to a session invitation or session modification
	no
	no

	Update offer in a WebRTC session
	/{userId}/sessions/{sessionId}/update
	WrtcsOffer
	Retrieve the update offer
	Initiate an update
	no
	Cancel an update (Update Originator)

Decline an update (Update Recipient)

	ICE status of a WebRTC session
	/{userId}/sessions/{sessionId}/ice/status
	WrtcsIceStatus
	Retrieve the ICE status
	Update the ICE status
	no
	no

Purpose: To allow client to receive notifications regarding audio and/or video sessions
	Resource
	URL
Base URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about WebRTC signaling events
	Specified by client when subscription is created or provisioned
	WrtcsEventNotification

	no
	no
	This operation notifies a client about audio and/or video session event

	no

	Client notification about WebRTC session invitation
	Specified by client when subscription is created or provisioned
	WrtcsSessionInvitationNotification

	no
	no
	This operation notifies a client about audio and/or video session invitation

	no

	Client notification about session invitation acceptance or session update acceptance
	Specified by client when subscription is created or provisioned
	WrtcsAcceptanceNotification

	no
	no
	This operation notifies a client about a session invitation acceptance by the Terminating Participant, or the session update acceptance by the Update Recipient.
	no

	Client notification about update offer in a WebRTC session
	Specified by client when subscription is created or provisioned
	WrtcsOfferNotification
	no
	no
	This operation notifies a client about a new offer
	no

	Client notification about answer in a WebRTC session
	Specified by client when subscription is created or provisioned
	WrtcsAnswerNotification
	no
	no
	This operation notifies a client about an answer
	no

	Client notification about subscription cancellation
	Specified by client when subscription is created or provisioned
	WrtcsSubscriptionCancellationNotification
	no
	no
	This operation notifies a client about the cancellation of a subscription
	no

	Client notification about conflicts
	Specified by client when subscription is created or provisioned
	WrtcsConflictNotification
	no
	no
	This operation notifies the client about a conflict that violates the offer-answer sequence rules
	no

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the WebRTC Signaling data types is:

urn:oma:xml:rest:netapi:webrtcsignaling:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common] .The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_WRTCSig].
5.2.2 Structures

The subsections of this section define the data structures used in the WebRTC Signaling API.
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.2.2.1 Type: WrtcsSubscriptionList
 This type represents a list of subscriptions to notifications regarding WebRTC signaling events.
	Element
	Type
	Optional
	Description

	wrtcsNotificationSubscription
	WrtcsNotificationSubscription[0..unbounded]
	Yes
	Array of notification subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named wrtcsSubscriptionList of type WrtcsSubscriptionList is allowed in response bodies.
5.2.2.2 Type: WrtcsNotificationSubscription
This type represents a subscription to notifications regarding WebRTC Signaling events targeted at a particular user.
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData.

	duration
	xsd:int
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications.
This element MAY be given by the client during resource creation in order to signal the desired lifetime of the subscription. The server SHOULD return in this element the period of time for which the subscription will still be valid.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element MAY be present.
Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscriptions in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named wrtcsNotificationSubscription of type WrtcsNotificationSubscription is allowed in request and/or response bodies.

5.2.2.3 Type: WrtcsSession
This type represents a WebRTC session.
	Element
	Type
	Optional
	Description

	originatorAddress

	xsd:anyURI
	Yes
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator.

If originatorAddress is also part of the request URL, the two MUST have the same value.
This element MAY be omitted by the client, in which case it SHALL be filled in by the server.

	originatorName
	xsd:string
	Yes
	Human readable name of the Originator.

If this is omitted by the client it MAY be filled in by the server.
The server MAY modify this field according to policies, e.g. to prevent spoofing.

	tParticipantAddress

	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Terminating Participant.
If tParticipantAddress is also part of the request URL, the two MUST have the same value.

	tParticipantName
	xsd:string
	Yes
	Human readable name of the Terminating Participant.
This element MAY be omitted in resource-creating requests.

The server MAY modify this field according to policies, e.g. to provide missing values.

	status
	SessionStatus
	Yes
	Status of the session.
MAY be omitted in resource creation request, and MUST be included in all responses.
Default: Initiated.

	offer
	WrtcsOffer
	Yes
	The offer, which MUST be present in a request from the application to the server to create a session.

Note that the offer can be absent in a session created by the server as part of an offerless INVITE [RFC3261].

	answer
	WrtcsAnswer
	Yes
	The answer. This element is not present in case there is no answer yet, or the session invitation has been declined by the Terminating Participant.
This element MUST NOT be present in a request from the application to the server to create a session.

	update
	WrtcsOffer
	Yes
	The last pending session update request.

Once an update request has been accepted by the Update Recipient, it moves into the “offer” element.

Once an update request has been rejected by the Update Recipient it is removed from the “WrtcsSession” structure.

This element MUST NOT be present in a request from the application to the server to create a session.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element SHOULD be present.
Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate session creations in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named wrtcsSession of type WrtcsSession is allowed in request and/or response bodies.

5.2.2.4 Type: WrtcsAnswer
This type represents an answer in WebRTC signaling.
	Element
	Type
	Optional
	Description

	type
	OfferAnswerType
	Yes
	The type of the answer (i.e. whether this is a local or remote answer). This element is populated by the server and MUST NOT be populated by the application.

	isProvisional
	xsd:boolean
	No
	If set to “true”, this element signals that the answer is provisional (i.e. a pranswer according to [W3C_WebRTC]). If set to “false”, this element signals that the answer is final.
The application SHALL always set this element to “false”.

Note that it is assumed that an answer generated by the application cannot be provisional, however, that the server is allowed to mark answers as provisional.

	sdp
	xsd:string
	Choice
	An inlined session description in SDP format [RFC4566].

If XML syntax is used, the content of this element SHALL be embedded in a CDATA section.

	sdpBase64
	xsd:base64Binary
	Choice
	An inlined session description in SDP format [RFC4566] represented in the UTF-8 encoding, base64-encoded.

	mediaIndicator
	MediaIndicator

[0..unbounded]
	Yes
	An indication of the media described in the offer or answer. This element SHOULD be instantiated by the server and MUST NOT be instantiated by the client.

	allowVideoUpgrade
	xsd:boolean
	Yes
	This OPTIONAL element signals whether the answerer allows upgrading an audio-only session to an audio/video session.

· true: The audio-only call can be upgraded to an audio&video call

· false: The audio-only call cannot be upgraded to an audio&video call
· not present: It is unknown whether the audio-only call can be upgraded to an audio&video call
It depends on the actual underlying network(s) whether or not this information can be conveyed end-to-end.

A root element named wrtcsAnswer of type WrtcsAnswer is allowed in request and/or response bodies.

XSD modelling uses a “choice” to select either “sdp” or “sdpBase64”, but neither both nor none of them.
5.2.2.5 Type: WrtcsOffer
This type represents an offer in WebRTC signaling. Such an offer is either the initial offer in a session, or an update request).
	Element
	Type
	Optional
	Description

	type
	OfferAnswerType
	Yes
	The type of the offer (i.e. whether this is a local or remote offer). This element is populated by the server and MUST NOT be populated by the application.

	holdAlerting
	xsd:boolean
	Yes
	If this element is present and set to “true”, the application is requested not to alert the user yet until another offer is provided with this flag set to “false” or absent.

This element is only meaningful in notifications. Hence, it is filled by the server and has no meaning in requests from the client.

Note: The purpose of this flag is to avoid alerting the user as long as there is no path for the media of this call.

	sdp
	xsd:string
	Choice
	An inlined session description in SDP format [RFC4566].
If XML syntax is used, the content of this element SHALL be embedded in a CDATA section.

	sdpBase64
	xsd:base64Binary
	Choice
	An inlined session description in SDP format [RFC4566] represented in the UTF-8 encoding, base64-encoded.

	mediaIndicator
	MediaIndicator
[0..unbounded]
	Yes
	An indication of the media described in the offer or answer. This element SHOULD be instantiated by the server and MUST NOT be instantiated by the client.

	serviceType
	xsd:string
	Yes
	A string indicating the service type. This element is deployment-specific and can be detailed in profiles if needed.

It depends on the actual underlying network protocols and/or proxies whether this information can be conveyed end-to-end.

	allowVideoUpgrade
	xsd:boolean
	Yes
	This OPTIONAL element signals whether the offerer allows upgrading an audio-only session to an audio/video session.

· true: The audio-only call can be upgraded to an audio&video call

· false: The audio-only call cannot be upgraded to an audio&video call
· not present: It is unknown whether the audio-only call can be upgraded to an audio&video call
It depends on the actual underlying network protocols and/or proxies whether or not this information can be conveyed end-to-end.

A root element named wrtcsOffer of type WrtcsOffer is allowed in request bodies.

XSD modelling uses a “choice” to select either “sdp” or “sdpBase64”, but neither both nor none of them.

5.2.2.6 Type: MediaIndicator
This type represents a media indicator. Typically, this corresponds to one distinct stream of media (audio, video) as usually indicated in an m-line in SDP [RFC4566].
	Element
	Type
	Optional
	Description

	type
	MediaType
	No
	Indicates whether this is an audio, video or data stream.

	entryIdx
	xsd:unsignedInt
	No
	The index of the entry in the SDP for correlation purposes, starting at 0.

	entryId
	xsd:string
	Yes
	The identifier of the entry in the SDP for correlation purposes. Maps to the a=mid SDP attribute [RFC5888]

	streamId
	xsd:string
	Yes
	The identifier of the media stream in the SDP for correlation purposes. Maps to the a=msid SDP attribute [IETF_Msid_draft]. MUST be present if trackId is present.

	trackId
	xsd:string
	Yes
	The identifier of the media stream track in the SDP for correlation purposes. Maps to the a=msid SDP attribute [IETF_Msid_draft]. MUST be present if streamId is present.

	payload
	PayloadIndicator
[0..unbounded]
	Yes
	The payload type from the SDP. MUST be instantiated if “type” is equal to “audio” or “video”.

	direction
	MediaDirection
	Yes
	The direction of the media. MUST be instantiated if “type” is equal to “audio” or “video”. The default is “SendRecv”.

5.2.2.7 Type: PayloadIndicator
This type represents a payload indicator. Typically, this corresponds to the payload type number and associated format parameters in SDP [RFC4566].
	Element
	Type
	Optional
	Description

	payloadType
	xsd:unsignedInt
	No
	Payload type identifier from SDP [RFC4566].

	encoding
	xsd:string
	Yes
	Encoding of the media. Maps to the “a=rtpmap” information in the SDP as defined in [RFC4566] excluding the <payload type> field.

	formatParams
	xsd:string
	Yes
	Media format parameters. Maps to the “a=fmtp” information in the SDP as defined in [RFC4566] excluding the <payload type> field.

5.2.2.8 Type: WrtcsIceStatus
This type represents the ICE status.

	Element
	Type
	Optional
	Description

	status
	IceStatus
	No
	The ICE status.

A root element named wrtcsIceStatus of type WrtcsIceStatus is allowed in request and/or response bodies.
The application MUST report the finalization of ICE to the server, using this structure.
5.2.2.9 Type: WrtcsSessionStatus
This type represents the session status.

	Element
	Type
	Optional
	Description

	status
	SessionStatus
	No
	The session status.

A root element named wrtcsSessionStatus of type WrtcsSessionStatus is allowed in request and/or response bodies.
5.2.2.10 Type: WrtcsEventNotification
This type represents a general notification related to WebRTC signaling.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about WebRTC signaling events.
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related WebRTC session).
Depending on the value of eventType, the server MUST include links as defined by the actual Notification resource in section 6.10.

Further, the server SHOULD include a link to the related subscription.

	eventType
	EventType
	No
	Type of event.

	eventDescription
	xsd:string
	Yes
	Textual description of the event.

A root element named wrtcsEventNotification of type WrtcsEventNotification is allowed in notification request bodies.

5.2.2.11 Type: WrtcsSessionInvitationNotification
This type represents the notification for a session invitation.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about WebRTC signaling events.
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related WebRTC session).
The server MUST include links as defined by the actual Notification resource in section 6.11.
Further, the server SHOULD include a link to the related subscription.

	originatorAddress

	xsd:anyURI
	Yes
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator. If this element is missing, the Originator is unknown.

	originatorName
	xsd:string
	Yes
	Human readable name of the Originator.

	tParticipantAddress

	xsd:anyURI
	Yes
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Terminating Participant.

	tParticipantName
	xsd:string
	Yes
	Human readable name of the Terminating Participant.

	offer
	WrtcsOffer
	Yes
	The actual offer from the Originator.
This MUST be present, unless the notification represents an offerless INVITE [RFC3261].

A root element named wrtcsSessionInvitationNotification of type WrtcsSessionInvitationNotification is allowed in notification request bodies.

5.2.2.12 Type: WrtcsAcceptanceNotification
This type represents the notification about acceptance of a session invitation / session update.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about WebRTC signaling events.
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related WebRTC session).
The server MUST include links as defined by the actual Notification resource in section 6.12.
Further, the server SHOULD include a link to the related subscription.

	answer
	WrtcsAnswer
	Yes
	The actual answer from the Terminating Participant or Update Recipient.
Note that it depends on the network status whether or not this element is present. If it is not present, the server MUST have provided an answer to the client already in an earlier WrtcsAnswerNotification.

A root element named wrtcsAcceptanceNotification of type WrtcsAcceptanceNotification is allowed in notification request bodies.

5.2.2.13 Type: WrtcsOfferNotification
This type represents the notifications that carry an offer from the network to the application.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about WebRTC signaling events.
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related WebRTC session).
The server MUST include links as defined by the actual Notification resource in section 6.13.
Further, the server SHOULD include a link to the related subscription.

	offer
	WrtcsOffer
	No
	The actual offer.

A root element named wrtcsOfferNotification of type WrtcsOfferNotification is allowed in notification request bodies.
5.2.2.14 Type: WrtcsAnswerNotification
This type represents the notifications that carry an answer from the network to the application.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about WebRTC signaling events.
See [REST_NetAPI_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related WebRTC session).
The server MUST include links as defined by the actual Notification resource in section 6.14.
Further, the server SHOULD include a link to the related subscription.

	answer
	WrtcsAnswer
	No
	The actual (provisional or final) answer.

A root element named wrtcsAnswerNotification of type WrtcsAnswerNotification is allowed in notification request bodies.
5.2.2.15 Type: WrtcsSubscriptionCancellationNotification
This type represents subscription cancellation notifications.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application in the receiptRequest element during the associated subscription operation.

See [REST_NetAPI_Common] for details.

	link
	common:Link[1..unbounded]
	No
	Link to other resources that are in relationship with the resource.
There MUST be a link to the subscription that is cancelled (see section 6.15).

	reason
	common:ServiceError
	Yes
	Reason why subscription is being discontinued. SHOULD be present if the reason is different from a regular expiry of the subscription.

A root element named wrtcsSubscriptionCancellationNotification of type WrtcsSubscriptionCancellationNotification is allowed in notification request bodies.

5.2.2.16 Type: WrtcsConflictNotification
This type represents conflict notifications.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application in the receiptRequest element during the associated subscription operation.

See [REST_NetAPI_Common] for details.

	link
	common:Link[1..unbounded]
	No
	Link to other resources that are in relationship with the resource.
The server MUST include links as defined by the actual Notification resource in section 6.16.

Further, the server SHOULD include a link to the related subscription.

	reason
	common:ServiceError
	Yes
	Exception payload that indicates an offer conflict.

A root element named wrtcsConflictNotification of type WrtcsConflictNotification is allowed in notification request bodies.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the WebRTC Signaling API.
5.2.3.1 Enumeration: EventType

This enumeration is defines the types of events. It is used in notifications.
	Enumeration
	Description

	Cancelled
	The Originator has cancelled the session during the invite phase, or has cancelled an unanswered update offer.

	SessionEnded
	The session has ended.

	Declined
	The Terminating Participant has declined the session invitation, or the Update Recipient has declined the update.

	NoAnswer
	The session invitation to the Terminating Participant has timed out.

	NotReachable
	The Terminating Participant could not be reached or is unknown.

	Ringing
	The Terminating Participant is being alerted of the incoming call invitation (“phone ringing”).

	Busy
	The Terminating Participant is busy.

5.2.3.2 Enumeration: SessionStatus
This enumeration defines the status of a WebRTC session.
	Enumeration
	Description

	Initiated
	The session was initiated but is not yet connected.

	Ringing
	The terminating participant is being alerted.

	Connected
	The session is established.

	Closed
	The session was closed.
Resources representing closed sessions can be removed from the server immediately, or after a time period defined by service provider policies.
Note that this state is e.g. reached if the remote Participant closes a session, or if the Terminating Participant does not accept a session invitation.

5.2.3.3 Enumeration: IceStatus

This enumeration provides the possible values of the ICE status in a WebRTC session based on the definitions in [W3C_WebRTC].
	Enumeration
	Description

	New
	The ICE status is “new” [W3C_WebRTC].

	Checking
	The ICE status is “checking” [W3C_WebRTC].

	Connected
	ICE connectivity checks have established one connection for each flow [W3C_WebRTC].

	Completed
	The ICE status is “completed” [W3C_WebRTC].

	Failed
	ICE connectivity checks have finished and connectivity could not be established for all flows (but possibly for some) [W3C_WebRTC].

	Disconnected
	The ICE status is “disconnected” [W3C_WebRTC].

	Closed
	The ICE status is “closed” [W3C_WebRTC].

5.2.3.4 Enumeration: MediaType
This enumeration defines the possible media types in the MediaIndicator data type.
	Enumeration
	Description

	Audio
	Represents an audio stream (m=audio in SDP [RFC4566]).

	Video
	Represents a video stream (m=video in SDP [RFC4566]).

	Data
	Represents a data channel [IETF_SCTP_SDP_draft].

5.2.3.5 Enumeration: MediaDirection

This enumeration defines the possible media directions in the MediaIndicator data type.

	Enumeration
	Description

	SendRecv
	The stream is bidirectional [RFC3264].

	SendOnly
	The stream is send-only [RFC3264].

	RecvOnly
	The stream is receive-only [RFC3264].

	Inactive
	The stream is currently not active [RFC3264].

5.2.3.6 Enumeration: OfferAnswerType

This enumeration determines whether an offer resp. answer is local or remote.
	Enumeration
	Description

	Local
	The offer or answer is a local one.

	Remote
	The offer or answer is a remote one.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· WrtcsSubscriptionList
· WrtcsNotificationSubscription
· WrtcsSession
· WrtcsAnswer

· WrtcsOffer

· WrtcsIceStatus

· WrtcsSessionStatus
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
The WebRTC Signaling API has been designed to work based on SDP, offer/answer with the additional pranswer state and ICE as defined by JSEP. A web browser which exposes the WebRTC API [W3C_WebRTC] is a typical runtime environment for an application using the WebRTC Signaling API, even though other instances such as native or server-side applications can use it as well..If the application is running in a WebRTC-enabled web browser, the web browser serves as the media engine for the session. By design, as the WebRTC Signaling API only covers the signalling part, the API needs to make assumptions w.r.t. the media engine. To illustrate how application, Network API and media engine interwork, the browser runtime environment which includes a media engine with an interface based on the W3C WebRTC API has been chosen to be depicted in the flow diagrams in this section. Therefore, many of the diagrams in this section include the web browser as an actor, and mention the PeerConnection object of the WebRTC API. Note that any media engine which is aligned with the JSEP subset mentioned above can be used in a deployment instead, however, at the time of writing, the WebRTC-enabled browser is the only well-specified instance of such a media engine.
This version of the specification has been designed under the assumption that the server acts as a gateway towards a SIP [RFC3261] infrastructure. Appendix H provides a mapping from API calls to SIP messages. In the flows in this section, only the API view is shown, i.e. the messages between the server and the SIP infrastructure are not depicted.
The flows in the sections below contain messages and participants that are defined in this specification, as well as those that are not defined in this specification, but that informatively show the interworking with external components and systems. The legend below introduces the graphical styles used to distinguish between these categories.

[image: image3.png]Browser (out of scope)

Application (in scope)

Sener (in scope)

Browser (out of scope)

1. Notification defined by this specification |

L Tetieation Aefined by T speciication ;
12 Request defined by this specification 1
e

! 3. Response defined by this specification !

5. Notification not defined by this spectfcation___!

Application (in scope)

Sener (in scope)

Figure 2: Legend for the sequence diagrams
5.3.1 Subscribing to and unsubscribing from WebRTC signaling notifications
This figure below shows a scenario for an application subscribing to and unsubscribing from WebRTC signaling notifications.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and the use of that Notification Channel by the client.
The resources:
· To subscribe to WebRTC signaling notifications, create a new resource under http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/subscriptions
· To cancel subscription to WebRTC signalingnotifications delete the resource under http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/subscriptions/{subscriptionId}

[image: image4.png]Application

| 1. POST WitesNotificationSubscription(callbackURL) i

Sener

3. DELETE a subscription with subscriptionld

URL

>

Create a new
subscription

4. Response,

Application

>

Delete the.
subscription

i

Semer

Figure 3: Subscribing to and unsubscribing from WebRTC signaling notifications
Outline of the flows:
1. An application subscribes to WebRTC signaling notifications using the POST method to submit the WrtcsNotificationSubscription data structure to the resource containing all subscriptions.

2. The server returns a response which comprises the result resource URL containing the subscriptionId.

3. The application stops receiving notifications using DELETE with the resource URL containing the subscriptionId.
4. The server returns a response.

5.3.2 Handling offers and answers

The WebRTC Signaling API is based on the offer-answer model. This means that the communicating parties control the media session by exchanging offers and answers which request and confirm changes to the connectivity, the media formats, the media flows used in the session (e.g. audio-only or also video) etc. In addition to offers and answers [RFC3264] which always occur in pairs in SIP [RFC3261], the WebRTC specification [W3C_WebRTC] also allows provisional answers (pranswer). To respond to an offer, zero or more pranswers can be provided before the final answer. Pranswers MAY be provided by the server to the application in a notification, but MUST NOT be provided by the application to the server. It is the responsibility of the server to ensure the correct mapping between SIP answers and WebRTC pranswer / answer primitives. The application MUST NOT generate answers of type pranswer.
The figure below shows how an application MUST handle offers, pranswers and answers. It is assumed as a prerequisite for the flow below that the session has been created previously, and that any previous offer-answer exchange has been completed with an answer (i.e. there is no outstanding answer).
The resources:

· To submit an answer to an incoming offer, update the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/answer
· To submit an offer to modify the current session, update the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/update
[image: image5.png]Browser Application Server

handle an incoming offer

Receive offer from the network 5

11 POST or NOTIFY WitesOfferNotifiation(ofierSdp)

eerConnection CreateAnsvier()

4. PUT WitcsAnswer(sdp)

5. Response

<

Send answer to the network 5

modify the Peerconnection (e.g. adding vidzo)

eerConnection CreateOffer) |

7. PUT WitesOffer(sdp)

Send offe to the network 5

Eventually, an answer or
provisional answer will arrive

<8 Response 3

handle an incoming provisional answer

There must be a pending offer
(i.e. without answer)

1| Receive answer from the network
1| and classiy as provisional

13- POST or NOTEY WitesAnswertifcation(pranswer, answerSdp)

handle an incoming answer

There must be a pending offer
(i.e. without answer)

Receive answer from the network 5

1 1. POST or NOTIFY WitesAnswerlotifcation(answer, answerScp)

12, peerConnection setRemoteDescription(ansvier, answerSdp)

Browser Application Server

Figure 4: Offer and answer handling
Outline of the flows when receiving an offer:
1. The application receives a WrtcsOfferNotification that carries the offer.
2. The application provides this offer as the remote description to the PeerConnection object in the browser which is associated with the session.
3. The application requests the PeerConnection object to create an answer.

4. The application provides the answer to the server by updating the resource representing the answer in the session.

5. The server returns a response. Subsequently, the server takes care of sending the answer in an appropriate way to the network infrastructure.

Outline of the flows when initiating an offer:
6. After modifying some aspect of the session locally in the browser (e.g. adding a video stream), the application requests the PeerConnection object in the browser that is associated with this session to create an offer which reflects the changes.

7. The application provides the offer to the server by updating the resource representing the update offer in the session.

8. The server returns a response. Subsequently, the server takes care of sending the offer in an appropriate way to the network infrastructure, and waits for an answer.

Outline of the flows when receiving a provisional answer. Note that subsequent to an offer, zero or more provisional answers may be received.
9. After the server has received an answer from the network infrastructure and has detected that it qualifies as a pranswer, the server sends to the application a WrtcsAnswerNotification that carries the provisional answer.
10. The application provides this provisional answer as the remote description to the PeerConnection object in the browser which is associated with the session.
Outline of the flows when receiving an answer. Note that subsequent to an answer and prior to the next offer, more provisional answers MUST NOT be received.
11. After the server has received an answer from the network infrastructure, the server sends to the application a WrtcsAnswerNotification that carries the answer.
12. The application provides this provisional answer as the remote description to the PeerConnection object in the browser which is associated with the session.
5.3.3 Normal signaling flow of a WebRTC session - Originator
The figure below shows a scenario for the signaling in a WebRTC session with successful result from the point of view of the Originator.

The resources:

· To start a WebRTC session, create a new resource with the WrtcsSession data structure under http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions
· To report successful completion of the ICE procedures, update the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
· To end a WebRTC session delete the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}
· To indicate ICE status changes to the server, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/ice/status

[image: image6.png]Browser Application Server

Visit site and
download Application

4. POST WitcsSession(userld, offerSdp1)

>
| 5.R: h Id

<]
| 5, POST or NOTIFY |
& WitcsAnswerlotfcation((prjanswer, answerSdp) |

Running ICE connectivity checks, N

9. PUT WiteslceStatus(Connected)

POST or NOTIFY
WitcsAnswerNotification(answer, answerSdp2)

Terminating participant is alerted 5
Terminating participant accepts 5

POST or NOTIFY WitcsEventNotification(Ringing)

POST or NOTIFY
WitcsAcceptanceNotification)

TAlisriative 2: Answer arfives in acceptance notfication

| Terminating participant is alerted 5
: POST or NOTIFY WitesEventhatiication(Ringing)
| Terminating participant accepts 5

POST or NOTIFY
WitcsAcceptanceNotification(answer, answerSdp2)

Originator and Terminating Participant are in a call now. N

18. DELETE WitcsSession with sessionld §

19. Responss,

Send termination request 5

20 peerConnetion Close()

Browser Application Server

Figure 5: WebRTC session signaling - Originator
Outline of the flows:
1. The application creates a PeerConnection object in the browser and sets up the media sources.

2. The application retrieves from the PeerConnection object the initial offer that describes the media sources.

3. The application set the initial offer as the local session description in the PeerConnection object.

4. The application creates a new WebRTC session on the server using the POST method on the resource containg all WebRTC sessions, passing the identity of the Terminating Participant and the initial offer.

5. The server returns in the response to the POST request a resource URL that contains a session Id. This resource URL can be used in subsequent HTTP methods to identify the session.

6. Eventually, the server receives from the network infrastructure an answer or provisional answer to the initial offer which contains a session description that has been derived from the session description in the initial offer using the offer-answer model [RFC3264]. The server notifies the application of the answer or provisional answer by sending a WrtcsAnswerNotification to the application.

7. The application sets the received answer or provisional answer as the remote description in the PeerConnection object. Triggered by that, the browser starts the ICE connectivity checks.
8. The browser reports to the application that a media path has been established by doing ICE connectivity checks with the media endpoint that was signaled in the remote session description from the provisional answer. Note that this can be a media gateway, or the browser of the Terminating Participant, depending on network topology.
9. The application reports the successful ICE checks by updating the ICE status using the PUT method.

10. The server returns an HTTP response.

Alternative flow 1: Answer arrives before acceptance
11. Another answer from the Terminating Participant arrives, which is forwarded to the application using a WrtcsAnswerNotification. Note that if the answer in step 6 was not provisional, this step is omitted.

12. The application sets the received answer as the remote description in the PeerConnection object. Note that if the answer in step 6 was not provisional, this step is omitted.
13. Eventually, the server receives from the network infrastructure a message that the Terminating Participant is now being alerted of the incoming call. The server notifies the application of the fact that the Terminating Participant is being alerted by sending a WrtcsEventNotification of type “Ringing” to the application.

14. Eventually, the server receives from the network infrastructure a message that the Terminating Participant has accepted the invitation to the call. The server notifies the application of the fact that the Terminating Participant has accepted the call by sending a WrtcsAcceptanceNotification to the application. Since the answer was already sent, the notification does not contain an answer. The call is now established.

Alternative flow 2: Answer arrives in acceptance notification (see also H.1.1)
15. Eventually, the server receives from the network infrastructure a message that the Terminating Participant is now being alerted of the incoming call. The server notifies the application of the fact that the Terminating Participant is being alerted by sending a WrtcsEventNotification of type “Ringing” to the application.

16. Eventually, the server receives from the network infrastructure a message that the Terminating Participant has accepted the invitation to the call. This notification also includes the answer, assuming the previous answer was provisional. The server notifies the application of the fact that the Terminating Participant has accepted the call by sending a WrtcsAcceptanceNotification to the application.

17. The application sets the received session description as the remote description in the PeerConnection object. The call is now established.

End of alternatives.
18. To terminate the call, the application uses the DELETE method on the session resource, addressed by the resourceURL containing the session Id.

19. The server indicates in the response that the deletion was successful, and sends a termination request towards the network infrastructure.

20. The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

Appendix H describes how this flow can be mapped to SIP.Note that other combinations of pranswer and answer are possible depending on the message exchange taking place in the underlying infrastructure. In those cases, the general rules for handling offers, pranswers and answers in section 5.3.2 apply.

5.3.4 Normal signaling flow of a WebRTC session – Terminating Participant
The figure below shows a scenario for the signaling in a WebRTC session with successful result from the point of view of the Terminating Participant.

The resources:

· To accept a WebRTC session invitation, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/status
· To provide an answer without accepting the session invitation, update the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/answer
· To indicate that the user is being alerted of an incoming call, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/status
· To end a WebRTC session delete the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}
· To indicate to the server changes of the ICE status, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
[image: image7.png]Server Application Browser

1. POST or NOTIFY WitcsSessionlnvitationNotification(offerSdp1 , sessionld)

>

| 3. peerConnection. SetRemoteDescription(offer, offerSdp1)

6. PUT WitcsAnswer(answer, answerSdp1) i

<

>

Running ICE connectivity checks, N

9. PUT WiteslceStatus(Connected)

11. PUT WitcsSessionStatus(Ringing)

Send ringing indication 5

User accepts)

14. PUT WitcsSessionStatus(Connected)

15, Respanse
>

Send acceptance indication 5 '

Originator and Terminating Participant are in a call now. N

Receivstermination request)

>

17. peerConnection Close()

| 16 POST or NOTIFY WitcsEventNotification(SessionEnded)

Server Application Browser

Figure 6: WebRTC session signaling – Terminating Participant
Outline of the flows:
1. The server receives from the network infrastructure an invitation to participate in a real-time media session, containing an initial offer according to the offer-answer model [RFC3264]. The server informs the application of that invitation by sending it a WrtcsSessionInvitationNotification which includes the offer’s session description and a resource URL that identifies the session to be used in subsequent requests.

2. The application creates a PeerConnection object in the browser, sets up the local media sources and adds these to the PeerConnection object.

3. The application sets the session description received in the initial offer as the remote description in the PeerConnection object.

4. The application retrieves an answer to the offer from the PeerConnection object.

5. The application sets the retrieved session description as the local description in the PeerConnection object, marked as answer. Triggered by that, the browser starts the ICE connectivity checks.
6. The application uses the PUT method on the resource containing the answer to provide that session description to the server as the answer.

7. The server returns an HTTP response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator.
8. The browser reports to the application that a media path has been established by doing ICE connectivity checks with the media endpoint that was signaled in the remote session description from the offer. Note that this can be a media gateway, or the browser of the Originator, depending on network topology.
9. The application reports the successful ICE checks by updating the ICE status using the PUT method.

10. The server returns an HTTP response to the request.

11. The application can now alert the user. First, the application reports to the server that it is alerting the user, by setting the session status resource to “Ringing” using the PUT method.

12. The server returns an HTTP response to the request. Subsequently, the server sends towards the network infrastructure an indication that the Terminating Participant is being alerted. The network infrastructure takes care of routing the request to the Originator.
13. The application now alerts the user, who eventually accepts the call.

14. The application uses the PUT method on the resource containing the session status to accept the call by updating the status.
15. The server returns a response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator. The call is now established.

16. Eventually, the server receives from the network infrastructure a message that the Originator is requesting to terminate the call. The server notifies the application of the call session termination by sending a WrtcsEventNotification of type “SessionEnded” to the application.

17. The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

5.3.5 Signaling flow of a WebRTC session with delayed alerting

The following flow shows how the Terminating Participant’s application responds to a session invitation in which the Originator has requested to delay the alerting of the Terminating Participant until the Originator sends an updated offer. Using this pattern, the Originator requests the Terminating Participant to delay the alerting of the user until the Originator reports that media connectivity is possible (e.g. ICE checks have been succeeded, or QoS reservations have been granted).

The flow is shown from the Terminating Participant’s point of view. Note that it is assumed that the Originator’s server handles the necessary steps at the Originator side, i.e. an Originator using the API defined by this specification will never have to generate an invitation requesting delayed alerting. It is however necessary that a terminating participant is able to handle invitation of this type.

The resources:

· To provide an answer to a session invitation without accepting it (yet), or to provide an answer to an offer, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/answer
· To accept a WebRTC session invitation, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/status
· To indicate that the user is being alerted of an incoming call, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/status
· To indicate to the server changes of the ICE status, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
[image: image8.png]Server Application Browser

Receive inviation
which informs about
preconditions not met

POST or NOTIFY WitcsSessionlniitationNotification(
offerSdp1, holdAlerting, sessionid)

>
2. Create PeerConnsction and set up media sources

3

1 4 answerSdp1=peerConnection CreateAnswer)

Indicate an inital answer
but do not ring yet

Send answer 5 .

Running ICE connectivity checks N

8. oniceconnectionstatechangs(connected) i

<
9. PUT WitesleeStatus(Connected) |

>

Own ICE finished but still cannot ring 5

Receive another offer informing
that preconditions are met

<

11, WitcsOfferNotification(offerSdp2)

>

| 12. peerConnection. setRemoteDescription(offer, offerSdp2)

15 PUT WitcsAnswer(answer, answerSdp2) i

<
| 16. Response

Send answer 5

After receiving offer

alerting can now take place

Indicate that user
is being alerted

User accepts)

Accept initation
(no new answer is sent)

>
without "holdAlerting’ flag, !

Originator and Terminating Participant are in a call now. N

Server Application Browser

Figure 7: Signaling flow of a WebRTC session with delayed alerting
Outline of the flows:
1. The server receives from the network infrastructure an invitation to participate in a real-time media session, containing an initial offer according to the offer-answer model [RFC3264]. This offer includes information that certain preconditions for opening the media connection such as QoS reservation or ICE checks, are not yet met. The server informs the application of that offer by sending it a WrtcsSessionInvitationNotification which includes the offer’s session description, a resource URL that identifies the session to be used in subsequent requests, and an indicator that tells the application that it can go ahead processing the offer contained in the invitation, but should refrain from alerting the user.

2. The application creates a PeerConnection object in the browser, sets up the local media sources and adds these to the PeerConnection object.

3. The application sets the session description received in the initial offer as the remote description in the PeerConnection object.

4. The application retrieves an answer to the offer from the PeerConnection object.

5. The application sets the retrieved session description as the local description in the PeerConnection object, marked as answer. Triggered by that, the browser starts the ICE connectivity checks.
6. The application uses the PUT method on the resource containing the answer to provide that session description to the server as the answer.

7. The server returns an HTTP response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator. Subsequently, ICE connectivity checks are performed to set up media connectivity.

8. The browser reports to the application that a media path has been established by doing ICE connectivity checks with the media endpoint that was signaled in the remote session description from the offer. Note that this can be a media gateway, or the browser of the Originator, depending on network topology.
9. The application reports the successful ICE checks by updating the ICE status using the PUT method.

10. The server returns an HTTP response to the request. Subsequently, the application’s own ICE procedures have finished, and a media path is available for the call leg of the Terminating Participant. However, there is no information yet available whether there is also media connectivity available for the call leg of the Originator; therefore, the application still cannot alert the user.

11. Eventually, the server receives information from the network infrastructure that media connectivity is now also available for the Originator’s call leg. The server sends to the application a WrtcsOfferNotification which contains an updated offer without the “holdAlerting” flag instantiated.

12. The application sets the session description received in the updated offer as the remote description in the PeerConnection object.

13. The application retrieves an answer to the offer from the PeerConnection object.

14. The application sets the retrieved session description as the local description in the PeerConnection object, marked as answer.

15. The application uses the PUT method on the resource containing the answer to provide that session description to the server as the answer.

16. The server returns an HTTP response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator.

17. As the Originator has withdrawn the request to hold alerting, and as locally the ICE procedures have also succeeded, the application can now alert the user. First, the application reports to the server that it is alerting the user, by setting the session status resource to “Ringing” using the PUT method.

18. The server returns an HTTP response to the request. Subsequently, the server sends towards the network infrastructure an indication that the Terminating Participant is being alerted. The network infrastructure takes care of routing the request to the Originator.
19. The application now alerts the user, who eventually accepts the call.

20. The application uses the PUT method on the resource containing the session status to accept the call by updating the status.
21. The server returns a response to the request and sends the answer towards the network infrastructure, which takes care of routing the request to the Originator. The call is now established.

Appendix H describes how this flow can be mapped to SIP.
5.3.6 Signaling flow with an offerless session invitation
The figure below shows a scenario where the Terminating Participant receives a WebRTC session invitation that contains no offer. Such invitations occur for instance in third-party call control scenarios, when the network expects the Terminating Participant to make an offer as response to the invitation. The flow is shown from the Terminating Participant’s point of view.

Note: In third-party call control scenarios, the invites both call participants (so, strictly speaking, there are two Terminating Participants but no Originator). To do this, the network typically first invites one participant and asks it to declare its media properties, i.e. to provide an offer. This mechanism is known as “offerless invite”. The offer received by the network in the response to the invitation is then included in the invitation sent to the second participant.
The resources:

· To provide an offer responding to an offerless session invitation, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/offer
· To accept a WebRTC session invitation, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/status
· To indicate that the user is being alerted of an incoming call, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/status
· To indicate to the server changes of the ICE status, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
[image: image9.png]Server Application Browser

Receive session invitation)|
without ffer]

1. POST or NOTIFY WitcsSessianlnvitationNatification(sessionld)

>

2. Create PeerConnsction and set up media sources

v
v

5. PUT WitesOffer(offer, offerSdp1)

<
| 6. Response

Send offe reliably
and wait for answer

POST or NOTIFY
WitcsAnswerNotification(answer, answerSdp1)

ansverSdpt) |

14. Alert the user

[User aceepts N

>

Originator and Terminating Participant are in a call now. N

Server Application Browser

Figure 8: Signaling flow with an offerless session invitation
Outline of the flows:
1. The server receives from the network infrastructure an invitation to participate in a real-time media session. This invitation does not include an offer. The server informs the application of that invitation by sending it a WrtcsSessionInvitationNotification which includes a resource URL that identifies the session to be used in subsequent requests, but no offer.

2. The application creates a PeerConnection object in the browser, sets up the local media sources and adds these to the PeerConnection object.

3. The application retrieves a session description from the PeerConnection object as an offer.

4. The application sets the retrieved session description as the local description in the PeerConnection object, marked as offer.

5. The application uses the PUT method on the resource containing the offer to provide that session description to the server as the offer.

6. The server returns an HTTP response to the request. It sends the offer towards the network infrastructure and subsequently waits for an answer.

7. Eventually, an answer arrives from the network which is forwarded by the server to the application in a WrtcsAnswerNotification.

8. The application sets the session description contained in the notification as the remote description in the PeerConnection object, marked as answer. ICE connectivity checks can subsequently start.

9. The browser reports to the application that a media path has been established by doing ICE connectivity checks with the media endpoint that was signaled in the remote session description from the answer.
10. The application reports the successful ICE checks by updating the ICE status using the PUT method.

11. The server returns an HTTP response to the request.

12. As the ICE procedures have succeeded, the application can now alert the user. First, the application reports to the server that it is alerting the user, by setting the session status resource to “Ringing” using the PUT method.

13. The server returns an HTTP response to the request. Subsequently, the server sends towards the network infrastructure an indication that the participant is being alerted. The network infrastructure takes care of routing the request appropriately.
14. The application now alerts the user, who eventually accepts the call.

15. The application uses the PUT method on the resource containing the session status to accept the call by updating the status.
16. The server returns a response to the request and sends the answer towards the network infrastructure, which takes care of routing the request appropriately. The call is now established.

5.3.7 Signaling flow to cancel a WebRTC session invitation - Originator
The figure below shows a scenario where the Originator cancels a WebRTC session invitation before the Terminating Participant has accepted the invitation. The flow is shown from the Originator’s point of view.
The resources:

· To cancel a WebRTC session, delete the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}

[image: image10.png]Browser Application Server

Originator has created a call session but has not received a WitcsAcceptanceNotifcation yet.)

1 1. DELETE WitcsSession with sssionld
- DELETE WitcoSession wilh sessionid .

2. Respanse

3. peerConnection Close()

e

|| Send cancellation request 5

Browser Application Server

Figure 9: Signaling flow to cancel a WebRTC session invitation - Originator
Outline of the flows:
It is assumed that the Originator has performed all steps up to including step 5 in section 5.3.3, but has not yet received a WrtcsAcceptanceNotification.
1. To cancel the call, the application uses the DELETE method on the session resource, addressed by the resourceURL containing the session Id.

2. The server indicates in the response that the deletion was successful, and sends a cancellation request towards the network infrastructure.

3. The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

An update request (see 5.3.11) can be cancelled using the same flow.

5.3.8 Signaling flow to cancel a WebRTC session invitation – Terminating Participant
The figure below shows a scenario where the Originator cancels a WebRTC session invitation before the Terminating Participant has accepted the invitation. The flow is shown from the Terminating Participant’s point of view.
There are no resources defined in this section, as the Terminating Participant can only react locally to the cancellation notification.

[image: image11.png]Sener

Application

Browser

Application has received a WitcsSessionlnvitationNotification but has not yet accepted it

™

Receive
cancelation request

1. POST or NOTIFY WitcsEventNatification(Canceled)

>

2. peerConnection, Close()
[>

Application

Browser

Figure 10: Signaling flow to cancel a WebRTC session invitation– Terminating Participant
Outline of the flows:
It is assumed that the Terminating Participant has received a WrtcsSessionInvitationNotification (step 1 in section 5.3.4) but has not yet successfully indicated acceptance of that invitation (step 15 in section 5.3.4)
1. Eventually, the server receives from the network infrastructure a message that the Originator is requesting to cancel the session invitation. The server notifies the application of the call session cancelation by sending a WrtcsEventNotification of type “Canceled” to the application.

2. The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

An update request (see 5.3.12) can be cancelled using the same flow.
5.3.9 Signaling flow to reject a WebRTC session invitation – Terminating Participant
The figure below shows a scenario where the Terminating Participant rejects a WebRTC session invitation. The flow is shown from the Terminating Participant’s point of view.
It is assumed that the Terminating Participant has received a WrtcsSessionInvitationNotification (step 1 in section 5.3.4) but has not yet successfully indicated acceptance of that invitation (step 15 in section 5.3.4)
The resources:

· To reject a WebRTC session invitation, delete the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}

[image: image12.png]Browser | | Application Server

Terminating partcipant has received a WitcsSessionlnitationNotication. ™

1 1. DELETE WitcsSession with sssionld
- DELETE WitcoSession wilh sessionid .

2. Response

Send rejection request 5

Browser | | Application Server

1 <

Figure 11: Signaling flow to reject a WebRTC session invitation – Terminating Participant
Outline of the flows:
1. To reject the session invitation, the application uses the DELETE method on the session resource, addressed by the resourceURL containing the session Id.

2. The server indicates in the response that the deletion was successful, and sends a rejection request towards the network infrastructure.

5.3.10 Signaling flow to reject a WebRTC session invitation - Originator
The figure below shows a scenario where the Originator is informed that the Terminating Participant has declined a WebRTC session invitation. The flow is shown from the Originator’s point of view.
There are no resources defined in this section, as the Originator can only react locally to the rejection notification.

[image: image13.png]Server Application Browser

Originator has created a call session but has not received a WitcsAcceptanceNotification yet.)

Receive
rejection request

>

2. peerConnection, Close()

| 1. POST or NOTIFY WitcsEventNotification(Declined) _ |
| r

Server Application Browser

Figure 12: Signaling flow to reject a WebRTC session invitation - Originator
Outline of the flows:
It is assumed that the Originator has performed all steps up to including step 5 in section 5.3.3, but has not yet received a WrtcsAcceptanceNotification.
1. Eventually, the server receives from the network infrastructure a message that the Terminating Participant has rejected the session invitation. The server notifies the application of the session invitation rejection by sending a WrtcsEventNotification of type “Declined” to the application.

2. The application cleans up the local browser resources and terminates the media capturing / rendering by invoking the “Close” method of the PeerConnection object.

5.3.11 Signaling flow of a WebRTC session modification – Update Originator
The figure below shows a scenario where a WebRTC session is modified (e.g. to add or remove a video stream). The flow is shown from the Update Originator’s point of view.
The resources:

· To modify a session, update the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/update
· To indicate to the server changes of the ICE status, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/ice/status

[image: image14.png]Browser Application Server

Both parties are in a call already N

User requests addition /
removal of vidso

1. Update PeerConnection, e.g. adding or removing video stream

4. PUT WitesOffer(sessionld, offerSdp)

5. Response

pass on the offer 5
receive answer 5

[Alternative 1: Terminating participant declines update]
6. POST or NOTIFY WitesEventNotification(Declined)

8 POST or NOTIFY WitesAcceptanceNotification(answer, answerSdp) !

11. PUT WitcslceStatus(New)

>

P

Running ICE connectivity checks (f applicable).

1 13._oniceconnectionstatechange(connected)

{14, PUT WitcslceStatus(Connected)

15. Responss,

<

Call goes ahead with modified media streams.

Browser Application Server

Figure 13: Signaling flow of a WebRTC session modification – Update Originator
Outline of the flows:
1. After the user has requested from the application to update the session (e.g. to add or remove video), the application updates the PeerConnection object accordingly.

2. The application requests an offer from the updated PeerConnection, reflecting the update.

3. The application installs this offer as the new local offer in the PeerConnection object.

4. Using the PUT method, the application updates the resource representing the update offer in the session with the new offer

5. The server returns a response. After that, the server passes on the offer to the Update Recipient via the network, and waits for an answer. When the answer eventually arrives, it can contain one of the following responses: a rejection of the update offer or an acceptance of the update offer.

Alternative flow 1: Update Recipient declines the update request
6. The server sends to the application a WrtcsEventNotification with the eventType set to “Declined”.
7. The application rolls back the session state to the state before the offer was sent. After that, the call goes ahead without modification.

Alternative flow 2: Update Recipient accepts the update request
8. The server sends to the application a WrtcsAcceptanceNotification including the answer.

9. The application installs the answer as the remote description in the PeerConnection object.

10. In case a stream was added, the previous step triggers a restart of the ICE procedures. The browser reports this change by sending an “oniceconnectionstatechange” message to the application.

11. The application reports the change of the ICE status to the server by updating the ICE status resource, using the PUT method.

12. The server returns a response.

13. Eventually, the ICE connectivity checks run and succeed. The browser reports the successful ICE run by sending an “oniceconnectionstatechange” message to the application.

14. The application reports the change of the ICE status to the server by updating the ICE status resource, using the PUT method.

15. The server returns a response. As the media path is established now for the added streams as well, the call goes ahead with the modified data streams.

End of alternatives.

5.3.12 Signaling flow of a WebRTC session modification – Update Recipient
The figure below shows a scenario where a WebRTC session is modified (e.g. to add or remove a video stream). The flow is shown from the Update Recipient’s point of view.
The resources:

· To accept a session modification request, update the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/answer
· To reject a session update request, delete the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/update

· To indicate to the server changes of the ICE status, update the resource http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/ice/status

[image: image15.png]Server Application Browser

Receive session
modification request

Both parties are in a call already N

>

Decide whether adding a stream is acceptable.
possibly involing the user

1. POST or NOTIFY WitcsOfferNotification(offerSdp) _ |

>

Call goes ahead without modification.

5. onnaddstream() / onremovestream()

ke notice of stream changes

7. peerConnection. createAnswer(answerSOP)

pass on answer 5

10, oniceconnectionstatechange(nev)

1 14 PUT WitcslceStatus(Connected)

115, Respanse

-

Call goes ahead with modified media streams.

Server Application Browser

Figure 14: Signaling flow of a WebRTC session modification – Update Recipient
Outline of the flows:
1. The server sends to the application a WrtcsOfferNotification containing an update offer. The application decides based on that offer whether or not to accept it. Such decision might or might not include a dialog with the user.

Alternative flow 1: Decline update

2. If the application has decided to reject the update offer, it deletes the resource representing the update offer, using the DELETE method.

3. The server returns a response. After that, the call goes ahead without modification.
Alternative flow 2: Accept update

4. On the other hand, if the application has decided to accept the update offer, it installs the received update offer in the PeerConnection object as remote offer.

5. The PeerConnection object informs the application of the addition and/or removal of media streams.

6. The application takes notice of the changes and adapts its internal state. Details of how this is done are out of scope of this specification.

7. The application asks the PeerConnection object to create an answer.

8. The application updates the answer resource using the PUT method, replacing it with the new answer returned by the PeerConnection object.

9. The server returns a response. Also, the server takes care of sending the answer back to the Update Originator via the network infrastructure.

10. In case a stream was added, the previous step triggers a restart of the ICE procedures. The browser reports this change by sending an “oniceconnectionstatechange” message to the application.

11. The application reports the change of the ICE status to the server by updating the ICE status resource, using the PUT method.

12. The server returns a response.

13. Eventually, the ICE connectivity checks run and succeed. The browser reports the successful ICE run by sending an “oniceconnectionstatechange” message to the application.

14. The application reports the change of the ICE status to the server by updating the ICE status resource, using the PUT method.

15. The server returns a response. As the media path is established now for the added streams as well, the call goes ahead with the modified data streams.

End of alternatives.

5.3.13 Resolving an offer conflict

The figure below shows a scenario where both parties in a call have sent an offer concurrently, i.e. an offer conflict occurs. The reason for this may be that one of the clients has erroneously sent a new offer before a previous one was accepted/rejected, or that a network-internal race condition has led to that state. In any case, the server that detects the problem will decline the second offer as depicted below.
There are no resources defined in this section, as the application can only react locally to the cancellation notification.

The resources:

· To create an update offer, update the resource
http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/update
[image: image16.png]Application

Semer

Browser

Application

Browser

Figure 15: Resolving an offer conflict
Outline of the flows:
1. The Update Originator’s application creates an update offer and installs this offer as the new local offer in the PeerConnection object.
2. The Update Originator’s application sends the update offer by modifying the “offer” resource in the session using the PUT method.

Alternative 1: Synchronous case
3. The server immediately detects a conflict and returns SVC1007 exception immediately with the HTTP response.
Alternative 2: Asynchronous case
4. The server returns a “success” response

5. The server later detects a conflict and sends a WrtcsConflictNotification to the application.

6. The application rolls back the session state to the state before the offer was sent.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body. The server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
Note 1: Offers and answers in the examples below contain Session Description Protocol (SDP) instances [RFC3264]. These instances can be treated by the application as opaque blobs that need to be extracted from and passed to the web browser in order to allow media communication (see section 5.3.2). Compared to SDP instances in a real-world WebRTC deployment, the instances in this specification are simplified, in particular, the details of ICE usage, media stream identification and RTP multiplexing signaling have been omitted.
Note 2: The examples illustrate an application called “Alice’s application” that uses the RESTful WebRTC Signaling API. Two sessions are modelled – one session with “Bob” where Alice is the Originator, and one session with “Caesar” where Alice is the Terminating Participant. All interactions with the API are depicted from Alice’s point of view. Bob’s and Caesar’s connectivity details are hidden from Alice’s application by the API.

6.1 Resource: All subscriptions to WebRTC signaling notifications
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/subscriptions

This resource is used to manage subscriptions to event notifications related to WebRTC Signaling events. Note that there is one subscription per client instance.

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.1.3 GET
This operation is used for reading the list of active notification subscriptions.
6.1.3.1 Example: Reading all active subscriptions
(Informative)
Alice’s application reads all active subscriptions.
6.1.3.1.1 Request

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSubscriptionList xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <wrtcsNotificationSubscription>

 <callbackReference>

 <notifyURL>http://application-alice.example.com/webrtcsignaling/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7037</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

 </wrtcsNotificationSubscription>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions</resourceURL>

</wrtcs:wrtcsSubscriptionList>

6.1.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC2616].
6.1.5 POST
This operation is used to create a new subscription for notifications related to WebRTC Signaling events.

The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).

6.1.5.1 Example: Creating a new subscription, response with copy of created resource
(Informative)
Alice’s application creates a subscription.
6.1.5.1.1 Request

	POST /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsNotificationSubscription xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackReference>

 <notifyURL>http://application-alice.example.com/webrtcsignaling/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

</wrtcs:wrtcsNotificationSubscription>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsNotificationSubscription xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackReference>

 <notifyURL>http://application-alice.example.com/webrtcsignaling/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</wrtcs:wrtcsNotificationSubscription>

6.1.5.2 Example: Creating a new subscription, response with location of created resource
(Informative)
Alice’s application creates a subscription.
Besides showing subscription creation, this example illustrates a technique to return only a reference to the created resource, rather than a copy of it (defined in [REST_NetAPI_Common] as an alternative way of resource creation responses).
6.1.5.2.1 Request

	POST /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsNotificationSubscription xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackReference>

 <notifyURL>http://application-alice.example.com/webrtcsignaling/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

</wrtcs:wrtcsNotificationSubscription>

6.1.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</common:resourceReference>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC2616].
6.2 Resource: Individual subscription to WebRTC signaling notifications
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion/{userId}/subscriptions/{subscriptionId}

This resource represents an individual subscription to notifications related to WebRTC Signaling events.

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	subscriptionId
	Identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.2.3 GET
This operation is used for reading an individual subscription.

6.2.3.1 Example: Reading an individual subscription
(Informative)
Alice’s application reads a subscription.
6.2.3.1.1 Request

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsNotificationSubscription xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackReference>

 <notifyURL>http://application-alice.example.com/webrtcsignaling/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</wrtcs:wrtcsNotificationSubscription>

6.2.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].
6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].
6.2.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.2.6.1 Example: Cancelling a subscription
(Informative)
Alice’s application cancels a subscription.
6.2.6.1.1 Request

	DELETE /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

6.3 Resource: All WebRTC sessions
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions

This resource contains information about all WebRTC sessions available to a particular client instance.

6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.3.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.3.5 POST
This operation is used to create a new WebRTC session with the user represented by {userId} as Originator.
Apart from illustrating the creation of different types of sessions (audio-only and audio+video), this section also illustrates the different user identity options and response options after resource creation. In fact, these three dimensions are orthogonal.
6.3.5.1 Example: Creating a new WebRTC session – audio only, using tel URI
(Informative)

Alice’s application creates a new audio session, identifying Alice by means of a tel: URI.

Besides illustrating the creation of an audio-only WebRTC session, this example illustrates how a tel URI can be used to identify the user.

6.3.5.1.1 Request

	POST /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions HTTP/1.1
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <offer>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001
]]>
 </sdp>

 </offer>

 <clientCorrelator>4567</clientCorrelator>

</wrtcs:wrtcsSession>

6.3.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

Location: http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <status>Initiated</status>

 <offer>

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001
]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>
 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <payload>

 <payloadType>96</payloadType>

 <encoding>opus</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </offer>

 <clientCorrelator>4567</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>

</wrtcs:wrtcsSession>

6.3.5.2 Example: Creating a new WebRTC session – audio only, using SIP URI and encoding the SDP with base64
(Informative)

Alice’s application creates a new audio session, identifying Alice by means of a SIP URI.

Besides illustrating the creation of an audio-only WebRTC session, this example illustrates how a SIP URI can be used to identify the user, and how an SDP can be base64-encoded to be robust against the case that it contains characters which break the structure of XML or JSON.

6.3.5.2.1 Request

	POST /exampleAPI/webrtcsignaling/v1/sip%3Aalice%40example.com/sessions HTTP/1.1
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <offer>

 <sdpBase64>

ICAgICAgICAgICAgdj0wDQogICAgICAgICAgICBvPWFsaWNlc19icm93c2VyIDI4OTA4NDQ1MjYg

Mjg5MDg0MjgwNyBJTiBJUDQgMTAuMC4xLjENCiAgICAgICAgICAgIHM9DQogICAgICAgICAgICB0

PTAgMA0KICAgICAgICAgICAgYz1JTiBJUDQgMTkyLjAuMi4zMA0KICAgICAgICAgICAgYT1pY2Ut

cHdkOmFzZDg4ZmdwZGQ3Nzd1empZaGFnWmcNCiAgICAgICAgICAgIGE9aWNlLXVmcmFnOjhoaFkN

CiAgICAgICAgICAgIGE9ZmluZ2VycHJpbnQ6c2hhLTEgOTk6NDE6NDk6ODM6NGE6OTc6MGU6MWY6

ZWY6NmQ6Zjc6Yzk6Yzc6NzA6OWQ6MWY6NjY6Nzk6YTg6MDcNCiAgICAgICAgICAgIA0KICAgICAg

ICAgICAgbT1hdWRpbyAxMDAwMCBSVFAvU0FWUEYgMCA5Ng0KICAgICAgICAgICAgYT1ydHBtYXA6

MCBQQ01VLzgwMDANCiAgICAgICAgICAgIGE9cnRwbWFwOjk2IG9wdXMvNDgwMDANCiAgICAgICAg

ICAgIGE9c2VuZHJlY3YNCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjEgMSBVRFAgMjEzMDcwNjQz

MSAxMC4wLjEuMSA4MDAwIHR5cCBob3N0DQogICAgICAgICAgICBhPWNhbmRpZGF0ZToxIDIgVURQ

IDIxMzA3MDY0MzAgMTAuMC4xLjEgODAwMSB0eXAgaG9zdA0KICAgICAgICAgICAgYT1jYW5kaWRh

dGU6MiAxIFVEUCAxNjk0NDk4ODE1IDE5Mi4wLjIuMzAgMTAwMDAgdHlwIHNyZmx4IHJhZGRyIDEw

LjAuMS4xIHJwb3J0IDgwMDANCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjIgMiBVRFAgMTY5NDQ5

ODgxNCAxOTIuMC4yLjMwIDEwMDAxIHR5cCBzcmZseCByYWRkciAxMC4wLjEuMSBycG9ydCA4MDAx

DQo=

 </sdpBase64>

 </offer>

 <clientCorrelator>4567</clientCorrelator>

</wrtcs:wrtcsSession>

6.3.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

Location: http://example.com/exampleAPI/webrtcsignaling/v1/sip%3Aalice%40example.com/sessions/sess001
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <originatorAddress>sip:alice@example.com</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <status>Initiated</status>

 <offer>

 <type>Local</type>

 <sdpBase64>

ICAgICAgICAgICAgdj0wDQogICAgICAgICAgICBvPWFsaWNlc19icm93c2VyIDI4OTA4NDQ1MjYg

Mjg5MDg0MjgwNyBJTiBJUDQgMTAuMC4xLjENCiAgICAgICAgICAgIHM9DQogICAgICAgICAgICB0

PTAgMA0KICAgICAgICAgICAgYz1JTiBJUDQgMTkyLjAuMi4zMA0KICAgICAgICAgICAgYT1pY2Ut

cHdkOmFzZDg4ZmdwZGQ3Nzd1empZaGFnWmcNCiAgICAgICAgICAgIGE9aWNlLXVmcmFnOjhoaFkN

CiAgICAgICAgICAgIGE9ZmluZ2VycHJpbnQ6c2hhLTEgOTk6NDE6NDk6ODM6NGE6OTc6MGU6MWY6

ZWY6NmQ6Zjc6Yzk6Yzc6NzA6OWQ6MWY6NjY6Nzk6YTg6MDcNCiAgICAgICAgICAgIA0KICAgICAg

ICAgICAgbT1hdWRpbyAxMDAwMCBSVFAvU0FWUEYgMCA5Ng0KICAgICAgICAgICAgYT1ydHBtYXA6

MCBQQ01VLzgwMDANCiAgICAgICAgICAgIGE9cnRwbWFwOjk2IG9wdXMvNDgwMDANCiAgICAgICAg

ICAgIGE9c2VuZHJlY3YNCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjEgMSBVRFAgMjEzMDcwNjQz

MSAxMC4wLjEuMSA4MDAwIHR5cCBob3N0DQogICAgICAgICAgICBhPWNhbmRpZGF0ZToxIDIgVURQ

IDIxMzA3MDY0MzAgMTAuMC4xLjEgODAwMSB0eXAgaG9zdA0KICAgICAgICAgICAgYT1jYW5kaWRh

dGU6MiAxIFVEUCAxNjk0NDk4ODE1IDE5Mi4wLjIuMzAgMTAwMDAgdHlwIHNyZmx4IHJhZGRyIDEw

LjAuMS4xIHJwb3J0IDgwMDANCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjIgMiBVRFAgMTY5NDQ5

ODgxNCAxOTIuMC4yLjMwIDEwMDAxIHR5cCBzcmZseCByYWRkciAxMC4wLjEuMSBycG9ydCA4MDAx

DQo=

 </sdpBase64>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <payload>

 <payloadType>96</payloadType>

 <encoding>opus</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </offer>

 <clientCorrelator>4567</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/sip%3Aalice%40example.com/sessions/sess001</resourceURL>

</wrtcs:wrtcsSession>

6.3.5.3 Example: Creating a new WebRTC session – audio and video, using ACR
(Informative)

Alice’s application creates a new session with audio and video, identifying Alice by means of an ACR.

Besides illustrating the creation of a WebRTC session which contains audio and video, this example illustrates how an ACR (Anonymous Customer Reference) can be used to identify the user.

6.3.5.3.1 Request

	POST /exampleAPI/webrtcsignaling/v1/acr%3Apseudonym123/sessions HTTP/1.1
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <offer>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 10100 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101
]]>

 </sdp>

 </offer>

 <clientCorrelator>4567</clientCorrelator>

</wrtcs:wrtcsSession>

6.3.5.3.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

Location: http://example.com/exampleAPI/webrtcsignaling/v1/acr%3Apseudonym123/sessions/sess001
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <originatorAddress>acr:pseudonym123</originatorAddress>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <status>Initiated</status>

 <offer>

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 10100 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <payload>

 <payloadType>96</payloadType>

 <encoding>opus</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 <mediaIndicator>

 <type>Video</type>

 <entryIdx>1</entryIdx>

 <entryId>2</entryId>

 <streamId>stream1</streamId >

 <trackId>track2</trackId>

 <payload>

 <payloadType>97</payloadType>

 <encoding>H264</encoding>

 <formatParams>profile-level-id=4d0028;packetization-mode=1</formatParams>

 </payload>

 <payload>

 <payloadType>98</payloadType>

 <encoding>VP8</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </offer>

 <clientCorrelator>4567</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/acr%3Apseudonym123/sessions/sess001</resourceURL>

</wrtcs:wrtcsSession>

6.3.5.4 Example: Creating a new WebRTC session – audio and video, using acr:auth
(Informative)

Alice’s application creates a new session with audio and video, identifying Alice by means of acr:auth.

Besides illustrating the creation of a WebRTC session which contains audio and video, this example illustrates how an OAuth 2.0 bearer token can be used to identify the user. In the request URL, the string “acr:auth” indicates that the user identity can be obtained by evaluating the access token.
6.3.5.4.1 Request

	POST /exampleAPI/webrtcsignaling/v1/acr%3Aauth/sessions HTTP/1.1
Authorization: Bearer mF_9.B5f-4.1JqM
Accept: application/xml
Content-Type: application/xml

Host: example.com
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <offer>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 10100 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101
]]>

 </sdp>

 </offer>

 <clientCorrelator>4567</clientCorrelator>

</wrtcs:wrtcsSession>

6.3.5.4.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

Location: http://example.com/exampleAPI/webrtcsignaling/v1/acr%3Aauth/sessions/sess001
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <originatorAddress>acr%3Aauth</originatorAddress>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <status>Initiated</status>

 <offer>

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 10100 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101
]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <payload>

 <payloadType>96</payloadType>

 <encoding>opus</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 <mediaIndicator>

 <type>Video</type>

 <entryIdx>1</entryIdx>

 <entryId>2</entryId>

 <streamId>stream1</streamId >

 <trackId>track2</trackId>

 <payload>

 <payloadType>97</payloadType>

 <encoding>H264</encoding>

 <formatParams>profile-level-id=4d0028;packetization-mode=1</formatParams>

 </payload>

 <payload>

 <payloadType>98</payloadType>

 <encoding>VP8</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </offer>

 <clientCorrelator>4567</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/acr%3Apseudonym123/sessions/sess001</resourceURL>

</wrtcs:wrtcsSession>

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.4 Resource: Individual WebRTC session
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}
This resource represents a WebRTC session.

6.4.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the WebRTC session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.4.3 GET
This operation is used to retrieve information about a WebRTC session.

6.4.3.1 Example: Retrieving WebRTC session information
(Informative)
Alice’s application reads the session information, which includes an offer, an answer and a pending update offer.
6.4.3.1.1 Request

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.4.3.1.2 Response
The body of this response illustrates a session with an offer, the associated answer and a pending update.
	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<wrtcs:wrtcsSession xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>

 <tParticipantAddress>tel:+19585550101</tParticipantAddress>

 <tParticipantName>Bob</tParticipantName>

 <status>Connected</status>

 <offer>

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001
]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <payload>

 <payloadType>96</payloadType>

 <encoding>opus</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </offer>

 <answer>

 <type>Remote</type>

 <isProvisional>false</isProvisional>

 <sdp>

 <![CDATA[v=0

o=bob 98746513249823567101 0 IN IP4 192.0.2.1

s=

t=0 0

c=IN IP4 192.0.2.1

a=msid-semantic:WMS

a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

a=ice-ufrag:9uB6

a=ice-lite

m=audio 20000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10122

a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </answer>

 <update>

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 1 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 10000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 10100 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 <mediaIndicator>

 <type>Video</type>

 <entryIdx>1</entryIdx>

 <entryId>2</entryId>

 <streamId>stream1</streamId >

 <trackId>track2</trackId>

 <payload>

 <payloadType>97</payloadType>

 <encoding>H264</encoding>

 </payload>

 <payload>

 <payloadType>98</payloadType>

 <encoding>VP8</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </update>

 <clientCorrelator>4567</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>

</wrtcs:wrtcsSession>

6.4.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].
6.4.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].
6.4.6 DELETE

This operation is used by any Participant to terminate a WebRTC session, by the Terminating Participant to decline a WebRTC session invitation, or by the Originator to cancel a WebRTC session invitation before it has been accepted.
Upon acting on the DELETE request, the server removes the resource representing the session immediately.
6.4.6.1 Example: Cancelling or terminating a WebRTC session, or declining a WebRTC session invitation
(Informative)
Alice’s application deletes the created session. This cancels the invitation sent to Bob if Bob has not yet accepted, or terminates the session otherwise.
6.4.6.1.1 Request

	DELETE /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.4.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

6.5 Resource: Status of a WebRTC session
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/status

This resource represents the status of a WebRTC session.

6.5.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the WebRTC session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.5.3 GET
This operation is used to read the status of a WebRTC session.
6.5.3.1 Example: Reading the status of a WebRTC session
(Informative)
Alice’s application reads the status of the session.
6.5.3.1.1 Request

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/status HTTP/1.1

Accept: application/xml

Host: example.com

6.5.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSessionStatus xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <status>Ringing</status>

</wrtcs:wrtcsSessionStatus>

6.5.4 PUT
This operation is used to update the status of a WebRTC session, in order to accept a WebRTC session invitation, or to indicate that the Terminating Participant is being alerted (“Ringing”).200 OK and 204 No Content are valid success responses.

6.5.4.1 Example: Accepting a WebRTC session invitation
(Informative)
Alice’s application accepts a session invitation.
6.5.4.1.1 Request

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSessionStatus xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <status>Connected</status>

</wrtcs:wrtcsSessionStatus>

6.5.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSessionStatus xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <status>Connected</status>

</wrtcs:wrtcsSessionStatus>

6.5.4.2 Example: Indicating the alerting of the Terminating Participant (“Ringing”)
(Informative)
Alice’s application indicates that it is alerting the user.
6.5.4.2.1 Request

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSessionStatus xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <status>Ringing</status>

</wrtcs:wrtcsSessionStatus>

6.5.4.2.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSessionStatus xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <status>Ringing</status>

</wrtcs:wrtcsSessionStatus>

6.5.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.6 Resource: Initial or most recent offer in a WebRTC session
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/offer

This resource represents the initial or most recent offer in a WebRTC session. In case it represents the initial offer in the session, the offer may be answered or still unanswered, depending on whether or not the sibling resource “answer” exists. In case it does not represent the initial offer, the “answer” sibling always exists, i.e. the contents of this resource always represents the most recent answered offer.
Note that an additional sibling resource “update” may exist, which represents an update to the offer represented by the resource defined in the current section. More details can be found in section 6.8.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the WebRTC session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.6.3 GET
This operation is used to read the initial or most recent offer in a WebRTC session.

6.6.3.1 Example: Reading initial or most recent offer in a WebRTC session
(Informative)
Alice’s application reads the initial or most recent offer of the session.
6.6.3.1.1 Request

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/offer HTTP/1.1

Accept: application/xml

Host: example.com

6.6.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOffer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <payload>

 <payloadType>96</payloadType>

 <encoding>opus</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

</wrtcs:wrtcsOffer>

6.6.4 PUT
This operation is used to provide an offer to an offerless session invitation.

200 OK and 204 No Content are valid success responses.

6.6.4.1 Example: Providing an offer to an offerless session invitation
(Informative)
Alice’s application provides an offer to an offerless session invitation.
6.6.4.1.1 Request

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/offer HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOffer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <sdp>

 <![CDATA[v=0

o=alice 78643246856870134100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10200 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10044

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 9000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 9001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10200 typ srflx raddr 10.0.1.1 rport 9000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10201 typ srflx raddr 10.0.1.1 rport 9001

]]>

 </sdp>

</wrtcs:wrtcsOffer>

6.6.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOffer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 78643246856870134100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

m=audio 10200 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10044

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 10.0.1.1 9000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 9001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10200 typ srflx raddr 10.0.1.1 rport 9000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10201 typ srflx raddr 10.0.1.1 rport 9001

]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <payload>

 <payloadType>96</payloadType>

 <encoding>opus</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

</wrtcs:wrtcsOffer>

6.6.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.6.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.7 Resource: Most recent answer in a WebRTC session
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion/{userId}/sessions/{sessionId}/answer
This resource represents the most recent answer in a WebRTC session. This resource does not exist in the initial stages in the lifecycle of a session when an answer has not yet been received.
6.7.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the WebRTC session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.7.3 GET
This operation is used to read the most recent answer in a WebRTC session.

6.7.3.1 Example: Reading most recent answer in a WebRTC session
(Informative)
Alice’s application reads the most recent answer in a session.
6.7.3.1.1 Request

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/answer HTTP/1.1

Accept: application/xml

Host: example.com

6.7.3.1.2 Response
The answer in the example below corresponds e.g. to the offer in section 6.3.5.1.
	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsAnswer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <type>Remote</type>

 <isProvisional>false</isProvisional>

 <sdp>

 <![CDATA[v=0

o=bob 98746513249823567101 0 IN IP4 192.0.2.1

s=

t=0 0

c=IN IP4 192.0.2.1

a=msid-semantic:WMS

a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

a=ice-ufrag:9uB6

a=ice-lite

m=audio 20000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10122

a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host]]>
 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

</wrtcs:wrtcsAnswer>

6.7.4 PUT
This operation is used to provide an answer to an offer, such as a session invitation (initial offer) or session modification (update offer).

200 OK and 204 No Content are valid success responses.

6.7.4.1 Example: Providing an answer to an offer
(Informative)
Alice’s application provides an answer to Caesar’s offer.
6.7.4.1.1 Request
	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/answer HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsAnswer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <isProvisional>false</isProvisional>

 <sdp>

 <![CDATA[v=0

o=alice 78643246856870134100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 10200 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10044

a=candidate:1 1 UDP 2130706431 10.0.1.1 9000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 9001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10200 typ srflx raddr 10.0.1.1 rport 9000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10201 typ srflx raddr 10.0.1.1 rport 9001

]]>

 </sdp>

</wrtcs:wrtcsAnswer>

6.7.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsAnswer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <type>Local</type>

 <isProvisional>false</isProvisional>

 <sdp>

 <![CDATA[v=0

o=alice 78643246856870134100 0 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 10200 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10044

a=candidate:1 1 UDP 2130706431 10.0.1.1 9000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 9001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10200 typ srflx raddr 10.0.1.1 rport 9000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10201 typ srflx raddr 10.0.1.1 rport 9001

]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

</wrtcs:wrtcsAnswer>

6.7.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.8 Resource: Update offer in a WebRTC session
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion/{userId}/sessions/{sessionId}/update
This resource represents the most recent unanswered update offer in the WebRTC session. The content of this resource is moved to the sibling “offer” resource once an answer has been received for this offer.
6.8.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the WebRTC session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.8.3 GET
This operation is used to read the update offer in a WebRTC session.

6.8.3.1 Example: Reading the update offer in a WebRTC session
(Informative)
Alice’s application reads the update offer in the session.
6.8.3.1.1 Request

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Accept: application/xml

Host: example.com

6.8.3.1.2 Response
The update offer in this example updates an audio-only session (e.g. section 6.3.5.1) with video.
	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOffer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 1 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 10000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 10100 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101
]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 <mediaIndicator>

 <type>Video</type>

 <entryIdx>1</entryIdx>

 <entryId>2</entryId>

 <streamId>stream1</streamId >

 <trackId>track2</trackId>

 <payload>

 <payloadType>97</payloadType>

 <encoding>H264</encoding>

 </payload>

 <payload>

 <payloadType>98</payloadType>

 <encoding>VP8</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

</wrtcs:wrtcsOffer>

6.8.4 PUT
This operation is used to provide an update offer in a WebRTC session.

200 OK and 204 No Content are valid success responses.

6.8.4.1 Example: Initiating an update offer in a WebRTC session to upgrade from audio-only to audio+video
(Informative)

Alice’s application initiates an update offer towards Bob’s application to add video to the session.
Note that the “upgrade” semantics is only visible in the SDP which in a typical WebRTC deployment has been emitted by the browser and is merely passed to the involved network elements using this API. Hence, active control of the streams involved in a session is achieved using the WebRTC APIs in the browser, not this API.
6.8.4.1.1 Request

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOffer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 1 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 10000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 10100 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101
]]>

 </sdp>

</wrtcs:wrtcsOffer>

6.8.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOffer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 1 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 10000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 10100 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

a=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100

a=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101
]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 <mediaIndicator>

 <type>Video</type>

 <entryIdx>1</entryIdx>

 <entryId>2</entryId>

 <streamId>stream1</streamId >

 <trackId>track2</trackId>

 <payload>

 <payloadType>97</payloadType>

 <encoding>H264</encoding>

 </payload>

 <payload>

 <payloadType>98</payloadType>

 <encoding>VP8</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

</wrtcs:wrtcsOffer>

6.8.4.2 Example: Initiating an update offer in a WebRTC session to downgrade from audio+video to audio-only
(Informative)
Alice’s application initiates an update offer towards Bob’s application to remove video from the session.
Note that the “downgrade” semantics is only visible in the SDP which in a typical WebRTC deployment has been emitted by the browser and is merely passed to the involved network elements using this API. Hence, active control of the streams involved in a session is achieved using the WebRTC APIs in the browser, not this API.
6.8.4.2.1 Request

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOffer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 2 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 10000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 0 RTP/SAVPF 97

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

]]>

 </sdp>

</wrtcs:wrtcsOffer>

6.8.4.2.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOffer xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <type>Local</type>

 <sdp>

 <![CDATA[v=0

o=alice 89465676546571448100 2 IN IP4 10.0.1.1

s=

t=0 0

c=IN IP4 192.0.2.30

a=msid-semantic:WMS

a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 10000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10022

a=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000

a=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001

m=video 0 RTP/SAVPF 97

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=mid:2

a=msid:stream1 track2

a=ssrc:10033

]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

</wrtcs:wrtcsOffer>

6.8.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC2616].
6.8.6 DELETE

This operation is used by the Update Originator to cancel an update offer, and by the Update Recipient to decline an update offer.
6.8.6.1 Example: Cancelling or declining an update
(Informative)
Alice’s application declines an update offer.
6.8.6.1.1 Request

	DELETE /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/update HTTP/1.1

Accept: application/xml

Host: example.com

6.8.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

6.9 Resource: ICE status of a WebRTC session
The resource used is:

http://{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions/{sessionId}/ice/status
This resource represents the status of the ICE connectivity checks for the WebRTC session.

6.9.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts
Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	sessionId
	Identifier of the WebRTC session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.9.3 GET
This operation is used to retrieve the ICE status of the WebRTC session.
6.9.3.1 Example: Reading the ICE status of a WebRTC session
(Informative)
Alice’s application reads the ICE status of the session.
6.9.3.1.1 Request

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/ice/status HTTP/1.1

Accept: application/xml

Host: example.com

6.9.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsIceStatus xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <status>New</status>

</wrtcs:wrtcsIceStatus>

6.9.4 PUT
This operation is used for updating the ICE status of the WebRTC session.
200 OK and 204 No Content are valid success responses.
6.9.4.1 Example: Updating the ICE status of a WebRTC session
(Informative)
Alice’s application updates the ICE status of the session.
6.9.4.1.1 Request

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/ice/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsIceStatus xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <status>Connected</status>

</wrtcs:wrtcsIceStatus>

6.9.4.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsIceStatus xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <status>Connected</status>

</wrtcs:wrtcsIceStatus>

6.9.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.10 Resource: Client notification about WebRTC signaling events
This resource is a callback URL provided by the client for notifications about WebRTC session event notifications.

The RESTful WebRTC Signaling API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.10.5.

The following table applies to notifications related to WebRTC signaling events:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions

	Cancelled
	WrtcsEventNotification
	Participant, Update Recipient
	n/a
	WrtcsSession
	/{sessionId}

	SessionEnded
	WrtcsEventNotification
	Participants
	n/a
	WrtcsSession
	/{sessionId}

	Declined
	WrtcsEventNotification
	Originator, Update Originator
	n/a
	WrtcsSession
	/{sessionId}

	NoAnswer
	WrtcsEventNotification
	Originator
	n/a
	WrtcsSession
	{sessionId}

	NotReachable
	WrtcsEventNotification
	Originator
	n/a
	WrtcsSession
	/{sessionId}

	Ringing
	WrtcsEventNotification
	Originator
	n/a
	WrtcsSession
	/{sessionId}

	Busy
	WrtcsEventNotification
	Originator
	n/a
	WrtcsSession
	/{sessionId}

If the event type is one of Cancelled, SessionEnded, Declined, NoAnswer, NotReachable and Busy, the underlying session changes its status to “Closed”. Resources representing closed sessions can be removed from the server immediately, or after a time period defined by service provider policies.
6.10.1 Request URL variables

Client provided if any.
6.10.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.10.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.10.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.10.5 POST
This operation is used to notify the client about WebRTC signaling events.
6.10.5.1 Example: Notify a client about the “Ringing” event
(Informative)
Alice’s application is informed that Bob is being alerted.
6.10.5.1.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsEventNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

 <eventType>Ringing</eventType>

 <eventDescription>The called party is being alerted.</eventDescription>

</wrtcs:wrtcsEventNotification>

6.10.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.10.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.11 Resource: Client notification about WebRTC session invitation
This resource is a callback URL provided by the client for notifications about WebRTC session invitations.

The RESTful WebRTC Signaling API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.11.5.

The following table applies to WebRTC session invitation notifications:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions

	n/a
	WrtcsSessionInvitationNotification
	Terminating Participant
	accept (6.5.4)

decline (6.4.6)
	WrtcsSession
	/{sessionId}

The resource URL of the resource representing the underlying WebRTC session is passed in the “href” attribute of the “link” element with rel=”WrtcsSession”.

To accept the session invitation request, the application of the Terminating Participant MUST update the status of the session as defined in section 6.5.4. The status is represented by the child “/status” of the resource representing the WebRTC session.

To decline the session invitation request, the application of the Terminating Participant MUST destroy the resource representing the underlying WebRTC session as defined in section 6.4.6.
6.11.1 Request URL variables

Client provided if any.
6.11.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.11.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.11.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.11.5 POST
This operation is used to notify the client about WebRTC session invitations.
6.11.5.1 Example: Notify a client about a WebRTC session invitation
(Informative)
Alice’s application is informed that Caesar invites Alice to a WebRTC session.
6.11.5.1.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSessionInvitationNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

 <originatorAddress>tel:+19585550102</originatorAddress>

 <originatorName>Caesar</originatorName>

 <tParticipantAddress>tel:+19585550100</tParticipantAddress>

 <tParticipantName>Alice</tParticipantName>

 <offer>

 <type>Remote</type>

 <sdp>

 <![CDATA[v=0

o=caesar 86765415341651786102 0 IN IP4 192.0.2.1

s=

t=0 0

c=IN IP4 192.0.2.1

a=msid-semantic:WMS

a=fingerprint:sha-1 88:77:79:13:4f:32:0a:8b:21:ff:f3:a9:43:bc:d9:f3:11:82:71:be

a=ice-pwd:Ld0K23q46KJGu7643dcIUT

a=ice-ufrag:3yXa

a=ice-lite

m=audio 30000 RTP/SAVPF 0 96

a=rtpmap:0 PCMU/8000

a=rtpmap:96 opus/48000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10144

a=candidate:1 1 UDP 2130706431 192.0.2.1 30000 typ host

a=candidate:1 2 UDP 2130706430 192.0.2.1 30001 typ host
]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <payload>

 <payloadType>96</payloadType>

 <encoding>opus</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </offer>

</wrtcs:wrtcsSessionInvitationNotification>

6.11.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.11.5.2 Example: Notify a client about a WebRTC session invitation without offer (aka offerless invite)
(Informative)
Alice’s application is informed that Alice is invited to a WebRTC session, and that it is solicited to provide an offer.
6.11.5.2.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSessionInvitationNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

 <originatorAddress>tel:+19585550102</originatorAddress>

 <originatorName>Caesar</originatorName>

 <tParticipantAddress>tel:+19585550100</tParticipantAddress>

 <tParticipantName>Alice</tParticipantName>

</wrtcs:wrtcsSessionInvitationNotification>

6.11.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.11.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.12 Resource: Client notification about session invitation acceptance or session update acceptance
This resource is a callback URL provided by the client for notifications about the acceptance of session invitations or session updates.

The RESTful WebRTC Signaling API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.12.5.
To WebRTC session invitation / update acceptance notifications, the following table applies:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions

	n/a
	WrtcsAcceptanceNotification
	Originator
	n/a
	WrtcsSession
	/{sessionId}

The resource URL of the resource representing the underlying WebRTC session is passed in the “href” attribute of the “link” element with rel=”WrtcsSession”.
The accepted offer can be found in the “offer” child element of the session referenced by the above link.
The notification includes an “answer” child element if an answer was provided by the underlying network as part of declaring acceptance. Note that an answer can also be sent earlier than declaring acceptance; in such a case the notification does not include an “answer” child element. The “answer” child MUST also be available in the session resource referenced from the notification, regardless of whether or not it has been embedded in the notification.
6.12.1 Request URL variables

Client provided if any.
6.12.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.12.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.12.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.12.5 POST
This operation is used to notify the client about WebRTC session invitation / session update acceptance.
6.12.5.1 Example: Notify a client about session invitation acceptance / update acceptance, including answer
(Informative)
Alice’s application is informed that Bob has accepted the session invitation, and receives an answer SDP.
6.12.5.1.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsAcceptanceNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

 <answer>

 <type>Remote</type>

 <isProvisional>false</isProvisional>

 <sdp>

 <![CDATA[v=0

o=bob 98746513249823567101 0 IN IP4 192.0.2.1

s=

t=0 0

c=IN IP4 192.0.2.1

a=msid-semantic:WMS

a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

a=ice-ufrag:9uB6

a=ice-lite

m=audio 20000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10122

a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </answer>

</wrtcs:wrtcsAcceptanceNotification>

6.12.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.12.5.2 Example: Notify a client about session invitation acceptance / update acceptance, without answer
(Informative)
Alice’s application is informed that Bob has accepted the session invitation. The answer SDP has been received in a previous notification.
6.12.5.2.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsAcceptanceNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

</wrtcs:wrtcsAcceptanceNotification>

6.12.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.12.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.13 Resource: Client notification about update offer in a WebRTC session
This resource is a callback URL provided by the client for notifications about update offers in a WebRTC session.
The RESTful WebRTC API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.13.5.
The following table applies to WebRTC update offer notifications:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions

	n/a
	WrtcsOfferNotification
	Update Recipient
	accept (6.7.4)

decline (6.8.6)
	WrtcsSession

	/{sessionId}

The resource URL of the resource representing the underlying WebRTC session is passed in the “href” attribute of the “link” element with rel=”WrtcsSession”.
The application MUST either accept or decline the offer contained in the notification.

· To accept the offer, the application MUST create an answer, and update the “answer” object of the session as defined in section 6.7.4. The “answer” object of the session is represented by the child “answer” of the resource representing the WebRTC session.

· To decline the offer, the application MUST destroy the resource representing the “update offer” object in the underlying WebRTC session as defined in section 6.8.6. The “update offer” object of the session is represented by the child “update” of the resource representing the WebRTC session.
6.13.1 Request URL variables

Client provided if any.
6.13.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.13.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.13.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.13.5 POST
This operation is used to notify the client about an update offer in a WebRTC session.
6.13.5.1 Example: Notify a client about an update offer in a WebRTC session, adding video
(Informative)
Alice’s application receives an update offer that adds video to an audio-only session.
6.13.5.1.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOfferNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

 <offer>

 <type>Remote</type>

 <sdp>

 <![CDATA[v=0

o=caesar 86765415341651786102 1 IN IP4 192.0.2.1

s=

t=0 0

c=IN IP4 192.0.2.1

a=msid-semantic:WMS

a=fingerprint:sha-1 88:77:79:13:4f:32:0a:8b:21:ff:f3:a9:43:bc:d9:f3:11:82:71:be

a=ice-pwd:Ld0K23q46KJGu7643dcIUT

a=ice-ufrag:3yXa

a=ice-lite

m=audio 30000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10144

a=candidate:1 1 UDP 2130706431 192.0.2.1 30000 typ host

a=candidate:1 2 UDP 2130706430 192.0.2.1 30001 typ host

m=video 30300 RTP/SAVPF 97 98

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=rtpmap:98 VP8/90000

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10155

a=candidate:1 1 UDP 2130706431 10.0.1.1 9100 typ host

a=candidate:1 2 UDP 2130706430 10.0.1.1 9101 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.30 30300 typ srflx raddr 10.0.1.1 rport 9100

a=candidate:2 2 UDP 1694498814 192.0.2.30 30301 typ srflx raddr 10.0.1.1 rport 9101
]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 <mediaIndicator>

 <type>Video</type>

 <entryIdx>1</entryIdx>

 <entryId>2</entryId>

 <streamId>stream1</streamId >

 <trackId>track2</trackId>

 <payload>

 <payloadType>97</payloadType>

 <encoding>H264</encoding>

 </payload>

 <payload>

 <payloadType>98</payloadType>

 <encoding>VP8</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </offer>

</wrtcs:wrtcsOfferNotification>

6.13.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.13.5.2 Example: Notify a client about an update offer in a WebRTC session, removing video
(Informative)
Alice’s application receives an update offer that removes video from an audio/video session.
6.13.5.2.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsOfferNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

 <offer>

 <sdp>

 <![CDATA[v=0

o=caesar 86765415341651786102 2 IN IP4 192.0.2.1

s=

t=0 0

c=IN IP4 192.0.2.1

a=msid-semantic:WMS

a=fingerprint:sha-1 88:77:79:13:4f:32:0a:8b:21:ff:f3:a9:43:bc:d9:f3:11:82:71:be

a=ice-pwd:Ld0K23q46KJGu7643dcIUT

a=ice-ufrag:3yXa

a=ice-lite

m=audio 30000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10144

a=candidate:1 1 UDP 2130706431 192.0.2.1 30000 typ host

a=candidate:1 2 UDP 2130706430 192.0.2.1 30001 typ host

m=video 0 RTP/SAVPF 97

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=mid:2

a=msid:stream1 track2

a=ssrc:10155]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </offer>

</wrtcs:wrtcsOfferNotification>

6.13.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.13.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.14 Resource: Client notification about answer in a WebRTC session
This resource is a callback URL provided by the client for notifications about answers in a WebRTC session.

The RESTful WebRTC Signaling API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.13.5.

The following table applies to WebRTC answer notifications:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions

	n/a
	WrtcsAnswerNotification
	Originator,

Terminating Participant,

Update Originator
	n/a
	WrtcsSession

	/{sessionId}

The resource URL of the resource representing the underlying WebRTC session is passed in the “href” attribute of the “link” element with rel=”WrtcsSession”.
Depending on the actual flow, this notification may be sent to Originator (answer to a session invitation), Terminating Participant (answer to an offer in an offerless session invitation) or Update Originator (answer to an update offer).

The application needs to take notice of the state change of the session signaled by the answer. If the application runs in a web browser supporting WebRTC [W3C_WebRTC], this usually means to install the answer in the PeerConnection object representing the session.

6.14.1 Request URL variables

Client provided if any.
6.14.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.14.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.14.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.14.5 POST
This operation is used to notify the client about an update offer in a WebRTC session.
6.14.5.1 Example: Notify a client about an answer in a WebRTC session
(Informative)
Alice’s application receives an answer from Bob.
6.14.5.1.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsAnswerNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

 <answer>

 <type>Remote</type>

 <isProvisional>false</isProvisional>

 <sdp>

 <![CDATA[v=0

o=bob 98746513249823567101 0 IN IP4 192.0.2.1

s=

t=0 0

c=IN IP4 192.0.2.1

a=msid-semantic:WMS

a=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03

a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh

a=ice-ufrag:9uB6

a=ice-lite

m=audio 20000 RTP/SAVPF 0

a=rtpmap:0 PCMU/8000

a=sendrecv

a=mid:1

a=msid:stream1 track1

a=ssrc:10122

a=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host

a=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host

m=video 20200 RTP/SAVPF 97

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=4d0028;packetization-mode=1

a=sendrecv

a=mid:2

a=msid:stream1 track2

a=ssrc:10133

a=candidate:1 1 UDP 2130706431 192.0.2.1 20200 typ host

a=candidate:1 2 UDP 2130706430 192.0.2.1 20201 typ host]]>

 </sdp>

 <mediaIndicator>

 <type>Audio</type>

 <entryIdx>0</entryIdx>

 <entryId>1</entryId>

 <streamId>stream1</ streamId >

 <trackId>track1</trackId>

 <payload>

 <payloadType>0</payloadType>

 <encoding>PCMU</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 <mediaIndicator>

 <type>Video</type>

 <entryIdx>1</entryIdx>

 <entryId>2</entryId>

 <streamId>stream1</ streamId >

 <trackId>track2</trackId>

 <payload>

 <payloadType>97</payloadType>

 <encoding>H264</encoding>

 </payload>

 <direction>SendRecv</direction>

 </mediaIndicator>

 </answer>

</wrtcs:wrtcsAnswerNotification>

6.14.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.14.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.15 Resource: Client notification about subscription cancellation
This resource is a callback URL provided by the client for notifications about subscription cancellation.

The RESTful WebRTC Signaling API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.15.5.
The notification is sent by the server to the user to whom the cancelled subscription belongs.

The following table applies to WebRTC subscription cancellation notifications:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/webrtcsignaling/{apiVersion}/{userId}

	n/a
	WrtcsSubscriptionCancellationNotification
	subscriber
	n/a
	WrtcsNotificationSubscription
	/subscriptions/{subscriptionId}

6.15.1 Request URL variables

Client provided if any.
6.15.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.15.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.15.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.15.5 POST
This operation is used to notify the client about a cancelled subscription, e.g. due to expiry or an error.
6.15.5.1 Example: Notify a client about subscription cancellation due to expiry
(Informative)
Alice’s application is informed about subscription expiry.
6.15.5.1.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSubscriptionCancellationNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

<callbackData>abcd</callbackData>

<link rel="WrtcsNotificationSubscription"
 href="http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
</wrtcs:wrtcsSubscriptionCancellationNotification >

6.15.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.15.5.2 Example: Notify a client about subscription cancellation due to an error
(Informative)
Alice’s application is informed about subscription expiry due to an error.
6.15.5.2.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsSubscriptionCancellationNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

<callbackData>abcd</callbackData>

<link rel="WrtcsNotificationSubscription"
 href="http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
 <reason>

 <messageId>SVC2001</messageId>

 <text>No server resources available to process the request </text>

 </reason>

</wrtcs:wrtcsSubscriptionCancellationNotification>

6.15.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.15.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.16 Resource: Client notification about conflicts
This resource is a callback URL provided by the client for notifications about conflicts.

The RESTful WebRTC Signaling API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described in section 6.15.5.

The following table applies to WebRTC conflict notifications:

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/webrtcsignaling/{apiVersion}/{userId}/sessions

	n/a
	WrtcsConflictNotification
	Depends
	n/a
	WrtcsSession
WrtcsOffer
	/{sessionId}
/{sessionId}/offer
or
/{sessionId}/update

The resource URL of the resource representing the underlying WebRTC session is passed in the “href” attribute of the “link” element with rel=”WrtcsSession”.
A reference to the initial offer or update offer that needs to be rolled back to resolve the conflict is passed in the “href” attribute of the “link” element with rel=”WrtcsOffer”.
6.16.1 Request URL variables

Client provided if any.
6.16.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for WebRTC Signaling, see section 7.
6.16.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.16.4 PUT
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.16.5 POST
This operation is used to notify the client about a conflict that violates the offer-answer sequence rules. Such conflict is typically resolved by rolling back the offer that caused the conflict, which is referenced via a link from the notification.

6.16.5.1 Example: Notify a client about a conflict
(Informative)
Alice’s application is informed about a conflict regarding the update offer.
6.16.5.1.1 Request

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com

<?xml version="1.0" encoding="UTF-8"?>

<wrtcs:wrtcsConflictNotification xmlns:wrtcs="urn:oma:xml:rest:netapi:webrtcsignaling:1">

 <callbackData>abcd</callbackData>

 <link rel="WrtcsSession"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001"/>

 <link rel="WrtcsOffer"

 href="http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/update"/>

 <link rel="WrtcsNotificationSubscription"

 href=" http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

 <reason>

 <messageId>SVC1007</messageId>

 <text>Offer rejected due to conflict.</text>

 </reason>

</wrtcs:wrtcsConflictNotification>

6.16.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.16.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful WebRTC Signaling API.
7.1.1 SVC1007: Offer rejected due to conflict
	Name
	Description

	MessageID
	SVC1007

	Text
	Offer rejected due to conflict

	Variables
	None

	HTTP status code(s)
	403 Forbidden

The offer-answer model mandates that there is at most one unanswered offer at any point in time during a session. The exception above is thrown if this constraint is violated by the client (e.g. by sending another offer while the answer to the previous offer is still pending), or if a race condition in the network has led to a violation of that constraint.
7.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Policy Exception codes defined for the RESTful WebRTC Signaling API.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _VVoIP-V1_0
	26 March 2013
	ALL
	 First version based on OMA-ARC-2013-0029R01-INP_VVOIP_API_TS_baseline

	
	07 May 2013
	2, 3, 5
	Incorporated OMA-ARC-REST-VVOIP-2013-0004-CR_References_Intro

	
	14 May 2013
	5.1
	Incorporated OMA-ARC-REST-VVOIP-2013-0005R01-CR_Resources_Methods

	
	22 May 2013
	5.1
	Incorporated OMA-ARC-REST-VVOIP-2013-0009-CR_VVOIP_TS_small_fixes

	
	05 June 2013
	Many
	Incorporated OMA-ARC-REST-VVOIP-2013-0006R03-CR_Data_structures

	
	02 July 2013
	5.1, 5.2
	Incorporated OMA-ARC-REST-VVOIP-2013-0012R01-CR_Ringing_indicator_TS

	
	15 July 2013
	Many
	Incorporated OMA-ARC-REST-VVOIP-2013-0008R01-CR_Flows

	
	22 July 2013
	Many
	Incorporated OMA-ARC-REST-VVOIP-2013-0015R01-CR_More_Flows

	
	07 August 2013
	Many
	Incorporated CRs:

· OMA-ARC-REST-VVOIP-2013-0017-CR_Even_More_Flows
· OMA-ARC-REST-VVOIP-2013-0019R01-CR_Indicators
· OMA-ARC-VVOIP-2013-0020R01-CR_Final_Set_of_Flows

	
	09 Sept 2013
	5.1, 6
	Incorporated CR: OMA-ARC-REST-VVOIP-2013-0023-CR_Section_6_skeleton

	
	07 Oct 2013

	Many
	Incorporated CRs

· OMA-ARC-REST-VVOIP-2013-0024-CR_link_rel

· OMA-ARC-REST-VVOIP-2013-0025-CR_GSMA_indicators

· OMA-ARC-REST-VVOIP-2013-0027R01-CR_sect_4_Introduction

· OMA-ARC-REST-VVOIP-2013-0028-CR_sect_5_fixes

· OMA-ARC-REST-VVOIP-2013-0029R02-CR_sect_6_resources_and_examples

· OMA-ARC-REST-VVOIP-2013-0030-CR_SCRs

· OMA-ARC-REST-VVOIP-2013-0031R01-CR_JSON

· OMA-ARC-REST-VVOIP-2013-0032-CR_Authorization

OMA-ARC-REST-VVOIP-2013-0035-CR_sect_7

	
	09 Oct 2013

	Many
	Incorporated CRs

· OMA-ARC-REST-VVOIP-2013-0036-CR_Dropping_Trickle_ICE
· OMA-ARC-REST-VVOIP-2013-0038-CR_Renaming_Alerting_to_Ringing_in_flows
· OMA-ARC-REST-VVOIP-2013-0040R02-CR_Resolving_remaining_editors_notes

	
	20 Nov 2013
	Many
	Incorporated CRs and CONR comment resolutions

· OMA-ARC-REST-VVOIP-2013-0041R01-CR_CONR_editorials_and_small_bugs

· OMA-ARC-REST-VVOIP-2013-0045R01-CR_more_CONR_resolutions

· OMA-ARC-REST-VVOIP-2013-0046R01-INP_CONR_comments_discussion_and_resolution_proposals: comments A01, A62, A66, A78

	
	17 Dec 2013
	Many
	Incorporated CRs

· OMA-ARC-REST-VVOIP-2013-0048R01-CR_CONR_A70
· OMA-ARC-REST-VVOIP-2013-0049-CR_CONR_A25_Chapter_5
· OMA-ARC-VVOIP-2013-0050R01_CR_CONR_A99_A105_A108

	Draft Version:

REST_NetAPI_WebRTCSignaling-V1_0
	14 Jan 2014
	All
	API renamed by CR OMA-ARC-REST-VVOIP-2013-0056.
Incorporated further CRs:

· OMA-ARC-REST-VVOIP-2013-0053-CR_Bring_back_type_element_in_Offer_and_Answer
· OMA-ARC-REST-VVOIP-2014-0002R01-CR_CONR_resolution_A18
· OMA-ARC-REST-VVOIP-2014-0004-CR_CONR_resolution_A56_A59
· OMA-ARC-REST-VVOIP-2014-0008-CR_XSD_11

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
B.1 SCR for REST.WRTCSIG Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-SUPPORT-S-001-M
	Support for the RESTful WebRTC Signaling API
	5,6
	

	REST- WRTCSIG-SUPPORT-S-002-M
	Support for the XML request & response format
	6
	

	REST- WRTCSIG-SUPPORT-S-003-M
	Support for the JSON request & response format
	6
	

B.1.1 SCR for REST.WRTCSIG.Subscriptions Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-SUBSCR-S-001-M
	Support for subscriptions to notifications regarding WebRTC Signaling events
	6.1
	

	REST-WRTCSIG-SUBSCR-S-002-O
	Read the list of active subscriptions – GET
	6.1.3
	

	REST-WRTCSIG-SUBSCR-S-003-M
	Create new subscription – POST
	6.1.5
	

B.1.2 SCR for REST.WRTCSIG.IndSubscription Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-INDSUBSCR-S-001-M
	Support for accessing an individual subscription to notifications regarding WebRTC Signaling events
	6.2
	

	REST-WRTCSIG-INDSUBSCR-S-002-O
	Read an individual subscription – GET
	6.2.3
	

	REST-WRTCSIG-INDSUBSCR-S-003-M
	Cancel subscription and stop corresponding notifications – DELETE
	6.2.6
	

B.1.3 SCR for REST.WRTCSIG.Sessions Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-SESS-S-001-M
	Support for WebRTC sessions
	6.3
	

	REST-WRTCSIG-SESS-S-002-M
	Create a new WebRTC session – POST
	6.3.5
	

B.1.4 SCR for REST.WRTCSIG.IndSession Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-INDSESS-S-001-M
	Support for individual WebRTC sessions
	6.4
	

	REST-WRTCSIG-INDSESS-S-002-O
	Retrieve information about an individual WebRTC session – GET
	6.4.3
	

	REST-WRTCSIG-INDSESS-S-003-M
	Terminate individual WebRTC session – DELETE
	6.4.6
	

	REST-WRTCSIG-INDSESS-S-004-M
	Cancel WebRTC session invitation – DELETE
	6.4.6
	

	REST-WRTCSIG-INDSESS-S-005-M
	Decline WebRTC session invitation _DELETE
	6.4.6
	

B.1.5 SCR for REST.WRTCSIG.IndSession.Status Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-STATUS-S-001-M
	Support for WebRTC session status
	6.5

	

	REST-WRTCSIG-STATUS-S-002-M
	Retrieve WebRTC session status – GET
	6.5.3
	

	REST-WRTCSIG-STATUS-S-003-M
	Update WebRTC session status – PUT
	6.5.4
	

B.1.6 SCR for REST.WRTCSIG.IndSession.Offer Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-OFFER-S-001-M
	Support for offer in a WebRTC session
	6.6

	

	REST-WRTCSIG-OFFER-S-002-M
	Retrieve offer – GET
	6.6.3
	

	REST-WRTCSIG-OFFER-S-003-M
	Provide offer – PUT
	6.6.4
	

B.1.7 SCR for REST.WRTCSIG.IndSession.Answer Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-ANSWER-S-001-M
	Support for answer in a WebRTC session
	6.7

	

	REST-WRTCSIG- ANSWER -S-002-M
	Retrieve answer – GET
	6.7.3
	

	REST-WRTCSIG-ANSWER-S-003-M
	Provide answer – PUT
	6.7.4
	

B.1.8 SCR for REST.WRTCSIG.IndSession.Update Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-UPDATE-S-001-M
	Support for update offer in a WebRTC session
	6.8

	

	REST-WRTCSIG- UPDATE-S-002-M
	Retrieve update offer – GET
	6.8.3
	

	REST-WRTCSIG- UPDATE-S-003-M
	Initiate update offer – PUT
	6.8.4
	

	REST-WRTCSIG- UPDATE-S-004-M
	Cancel / Decline update offer – DELETE
	6.8.6
	

B.1.9 SCR for REST.WRTCSIG.IndSession.IceStatus Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-ICESTAT-S-001-M
	Support for ICE status in a WebRTC session
	6.9

	

	REST-WRTCSIG-ICESTAT-S-002-M
	Retrieve ICE status – GET
	6.9.3
	

	REST-WRTCSIG-ICESTAT-S-003-M
	Update ICE status– PUT
	6.9.4
	

B.1.10 SCR for REST.WRTCSIG.Notifications.Event Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-NOTIF-EVENT-S-001-M
	Support for notifications about WebRTC signaling events
	6.10
	

	REST-WRTCSIG-NOTIF-EVENT-S-002-M
	Notification about WebRTC signaling event – POST
	6.10.5

	

B.1.11 SCR for REST.WRTCSIG.Notifications.Invite Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-NOTIF-INVITE-S-001-M
	Support for notifications about WebRTC session invitations
	6.11
	

	REST-WRTCSIG-NOTIF-INVITE-S-002-M
	Notification about WebRTC session invitation – POST
	6.11.5

	

B.1.12 SCR for REST.WRTCSIG.Notifications.Acceptance Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-NOTIF-ACCEPT-S-001-M
	Support for notifications about acceptance of session invitations or updates
	6.12
	

	REST-WRTCSIG-NOTIF-ACCEPT-S-002-M
	Notification about acceptance of session invitation or update – POST
	6.12.5
	

B.1.13 SCR for REST.WRTCSIG.Notifications.Offer Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-NOTIF-OFFER-S-001-M
	Support for notifications about update offer in a WebRTC session
	6.13
	

	REST-WRTCSIG-NOTIF-OFFER-S-002-M
	Notification about update offer offer in a WebRTC session – POST
	6.13.5

	

B.1.14 SCR for REST.WRTCSIG.Notifications.Answer Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-NOTIF-ANSWER-S-001-M
	Support for notifications about answer in a WebRTC session
	6.14
	

	REST-WRTCSIG-NOTIF-ANSWER-S-002-M
	Notification about answer in a WebRTC session – POST
	6.14.5

	

B.1.15 SCR for REST.WRTCSIG.Notifications.SubscriptionCancellation Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-NOTIF-SUBCXL-S-001-M
	Support for notifications about subscription cancellation
	6.15
	

	REST-WRTCSIG-NOTIF-SUBCXL-S-002-M
	Notification about subscription cancellation – POST
	6.15.5
	

B.1.16 SCR for REST.WRTCSIG.Notifications.Conflict Server

	Item
	Function
	Reference
	Requirement

	REST-WRTCSIG-NOTIF-CONFLICT-S-001-M
	Support for notifications about conflicts
	6.16

	

	REST-WRTCSIG-NOTIF-CONFLICT-S-002-M
	Notification about conflict – POST
	6.16.5
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This specification does not define any API request based on application/x-www-form-urlencoded MIME type.

Appendix D. JSON examples
(Informative)

Ed. Note: The JSON needs to be re-created at the end of CONR resolution. The JSON request/response headers have been updated already by the CONR resolution CRs.

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.
D.1 Reading all active subscriptions (section 6.1.3.1)

Request:

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/json
Host: example.com

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsSubscriptionList": {

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions",

 "wrtcsNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application-alice.example.com/webrtcsignaling/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7037",

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"

 }

}}

D.2 Creating a new subscription, response with copy of created resource (section 6.1.5.1)

Request:

	POST /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com
{"wrtcsNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application-alice.example.com/webrtcsignaling/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json

Location: http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application-alice.example.com/webrtcsignaling/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200",

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"

}}

D.3 Creating a new subscription, response with location of created resource (section 6.1.5.2)

Request:

	POST /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com

{"wrtcsNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application-alice.example.com/webrtcsignaling/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json

Location: http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT
{"resourceReference": {"resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"}}

D.4 Reading an individual subscription (section 6.2.3.1)

Request:

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/json

Host: example.com

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application-alice.example.com/webrtcsignaling/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200",

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001"

}}

D.5 Cancelling a subscription (section 6.2.6.1)

Request:

	DELETE /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001 HTTP/1.1
Accept: application/json
Host: example.com

Response:

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

D.6 Creating a new WebRTC session – audio only, using tel URI (section 6.3.5.1)

Request:

	POST /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions HTTP/1.1
Accept: application/json

Content-Type: application/json

Host: example.com
Content-Length: nnnn

{"wrtcsSession": {

 "clientCorrelator": "4567",

 "offer": {"sdp": "v=0\no=alice 89465676546571448100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001"},

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

Location: http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001
{"wrtcsSession": {

 "clientCorrelator": "4567",

 "offer": {

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": [

 {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 {

 "encoding": "opus",

 "payloadType": "96"

 }

],

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=alice 89465676546571448100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001",

 "type": "Local"

 },

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001",

 "status": "Initiated",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

D.7 Creating a new WebRTC session – audio only, using SIP URI and encoding the SDP with base64 (section 6.3.5.2)

Request:

	POST /exampleAPI/webrtcsignaling/v1/sip%3Aalice%40example.com/sessions HTTP/1.1
Accept: application/json

Content-Type: application/json

Host: example.com
Content-Length: nnnn

{"wrtcsSession": {

 "clientCorrelator": "4567",

 "offer": {"sdpBase64": "ICAgICAgICAgICAgdj0wDQogICAgICAgICAgICBvPWFsaWNlc19icm93c2VyIDI4OTA4NDQ1MjYg\nMjg5MDg0MjgwNyBJTiBJUDQgMTAuMC4xLjENCiAgICAgICAgICAgIHM9DQogICAgICAgICAgICB0\nPTAgMA0KICAgICAgICAgICAgYz1JTiBJUDQgMTkyLjAuMi4zMA0KICAgICAgICAgICAgYT1pY2Ut\ncHdkOmFzZDg4ZmdwZGQ3Nzd1empZaGFnWmcNCiAgICAgICAgICAgIGE9aWNlLXVmcmFnOjhoaFkN\nCiAgICAgICAgICAgIGE9ZmluZ2VycHJpbnQ6c2hhLTEgOTk6NDE6NDk6ODM6NGE6OTc6MGU6MWY6\nZWY6NmQ6Zjc6Yzk6Yzc6NzA6OWQ6MWY6NjY6Nzk6YTg6MDcNCiAgICAgICAgICAgIA0KICAgICAg\nICAgICAgbT1hdWRpbyAxMDAwMCBSVFAvU0FWUEYgMCA5Ng0KICAgICAgICAgICAgYT1ydHBtYXA6\nMCBQQ01VLzgwMDANCiAgICAgICAgICAgIGE9cnRwbWFwOjk2IG9wdXMvNDgwMDANCiAgICAgICAg\nICAgIGE9c2VuZHJlY3YNCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjEgMSBVRFAgMjEzMDcwNjQz\nMSAxMC4wLjEuMSA4MDAwIHR5cCBob3N0DQogICAgICAgICAgICBhPWNhbmRpZGF0ZToxIDIgVURQ\nIDIxMzA3MDY0MzAgMTAuMC4xLjEgODAwMSB0eXAgaG9zdA0KICAgICAgICAgICAgYT1jYW5kaWRh\ndGU6MiAxIFVEUCAxNjk0NDk4ODE1IDE5Mi4wLjIuMzAgMTAwMDAgdHlwIHNyZmx4IHJhZGRyIDEw\nLjAuMS4xIHJwb3J0IDgwMDANCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjIgMiBVRFAgMTY5NDQ5\nODgxNCAxOTIuMC4yLjMwIDEwMDAxIHR5cCBzcmZseCByYWRkciAxMC4wLjEuMSBycG9ydCA4MDAx\nDQo="},

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

Location: http://example.com/exampleAPI/webrtcsignaling/v1/sip%3Aalice%40example.com/sessions/sess001
{"wrtcsSession": {

 "clientCorrelator": "4567",

 "offer": {

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": [

 {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 {

 "encoding": "opus",

 "payloadType": "96"

 }

],

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdpBase64": "ICAgICAgICAgICAgdj0wDQogICAgICAgICAgICBvPWFsaWNlc19icm93c2VyIDI4OTA4NDQ1MjYg\nMjg5MDg0MjgwNyBJTiBJUDQgMTAuMC4xLjENCiAgICAgICAgICAgIHM9DQogICAgICAgICAgICB0\nPTAgMA0KICAgICAgICAgICAgYz1JTiBJUDQgMTkyLjAuMi4zMA0KICAgICAgICAgICAgYT1pY2Ut\ncHdkOmFzZDg4ZmdwZGQ3Nzd1empZaGFnWmcNCiAgICAgICAgICAgIGE9aWNlLXVmcmFnOjhoaFkN\nCiAgICAgICAgICAgIGE9ZmluZ2VycHJpbnQ6c2hhLTEgOTk6NDE6NDk6ODM6NGE6OTc6MGU6MWY6\nZWY6NmQ6Zjc6Yzk6Yzc6NzA6OWQ6MWY6NjY6Nzk6YTg6MDcNCiAgICAgICAgICAgIA0KICAgICAg\nICAgICAgbT1hdWRpbyAxMDAwMCBSVFAvU0FWUEYgMCA5Ng0KICAgICAgICAgICAgYT1ydHBtYXA6\nMCBQQ01VLzgwMDANCiAgICAgICAgICAgIGE9cnRwbWFwOjk2IG9wdXMvNDgwMDANCiAgICAgICAg\nICAgIGE9c2VuZHJlY3YNCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjEgMSBVRFAgMjEzMDcwNjQz\nMSAxMC4wLjEuMSA4MDAwIHR5cCBob3N0DQogICAgICAgICAgICBhPWNhbmRpZGF0ZToxIDIgVURQ\nIDIxMzA3MDY0MzAgMTAuMC4xLjEgODAwMSB0eXAgaG9zdA0KICAgICAgICAgICAgYT1jYW5kaWRh\ndGU6MiAxIFVEUCAxNjk0NDk4ODE1IDE5Mi4wLjIuMzAgMTAwMDAgdHlwIHNyZmx4IHJhZGRyIDEw\nLjAuMS4xIHJwb3J0IDgwMDANCiAgICAgICAgICAgIGE9Y2FuZGlkYXRlOjIgMiBVRFAgMTY5NDQ5\nODgxNCAxOTIuMC4yLjMwIDEwMDAxIHR5cCBzcmZseCByYWRkciAxMC4wLjEuMSBycG9ydCA4MDAx\nDQo=",

 "type": "Local"

 },

 "originatorAddress": "sip:alice@example.com",

 "originatorName": "Alice",

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/sip%3Aalice%40example.com/sessions/sess001",

 "status": "Initiated",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

D.8 Creating a new WebRTC session – audio and video, using ACR (section 6.3.5.3)

Request:

	POST /exampleAPI/webrtcsignaling/v1/acr%3Apseudonym123/sessions HTTP/1.1
Accept: application/json

Content-Type: application/json

Host: example.com
Content-Length: nnnn

{"wrtcsSession": {

 "clientCorrelator": "4567",

 "offer": {"sdp": "v=0\no=alice 89465676546571448100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n\nm=video 10100 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10033\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100\na=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101"},

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

Location: http://example.com/exampleAPI/webrtcsignaling/v1/acr%3Apseudonym123/sessions/sess001
{"wrtcsSession": {

 "clientCorrelator": "4567",

 "offer": {

 "mediaIndicator": [

 {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": [

 {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 {

 "encoding": "opus",

 "payloadType": "96"

 }

],

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 {

 "direction": "SendRecv",

 "entryId": "2",

 "entryIdx": "1",

 "payload": [

 {

 "encoding": "H264",

 "formatParams": "profile-level-id=4d0028;packetization-mode=1",

 "payloadType": "97"

 },

 {

 "encoding": "VP8",

 "payloadType": "98"

 }

],

 "streamId": "stream1",

 "trackId": "track2",

 "type": "Video"

 }

],

 "sdp": "v=0\no=alice 89465676546571448100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n\nm=video 10100 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10033\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100\na=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101",

 "type": "Local"

 },

 "originatorAddress": "acr:pseudonym123",

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/acr%3Apseudonym123/sessions/sess001",

 "status": "Initiated",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

D.9 Creating a new WebRTC session – audio and video, using acr:auth (section 6.3.5.4)

Request:

	POST /exampleAPI/webrtcsignaling/v1/acr%3Aauth/sessions HTTP/1.1
Authorization: Bearer mF_9.B5f-4.1JqM
Accept: application/json

Content-Type: application/json

Host: example.com
Content-Length: nnnn
{"wrtcsSession": {

 "clientCorrelator": "4567",

 "offer": {"sdp": "v=0\no=alice 89465676546571448100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n\nm=video 10100 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10033\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100\na=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101"},

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

Location: http://example.com/exampleAPI/webrtcsignaling/v1/acr%3Aauth/sessions/sess001
{"wrtcsSession": {

 "clientCorrelator": "4567",

 "offer": {

 "mediaIndicator": [

 {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": [

 {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 {

 "encoding": "opus",

 "payloadType": "96"

 }

],

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 {

 "direction": "SendRecv",

 "entryId": "2",

 "entryIdx": "1",

 "payload": [

 {

 "encoding": "H264",

 "formatParams": "profile-level-id=4d0028;packetization-mode=1",

 "payloadType": "97"

 },

 {

 "encoding": "VP8",

 "payloadType": "98"

 }

],

 "streamId": "stream1",

 "trackId": "track2",

 "type": "Video"

 }

],

 "sdp": "v=0\no=alice 89465676546571448100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n\nm=video 10100 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10033\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100\na=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101",

 "type": "Local"

 },

 "originatorAddress": "acr%3Aauth",

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/acr%3Apseudonym123/sessions/sess001",

 "status": "Initiated",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob"

}}

D.10 Retrieving WebRTC session information (section 6.4.3.1)

Request:

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1
Accept: application/json
Host: example.com

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnnn

Date: Fri, 28 Jun 2013 17:51:59 GMT

{"wrtcsSession": {

 "answer": {

 "isProvisional": "false",

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=bob 98746513249823567101 0 IN IP4 192.0.2.1\ns=\nt=0 0\nc=IN IP4 192.0.2.1\na=msid-semantic:WMS\na=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03\na=ice-pwd:YH75Fviy6338Vbrhrlp8Yh\na=ice-ufrag:9uB6\na=ice-lite\n\nm=audio 20000 RTP/SAVPF 0\na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10122\na=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host\na=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host ",

 "type": "Remote"

 },

 "clientCorrelator": "4567",

 "offer": {

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": [

 {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 {

 "encoding": "opus",

 "payloadType": "96"

 }

],

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=alice 89465676546571448100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001",

 "type": "Local"

 },

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "resourceURL": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001",

 "status": "Connected",

 "tParticipantAddress": "tel:+19585550101",

 "tParticipantName": "Bob",

 "update": {

 "mediaIndicator": [

 {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 {

 "direction": "SendRecv",

 "entryId": "2",

 "entryIdx": "1",

 "payload": [

 {

 "encoding": "H264",

 "payloadType": "97"

 },

 {

 "encoding": "VP8",

 "payloadType": "98"

 }

],

 "streamId": "stream1",

 "trackId": "track2",

 "type": "Video"

 }

],

 "sdp": "v=0\no=alice 89465676546571448100 1 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\n \nm=audio 10000 RTP/SAVPF 0\na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n \nm=video 10100 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10033\na=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100\na=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101 ",

 "type": "Local"

 }

}}

D.11 Cancelling or terminating a WebRTC session, or declining a WebRTC session invitation (section 6.4.6.1)

Request:

	DELETE /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1

Accept: application/json

Host: example.com

Response:

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

D.12 Reading the status of a WebRTC session (section 6.5.3.1)

Request:

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/status HTTP/1.1

Accept: application/json

Host: example.com

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsSessionStatus": {"status": "Ringing"}}

D.13 Accepting a WebRTC session invitation (section 6.5.4.1)

Request:

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/status HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com

{"wrtcsSessionStatus": {"status": "Connected"}}

Response:

	HTTP/1.1 200 OK
Content-Type: application/json

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsSessionStatus": {"status": "Connected"}}

D.14 Indicating the alerting of the Terminating Participant (“Ringing”) (section 6.5.4.2)

Request:

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/status HTTP/1.1

Content-Type: application/json

Content-Length: nnnn
Accept: application/json

Host: example.com
{"wrtcsSessionStatus": {"status": "Ringing"}}

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsSessionStatus": {"status": "Ringing"}}

D.15 Reading initial or most recent offer in a WebRTC session (section 6.6.3.1)

Request:

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/offer HTTP/1.1

Accept: application/json

Host: example.com

Response:

	HTTP/1.1 200 OK
Content-Type: application/json

Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsOffer": {

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": [

 {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 {

 "encoding": "opus",

 "payloadType": "96"

 }

],

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=alice 89465676546571448100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001",

 "type": "Local"

}}

D.16 Providing an offer to an offerless session invitation (section 6.6.4.1)

Request:

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/offer HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"wrtcsOffer": {"sdp": "v=0\no=alice 78643246856870134100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10200 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10044\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 9000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 9001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10200 typ srflx raddr 10.0.1.1 rport 9000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10201 typ srflx raddr 10.0.1.1 rport 9001"}}

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsOffer": {

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": [

 {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 {

 "encoding": "opus",

 "payloadType": "96"

 }

],

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=alice 78643246856870134100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\n\nm=audio 10200 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10044\na=rtcp-mux\na=candidate:1 1 UDP 2130706431 10.0.1.1 9000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 9001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10200 typ srflx raddr 10.0.1.1 rport 9000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10201 typ srflx raddr 10.0.1.1 rport 9001",

 "type": "Local"

}}

D.17 Reading most recent answer in a WebRTC session (section 6.7.3.1)

Request:

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/answer HTTP/1.1

Accept: application/json
Host: example.com

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsAnswer": {

 "isProvisional": "false",

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=bob 98746513249823567101 0 IN IP4 192.0.2.1\ns=\nt=0 0\nc=IN IP4 192.0.2.1\na=msid-semantic:WMS\na=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03\na=ice-pwd:YH75Fviy6338Vbrhrlp8Yh\na=ice-ufrag:9uB6\na=ice-lite\n\nm=audio 20000 RTP/SAVPF 0\na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10122\na=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host\na=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host",

 "type": "Remote"

}}

D.18 Providing an answer to an offer (section 6.7.4.1)

Request:

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/answer HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"wrtcsAnswer": {

 "isProvisional": "false",

 "sdp": "v=0\no=alice 78643246856870134100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\n\nm=audio 10200 RTP/SAVPF 0 \na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10044\na=candidate:1 1 UDP 2130706431 10.0.1.1 9000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 9001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10200 typ srflx raddr 10.0.1.1 rport 9000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10201 typ srflx raddr 10.0.1.1 rport 9001"

}}

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsAnswer": {

 "isProvisional": "false",

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=alice 78643246856870134100 0 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\n\nm=audio 10200 RTP/SAVPF 0 \na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10044\na=candidate:1 1 UDP 2130706431 10.0.1.1 9000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 9001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10200 typ srflx raddr 10.0.1.1 rport 9000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10201 typ srflx raddr 10.0.1.1 rport 9001",

 "type": "Local"

}}

D.19 Reading the update offer in a WebRTC session (section 6.8.3.1)

Request:

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Accept: application/json
Host: example.com

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsOffer": {

 "mediaIndicator": [

 {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 {

 "direction": "SendRecv",

 "entryId": "2",

 "entryIdx": "1",

 "payload": [

 {

 "encoding": "H264",

 "payloadType": "97"

 },

 {

 "encoding": "VP8",

 "payloadType": "98"

 }

],

 "streamId": "stream1",

 "trackId": "track2",

 "type": "Video"

 }

],

 "sdp": "v=0\no=alice 89465676546571448100 1 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\n \nm=audio 10000 RTP/SAVPF 0\na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n \nm=video 10100 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10033\na=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100\na=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101",

 "type": "Local"

}}

D.20 Initiating an update offer in a WebRTC session to upgrade from audio-only to audio+video (section 6.8.4.1)

Request:

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"wrtcsOffer": {"sdp": "v=0\no=alice 89465676546571448100 1 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\n \nm=audio 10000 RTP/SAVPF 0\na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n \nm=video 10100 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10033\na=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100\na=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101"}}

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsOffer": {

 "mediaIndicator": [

 {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 {

 "direction": "SendRecv",

 "entryId": "2",

 "entryIdx": "1",

 "payload": [

 {

 "encoding": "H264",

 "payloadType": "97"

 },

 {

 "encoding": "VP8",

 "payloadType": "98"

 }

],

 "streamId": "stream1",

 "trackId": "track2",

 "type": "Video"

 }

],

 "sdp": "v=0\no=alice 89465676546571448100 1 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\n \nm=audio 10000 RTP/SAVPF 0\na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n \nm=video 10100 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10033\na=candidate:1 1 UDP 2130706431 10.0.1.1 8100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10100 typ srflx raddr 10.0.1.1 rport 8100\na=candidate:2 2 UDP 1694498814 192.0.2.30 10101 typ srflx raddr 10.0.1.1 rport 8101",

 "type": "Local"

}}

D.21 Initiating an update offer in a WebRTC session to downgrade from audio+video to audio-only (section 6.8.4.2)

Request:

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/update HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"wrtcsOffer": {"sdp": "v=0\no=alice 89465676546571448100 2 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\n \nm=audio 10000 RTP/SAVPF 0 \na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n \nm=video 0 RTP/SAVPF 97 \na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=mid:2\na=msid:stream1 track2\na=ssrc:10033"}}

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsOffer": {

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=alice 89465676546571448100 2 IN IP4 10.0.1.1\ns=\nt=0 0\nc=IN IP4 192.0.2.30\na=msid-semantic:WMS\na=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:07\na=ice-pwd:asd88fgpdd777uzjYhagZg\na=ice-ufrag:8hhY\n \nm=audio 10000 RTP/SAVPF 0 \na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10022\na=candidate:1 1 UDP 2130706431 10.0.1.1 8000 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 8001 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 10000 typ srflx raddr 10.0.1.1 rport 8000\na=candidate:2 2 UDP 1694498814 192.0.2.30 10001 typ srflx raddr 10.0.1.1 rport 8001\n \nm=video 0 RTP/SAVPF 97 \na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=mid:2\na=msid:stream1 track2\na=ssrc:10033",

 "type": "Local"

}}

D.22 Cancelling or declining an update (section 6.8.6.1)

Request:

	DELETE /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002/update HTTP/1.1

Accept: application/json
Host: example.com

Response:

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

D.23 Reading the ICE status of a WebRTC session (section 6.9.3.1)

Request:

	GET /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/ice/status HTTP/1.1

Accept: application/json
Host: example.com

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsIceStatus": {"status": "New"}}

D.24 Updating the ICE status of a WebRTC session (section 6.9.4.1)

Request:

	PUT /exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/ice/status HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"wrtcsIceStatus": {"status": "Connected"}}

Response:

	HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Fri, 28 Jun 2013 17:51:59 GMT
{"wrtcsIceStatus": {"status": "Connected"}}

D.25 Notify a client about the “Ringing” event (section 6.10.5.1)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsEventNotification": {

 "callbackData": "abcd",

 "eventDescription": "The called party is being alerted.",

 "eventType": "Ringing",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001",

 "rel": "WrtcsSession"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

]

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.26 Notify a client about a WebRTC session invitation (section 6.11.5.1)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsSessionInvitationNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002",

 "rel": "WrtcsSession"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

],

 "offer": {

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": [

 {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 {

 "encoding": "opus",

 "payloadType": "96"

 }

],

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=caesar 86765415341651786102 0 IN IP4 192.0.2.1\ns=\nt=0 0\nc=IN IP4 192.0.2.1\na=msid-semantic:WMS\na=fingerprint:sha-1 88:77:79:13:4f:32:0a:8b:21:ff:f3:a9:43:bc:d9:f3:11:82:71:be\na=ice-pwd:Ld0K23q46KJGu7643dcIUT\na=ice-ufrag:3yXa\na=ice-lite\n \nm=audio 30000 RTP/SAVPF 0 96\na=rtpmap:0 PCMU/8000\na=rtpmap:96 opus/48000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10144\na=candidate:1 1 UDP 2130706431 192.0.2.1 30000 typ host\na=candidate:1 2 UDP 2130706430 192.0.2.1 30001 typ host",

 "type": "Remote"

 },

 "originatorAddress": "tel:+19585550102",

 "originatorName": "Caesar",

 "tParticipantAddress": "tel:+19585550100",

 "tParticipantName": "Alice"

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.27 Notify a client about a WebRTC session invitation without offer (aka offerless invite) (section 6.11.5.2)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: application-alice.example.com
{"wrtcsSessionInvitationNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002",

 "rel": "WrtcsSession"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

],

 "originatorAddress": "tel:+19585550102",

 "originatorName": "Caesar",

 "tParticipantAddress": "tel:+19585550100",

 "tParticipantName": "Alice"

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.28 Notify a client about WebRTC session invitation acceptance / update acceptance, including answer (section 6.12.5.1)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsAcceptanceNotification": {

 "answer": {

 "isProvisional": "false",

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=bob 98746513249823567101 0 IN IP4 192.0.2.1\ns=\nt=0 0\nc=IN IP4 192.0.2.1\na=msid-semantic:WMS\na=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03\na=ice-pwd:YH75Fviy6338Vbrhrlp8Yh\na=ice-ufrag:9uB6\na=ice-lite\n\nm=audio 20000 RTP/SAVPF 0\na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10122\na=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host\na=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host ",

 "type": "Remote"

 },

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001",

 "rel": "WrtcsSession"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

]

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.29 Notify a client about WebRTC session invitation acceptance / update acceptance, without answer (section 6.12.5.2)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsAcceptanceNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001",

 "rel": "WrtcsSession"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

]

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.30 Notify a client about an update offer in a WebRTC session, adding video (section 6.13.5.1)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsOfferNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002",

 "rel": "WrtcsSession"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

],

 "offer": {

 "mediaIndicator": [

 {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 {

 "direction": "SendRecv",

 "entryId": "2",

 "entryIdx": "1",

 "payload": [

 {

 "encoding": "H264",

 "payloadType": "97"

 },

 {

 "encoding": "VP8",

 "payloadType": "98"

 }

],

 "streamId": "stream1",

 "trackId": "track2",

 "type": "Video"

 }

],

 "sdp": "v=0\no=caesar 86765415341651786102 1 IN IP4 192.0.2.1\ns=\nt=0 0\nc=IN IP4 192.0.2.1\na=msid-semantic:WMS\na=fingerprint:sha-1 88:77:79:13:4f:32:0a:8b:21:ff:f3:a9:43:bc:d9:f3:11:82:71:be\na=ice-pwd:Ld0K23q46KJGu7643dcIUT\na=ice-ufrag:3yXa\na=ice-lite\n \nm=audio 30000 RTP/SAVPF 0 \na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10144\na=candidate:1 1 UDP 2130706431 192.0.2.1 30000 typ host\na=candidate:1 2 UDP 2130706430 192.0.2.1 30001 typ host\n \nm=video 30300 RTP/SAVPF 97 98\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=rtpmap:98 VP8/90000\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10155\na=candidate:1 1 UDP 2130706431 10.0.1.1 9100 typ host\na=candidate:1 2 UDP 2130706430 10.0.1.1 9101 typ host\na=candidate:2 1 UDP 1694498815 192.0.2.30 30300 typ srflx raddr 10.0.1.1 rport 9100\na=candidate:2 2 UDP 1694498814 192.0.2.30 30301 typ srflx raddr 10.0.1.1 rport 9101",

 "type": "Remote"

 }

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.31 Notify a client about an update offer in a WebRTC session, removing video (section 6.13.5.2)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsOfferNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess002",

 "rel": "WrtcsSession"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

],

 "offer": {

 "mediaIndicator": {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 "sdp": "v=0\no=caesar 86765415341651786102 2 IN IP4 192.0.2.1\ns=\nt=0 0\nc=IN IP4 192.0.2.1\na=msid-semantic:WMS\na=fingerprint:sha-1 88:77:79:13:4f:32:0a:8b:21:ff:f3:a9:43:bc:d9:f3:11:82:71:be\na=ice-pwd:Ld0K23q46KJGu7643dcIUT\na=ice-ufrag:3yXa\na=ice-lite\n \nm=audio 30000 RTP/SAVPF 0 \na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10144\na=candidate:1 1 UDP 2130706431 192.0.2.1 30000 typ host\na=candidate:1 2 UDP 2130706430 192.0.2.1 30001 typ host\n\nm=video 0 RTP/SAVPF 97 \na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=mid:2\na=msid:stream1 track2\na=ssrc:10155"

 }

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.32 Notify a client about an answer in a WebRTC session (section 6.14.5.1)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsAnswerNotification": {

 "answer": {

 "isProvisional": "false",

 "mediaIndicator": [

 {

 "direction": "SendRecv",

 "entryId": "1",

 "entryIdx": "0",

 "payload": {

 "encoding": "PCMU",

 "payloadType": "0"

 },

 "streamId": "stream1",

 "trackId": "track1",

 "type": "Audio"

 },

 {

 "direction": "SendRecv",

 "entryId": "2",

 "entryIdx": "1",

 "payload": {

 "encoding": "H264",

 "payloadType": "97"

 },

 "streamId": "stream1",

 "trackId": "track2",

 "type": "Video"

 }

],

 "sdp": "v=0\no=bob 98746513249823567101 0 IN IP4 192.0.2.1\ns=\nt=0 0\nc=IN IP4 192.0.2.1\na=msid-semantic:WMS\na=fingerprint:sha-1 91:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:9d:1f:66:79:a8:03\na=ice-pwd:YH75Fviy6338Vbrhrlp8Yh\na=ice-ufrag:9uB6\na=ice-lite\n\nm=audio 20000 RTP/SAVPF 0\na=rtpmap:0 PCMU/8000\na=sendrecv\na=mid:1\na=msid:stream1 track1\na=ssrc:10122\na=candidate:1 1 UDP 2130706431 192.0.2.1 20000 typ host\na=candidate:1 2 UDP 2130706430 192.0.2.1 20001 typ host\n\nm=video 20200 RTP/SAVPF 97\na=rtpmap:97 H264/90000\na=fmtp:97 profile-level-id=4d0028;packetization-mode=1\na=sendrecv\na=mid:2\na=msid:stream1 track2\na=ssrc:10133\na=candidate:1 1 UDP 2130706431 192.0.2.1 20200 typ host\na=candidate:1 2 UDP 2130706430 192.0.2.1 20201 typ host ",

 "type": "Remote"

 },

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001",

 "rel": "WrtcsSession"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

]

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.33 Notify a client about subscription cancellation due to expiry (section 6.15.5.1)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsSubscriptionCancellationNotification": {

 "callbackData": "abcd",

 "link": {

 "href": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.34 Example: Notify a client about subscription cancellation due to an error (section 6.15.5.2)
Request:
	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com

{"wrtcsSubscriptionCancellationNotification": {

 "callbackData": "abcd",

 "link": {

 "href": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 },

 "reason": {

 "messageId": "SVC2001",

 "text": "No server resources available to process the request "

 }

}}

Response:
	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

D.35 Notify a client about a conflict (section 6.16.5.1)

Request:

	POST /webrtcsignaling/notifications/77777 HTTP/1.1
Accept: application/json
Content-Type: application/json
Host: application-alice.example.com
{"wrtcsConflictNotification": {

 "callbackData": "abcd",

 "link": [

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001",

 "rel": "WrtcsSession"

 },

 {

 "href": "http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/sessions/sess001/update",

 "rel": "WrtcsOffer"

 },

 {

 "href": " http://example.com/exampleAPI/webrtcsignaling/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "WrtcsNotificationSubscription"

 }

],

 "reason": {

 "messageId": "SVC1007",

 "text": "Offer rejected due to conflict."

 }

}}

Response:

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

Appendix E. Operations mapping to pre-existing baseline specifications
(Informative)
As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight Resources
(Informative)

As this version of the specification does not define any Light-weight Resources, this appendix is empty.
Appendix G. Authorization aspects
(Normative)

This appendix specifies how to use the RESTful WebRTC Signaling API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful WebRTC Signaling API MAY support the authorization framework defined in [Autho4API_10].

A RESTful WebRTC Signaling API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.1.1 Scope values
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful WebRTC Signaling API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_wrtcs.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of all other scope values that may be defined for this specification.
	No

Table 2: Scope values for RESTful WebRTC Signaling API
G.1.1.2 Downscoping

Not applicable in this version of the specification as there is only one scope value defined.
G.1.1.3 Mapping with resources and methods

The single scope value defined in section G.1.1.1 above maps to all REST resources and methods defined in the subsections of section 6.

G.1.2 Use of ‘acr:auth’

This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of a {userId} when the RESTful WebRTC Signaling API is used in combination with [Autho4API_10].
In the case the RESTful WebRTC Signaling API supports [Autho4API_10], the server:

· SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {userId}
· SHALL conform to [REST_NetAPI_Common] section 5.8.1.1 regarding the processing of ‘acr:auth’.
Appendix H. SIP mapping
(Informative)

This appendix describes how an implementation can map the REST requests to SIP. Apart from giving some guidance to server developers, this appendix also provides rationale for some of the API designs. As the flows below give implementation examples, the appendix is informative.
The flows in the sections below contain messages and participants that are defined in this specification, as well as those that are not defined in this specification, but that show the interworking with external components and systems. The legend below introduces the graphical styles used to distinguish between these categories.

[image: image17.emf]
Figure 16: Legend for the sequence diagrams
H.1 Session set-up with ICE from Originator’s point of view

The flows in this section assume that the Originator needs to use ICE in order to set up the connectivity for the media streams. The flows further assume that the media streames are anchored at a media gateway, rather than going peer-to-peer.

As the ICE procedures consume some time and may even fail, it is important that the Terminating Participant is not alerted before the ICE procedures have finished. Different options to achieve this are elaborated in this section. Essentially, there are two basic mechanisms: either to delay the INVITE, or to instruct the Terminating Participant’s application / user agent not to alert the user until in both cases ICE has finished at the originator’s end. Sections H.1.1 - H.1.3 provide realizations of the first mechanism whereas section H.1.4 provides a realization of the second.
The section assumes familiarity with the procedures defined in [RFC3261], [RFC3262], [RFC3312] and [RFC5245] and their use with the offer-answer model.

H.1.1 Call set-up with ICE: Delaying the INVITE in the Originator’s server without provisional response from Terminating Participant

In this configuration, the Originator’s server cannot assume that the Terminating Participant’s terminal supports preconditions [RFC3312]. To avoid ghost rings [RFC5245], the server therefore synthesizes a provisional answer towards the Originator’s application. Note that this approach works with the RESTful WebRTC Signaling API as this API supports provisional answers as defined in JSEP. It would be awkward to use this pattern when SIP is the communication protocol between server and application, as in SIP it is good practice to run offers and answers end to end.
Note that in the flow below, the Terminating Participant’s terminal does not have to run the ICE procedures; therefore no provisional response is returned to the Originator’s application, but the INVITE is responded to immediately with “Ringing” followed by “OK”.

The flow can be mapped to the second alternative in section 5.3.3.

[image: image18.png]Browser Application Server

Visit site and
download Application

1. Greate PeerConnection and set up media sources

1S

1S

1S

3. peerConnection. SetLocalDescription(offer, offerSdp1) |

>

generate provisional
6. ansver Sdp1 ocally
based on offer

POST or NOTIFY .
WitcsAnswerNotification(pranswer, answerSdp1=Sdp1) |

8. peerConnection. SetRemoteDescription(pransvier, answerSdp1) !

Running ICE connectivity checks, N

10. POST leeStatus(Connected)

Terminating participant is alerted 5

13. 180 Ringing

|7, POST or NOTIFY
WitcsAcceptanceNotification(answer, answerSdp2)

Originator and Terminating Participant are in a call now. N

| 19. DELETE WitcsSession with sessionld

_ 23, peerConnection Close()

Browser Application Server

Figure 17: Call set-up with ICE: Delaying the INVITE in the server without provisional response from Terminating Participant
H.1.2 Call set-up with ICE: Delaying the INVITE in the Originator’s server with provisional response from Terminating Participant, sent reliably
Similar to the section above, the Originator’s server cannot assume that the Terminating Participant’s terminal supports preconditions [RFC3312]. To avoid ghost rings [RFC5245], the server therefore synthesizes a provisional answer towards the Originator.
However, this flow shows an alternative for the steps in the answer phase: The Terminating Participant is assumed to send a provisional response reliably, e.g. to inform the Originator that it has to run ICE procedures locally and therefore has delayed the ringing.

As the answer is sent in a provisional response reliably, there is no answer in step 8.

The flow can be mapped to the first alternative in section 5.3.3.

[image: image19.png]Browser

Browser

g phase unrel

bl 183 response

Application

2

POST or NOTIFY
WitcsAnswerNotification(pranswer, answerSdp2)

1. 183 Session Progress (answerSdp?)

Terminating participant is alerted 5

4. 180 Ringing

8,

POST or NOTIFY
WitcsAcceptanceNotification(answerSdp2)

Application

Figure 18: Call set-up with ICE: Delaying the INVITE in the server with provisional response from Terminating Participant, sent reliably

H.1.3 Call set-up with ICE: Delaying the INVITE in the Originator’s server with provisional response from Terminating Participant, sent non-reliably

This section is similar to the section above, with the difference that the provisional response is sent unreliably. Therefore, it must be repeated in step 6.

The flow below shows again an alternative for the steps in the answering phase in section H.1.1.
The flow has no direct correspondence in section 5.3.3, but could be realized as a synthesis of alternatives 1 and 2.
[image: image20.png]Browser

5. peerConnection setRemoteDescription(answer, ansverSdp2) |

Browser

el

Application

POST or NOTIFY
WitcsAnswerNotification(answer, answerSdp2)

<

7. POST or NOTIFY WitesEventNotification(Ringing)

Terminating participant is alerted 5

6. 180 A

10.

POST or NOTIFY
WitcsAcceptanceNotification)

Terminating paticipant accepts)

8. 200 OK INVITE

<
<

Application

Figure 19: Call set-up with ICE: Delaying the INVITE in the server with provisional response from Terminating Participant, sent non-reliably

H.1.4 Call set-up with ICE: Originator is using SIP preconditions
The approach in the sections above has a performance penalty when the application of the Terminating Participant also needs to run ICE as part of the call set-up. The reason is that the INVITE will only arrive at the Terminating Participant once the Originator has finished its ICE procedures, thereby delaying the start of the ICE procedures at the Terminating Participant until that time. Note that with the signaling alternative provided here, ICE could run in parallel at both ends.
The idea is to instruct the Terminating Participant to delay alerting the user until certain preconditions (in this case the availability of connectivity) are met at the Originator’s side. These preconditions [RFC3312] are declared in the INVITE, and then updated using an offer-answer pair managed by the server.

In this flow, the server is forwarding the answer it has received from the remote peer as a provisional answer to the application (step 10), which allows the server to send another (final) answer in a later step (step 17). Also, note that a provisional answer inhibits the application from sending another offer, which is sometimes of advantage if the server knows that the exchange with the far end has not terminated.

Without the mechanism of provisional answers, the server would have to convert the answer it receives in step 16 into an offer towards the application. This would introduce difficulties in the flow, because the application would be expected to generate an answer to this offer.

Because of such complications, conversion between offer and answer at the server should be avoided as much as possible as they introduce additional states in the server.
From the WebRTC Signaling API point of view, this flow corresponds to alternative 1 in section 5.3.3.

[image: image21.png]Browser

Visit site and |
download Application |1

1. Greate PeerConnection and set up media sources

|_. 3. peerConnection. SetLocalDescription(offer, offerSdp1)

1S

Application

11, peerConnection. setRemoteDescription(pranswer, answerSdp1) |

Sener

4. POST WitcsSession(userld, offerSdp1)

<

POST or NOTIFY
WitcsAnswerNotification(pranswer, answerSdp1)

6. INVITE(userld, offerSdp vith PreCo)

7..183 Session Progress (ansverSdp1; 100re)

9. 200 OK PRACK.

Running ICE connectivity checks

i

12. oniceconnectionstatechange(connected)

<

13. POST leeStatus(Connected)

>

14. Respanse

|7, POST or NOTIFY
WitcsAnswerNotification(answer, answerSdp2)

20 POST or NOTIFY WitcsEventNotification(Ringing) |

POST or NOTIFY

WitcsAcceptanceNotification)

(
«
323
<

Send offer declaring preconditions as met 5

15. UPDATE(offerScp2)

Terminating participant is alerted 5

1. 180 Ringing

Terminating paticipant accepts)

21. 200 OK INVITE

Originator and Terminating Participant are in a call now.

1S

Browser

| 24. DELETE WitcsSession with sessionld

Application

Figure 20: Call set-up with ICE: Using SIP preconditions
H.2 Session set-up with ICE from Terminating Participant’s point of view

When the Terminating Participant’s application receives a session Invitation Notification, it will need to successfully run the ICE procedures before it can alert the user. It therefore uses a provisional response (183 Session Progress) to indicate to the Originator that the session setup goes forward silently, and to provide the answer which the Originator needs to possibly set up his own media channels.

H.2.1 Session set-up with ICE from Terminating Participant’s point of view without SIP Preconditions
The following flow shows how the Terminating Participant’s application responds to a session invitation in case the Originator has not signaled any preconditions.
[image: image22.png]Server Application

Receive invitation 5

1. INVITE(userld, offerSdp1)

2. POST or NOTIFY WitesSessioninvitationNotification(afferSdp1, sessionld)

7. PUT WitesAnswer(answer, answerSdp1)]

Indicate an inital answer
but do not ring yet

9183 Session Progress (ansverSdp1; 100re)

10. PRACK.

11..200 OK PRACK.

<

Browser

O

Running ICE connectivity checks

Ly

112 oniceconnectionstatechange(connected)

13. PUT WitcslceStatus(Cannected)

<

114, Responss '

15. PUT WitcsSessionStatus(Ringing)]

<

16. Respanse

Indicate that user is being alerted 5

17. 180 Ringing,

18, Alet the user

User accepts)

19. PUT WitcsSessionStatus(Connected)

<
20 Response

Accept invtation (no new answer is sent)

21. 200 OK INVITE.

22. ACK.

Originator and Terminating Participant are in a call now.

24. 200 OK BYE.

25. POST or NOTIFY WitesEventNotification(SessionEnded)

>

| 126 peerConnection Close()

Server Application

Browser

Figure 21: Session set-up with ICE from Terminating Participant’s point of view without SIP Preconditions
H.2.2 Session set-up with ICE from Terminating Participant’s point of view using SIP Preconditions

The following flow shows how the Terminating Participant’s application responds to a session invitation in which the Originator has signaled preconditions. With these preconditions, the originator requests the Terminating Participant to delay the alerting of the user until the Originator reports that the preconditions have been met (e.g. ICE checks have been succeeded, or QoS reservations have been granted).
[image: image23.png]Server Application Browser

Receive inviation
which informs about
preconditions not met

1. INVITE(userld, offerScp1 with PreCo)

POST or NOTIFY WitcsSessioninvitationNotification(

12 offerSdp! , holdAlerting, sessionld)

2

>
; >
1 6. peerConnection SetLocalDescription(ansver, ansverSdp)

Indicate an inital answer
but do not ring yet

>

1'(7. PUT WricsAnswer(answer, answerSdp1)

8. Response

>

Send answer reliably 5

10. PRACK.

11. 200 OK PRACK

Running ICE connectivity checks, N

12. oniceconnectionstatechangs(connected) i

i -
1 13 PUT WiteslceStatus(Conneted) i

>

Own ICE finished but still cannot ring 5

Receive offer informing
that preconditions are met

16. WitcsOfferNotification(offerSdp2)

>

1.

22, 200 OK UPDATE (ansverScp?)

After receiving offer
without "holdAletting’ flag,
alerting can now take place

23 PUT WitcsSessionStatus(Ringing)

24 Response

Indicate that user
is being alerted
26 Alett the user

User accepts)

Accept invtation (no new answer is sent)

29. 200 OK INVITE.

Originator and Terminating Participant are in a call now. N

Server Application Browser

Figure 22 Session set-up with ICE from Terminating Participant’s point of view using SIP Preconditions
H.3 Handling of offerless invitations

When the Terminating Participant’s application receives a session Invitation Notification without an offer, it needs to respond with an offer which can then be used by the network to invite a second Terminating Participant and connect both of them. Such scenario is called third-party call control (3PCC).

The figure below depicts a possible mapping of the flow in section 5.3.6 to SIP.
[image: image24.png]Server Application Browser

>
12 POST or NOTIFY WitesSessionlnvitationNotification(sessionld)

>

4. offerSdp1=peerConnection CreateOffer)

9. PRACK

10. 200 OK PRACK.

POST or NOTIFY
WitcsAnswerNotification(answer, answerSdp1)

2. 200 OK INVITE. |

' 19, Alert the user
' [User aceepts ™
}‘(20 PUT WitcsSessionStatus(Connected) |
| 21. Response '

Originator and Terminating Participant are in a call now. N

Server Application Browser

Figure 23: Handling of offerless invitations
H.4 Handling of session updates

Session updates follow the offer-answer model. For elaborations on using the offer-answer with SIP, see [RFC6337].
H.4.1 Handling of session updates by the Update Originator

The following flow shows how the Update Originator’s application handles session updates, related to section5.3.9.

[image: image25.png]Browser Application Server

Both partes are in a call already.

User requests addition /
removal of vidso

1. Update PeerConnection, e.g. adding or removing video stream

4. POST WitesOffer(sessionld, offerSdp)

1'(5 Response

[Alternative 1: Terminating participant declines update]

| B POST or NOTIFY WrtcsEventhloffcation(Declined)

Call goes ahead without modification.

13. oniceconnectionstatechange(nev)

14. PUT WitcslceStatus(New)

:% 15. Responss,

Running ICE connectivity checks (f applicable).

16, oniceconnectionstatechange(connected)

117, PUT WitcslceStatus(Connected)

18. Respanse

<

Call gaes ahead with modified media streams,

Browser Application Server

Figure 24: Handling of session updates by the Update Originator
H.4.2 Handling of session updates by the Update Recipient
The following flow shows how the Update Originator’s application handles session updates, related to section 5.3.10.
[image: image26.png]Server Application Browser

Both parties are in a call already N

| 2. POST or NOTIFY WitcsOfferNotification(ofierSdp)

Decide whether adding a stream is acceptable.
possibly involing the user

; >
TAernatve 7 Decine upate]

< 3. DELETE

>

5. 488 Not Acceptable Here |

Call goes ahead without modification.

Accept update]

1 10 PUT WitcsAnswer(answer)

11, Respanse

13. oniceconnectionstatechange(rev)

14. PUT WitcslceStatus(New)

17 PUT WitcslceStatus(Cannected)

8. Response
>

Call gaes ahead with modified media streams,

Server Application Browser

Figure 25: Handling of session updates by the Update Recipient
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20130101-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20130101-I]

