OMA-WP-Service_Enabler_Virtualization-20160502-D
Page 26 V(28)

	[image: image5.png]OsManvo
035/85S —'—‘ NFV Orchestrator (NFVO)

—_ Ornim

NF
B T Manager (VNFM)

vivntm

virualzed | OV!

o isiuctae

NV Manager
)

|_t_4 NFVIHost Container =f= Main NFY/ reference points ~~}=- Other refarence poins.

	

	Service Enabler Virtualization

	2 May 2016

	Open Mobile Alliance

	OMA-WP-Service_Enabler_Virtualization-20160502-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
7
4.
Introduction
8
4.1
Release 1.0
9
4.2
Principles and Goals of Virtualized OMA Service Enablers
9
5.
OMA’s Challenge under NFV
11
6.
Application of NFV Concepts
12
6.1
OMA Architecture
12
6.1.1
Clients and Servers
12
6.1.2
Enabler Decomposition into Functional Components
12
6.1.3
Reference Points and Interfaces
13
6.1.4
Service Function Chaining
14
6.1.5
Deployment Support Functions
15
6.2
OMA-VNF Development and Deployment
16
6.2.1
Hosting in Hypervisors and Containers
16
6.2.2
Factoring Out Reusable Components
17
6.2.3
Description
17
6.2.4
Ingestion
17
6.2.5
Instantiation
17
6.2.6
Migration
17
6.2.7
Scaling
17
6.2.8
Termination
17
6.2.9
Fault Management
17
6.2.10
Security
17
6.2.11
High Availability and Geographic Diversity
17
6.2.12
Element Management Systems
17
6.3
OMA-VNF Packaging
17
6.3.1
Baseline VNF Package Information Elements
17
6.3.2
Extended VNF Package Information Elements
17
7.
OMA-VNF Examples
18
7.1
Enabler as a Single or Multi-VNF Package
18
8.
Example Call Flows
20
8.1
VNF Instantiation
20
8.2
VNF Scaling
20
8.3
Fault Response
20
9.
OMA-VNF Example: SUPL
21
Appendix A.
Change History (Informative)
22

Figures

13Figure 1: SUPL Architecture

Tables

No table of figures entries found.
1. Scope

This is a white paper developed as part of the OMA Service Enabler Virtualization (Seville) work ítem, providing a non-normative set of objectives, considerations, and guidelines addressing the subject of service enabler virtualization as enabled by Network Function Virtualization (NFV) / Software-Defined Networking (SDN) technologies.
As part of this, supplemental documents (e.g. example VNF descriptors for OMA enablers) may be developed as well.
Aspects of a NFV/SDN platfom through which virtualized service enablers can be deployed are not addressed here, except where those aspects support specific service enabler virtualization capabilities and influence the design of virtualized service enablers and services.
2. References

	
	

	
	

	[ETSI NFV Info Model]
	“Network Function Virtualization (NFV); Management and Orchestration; Report on NFV Information Model”, GS NFV-IFA015 V0.3.0 (2016-02) (WORK IN PROGRESS), ETSI

URL: https://docbox.etsi.org/ISG/NFV/Open/Drafts/

	[ETSI NFV MANO]
	“Network Functions Virtualisation (NFV); Management and Orchestration; Functional requirements specification”, GS NFV-IFA 010 V2.1.1 (2016-04), ETSI

URL: http://www.etsi.org/technologies-clusters/technologies/nfv

	[ETSI NFV NSD]
	“Network Functions Virtualisation; Management and Orchestration; Network Service Template Specification”, GS IFA 014 V<0.8.0> (2016-03) (WORK IN PROGRESS), ETSI

URL: https://docbox.etsi.org/ISG/NFV/Open/Drafts/

	[ETSI NFV Vi-VNFM]
	“Network Functions Virtualisation (NFV); Management and Orchestration; Vi-VNFM reference point - Interface and Information Model Specification”, GS NFV-IFA 006 V2.1.1 (2016-04), ETSI

URL: http://www.etsi.org/technologies-clusters/technologies/nfv

	[ETSI NFV Or-Vi]
	“Network Functions Virtualisation (NFV); Management and Orchestration; Or-Vi reference point - Interface and Information Model Specification”, GS NFV-IFA 005 V2.1.1 (2016-04), ETSI

URL: http://www.etsi.org/technologies-clusters/technologies/nfv

	[ETSI NFV Or-Vnfm]
	“Network Functions Virtualisation (NFV); Management and Orchestration; Or-Vnfm reference point - Interface and Information Model Specification”, GS NFV-IFA 007 V0.7.0 (2016-03) (WORK IN PROGRESS), ETSI

URL: https://docbox.etsi.org/ISG/NFV/Open/Drafts/

	[ETSI NFV Packaging]
	“Network Functions Virtualization (NFV); Management and Orchestration; VNF Packaging Specification”, GS NFV IFA011 V0.5.0 (2016-03) (WORK IN PROGRESS), ETSI

URL: https://docbox.etsi.org/ISG/NFV/Open/Drafts/

	[ETSI NFV SDN]
	“Network Functions Virtualisation (NFV); Ecosystem; Report on SDN Usage in NFV Architectural Framework”, GS NFV-EVE 005 V1.1.1 (2015-12), ETSI
URL: http://www.etsi.org/technologies-clusters/technologies/nfv

	[ETSI NFV UML]
	“Network Functions Virtualisation (NFV); Information Modeling; UML Modeling Guidelines”, GS NFV-IFA017 V0.0.4 (2016-02) (WORK IN PROGRESS), ETSI

URL: https://docbox.etsi.org/ISG/NFV/Open/Drafts/

	[ETSI NFV Virtualization]
	“Network Functions Virtualisation (NFV);Virtualisation Technologies; Report on the application of Different Virtualisation Technologies in the NFV Framework”, GS NFV-EVE 004 V1.1.1 (2016-03), ETSI

URL: http://www.etsi.org/technologies-clusters/technologies/nfv

	[OPNFV]
	“OPNFV Brahmaputra Release”

URL: https://opnfv.org

	[Cloudify-Clearwater]
	“vIMS Clearwater deployment and lifecycle management with Cloudify Orchestrator”, Orange OpenSource

URL: https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater/

	[draft-penno-sfc]
	“Yang Data Model for Service Function Chaining”, R. Penno, P. Quinn, D. Zhou, J. Li, IETF draft (expires July 6, 2016)
URL: https://tools.ietf.org/html/draft-penno-sfc-yang-13

	[TOSCA-NFV]
	“TOSCA Simple Profile for Network Functions Virtualization (NFV) Version 1.0” Committee Specification Draft 03 (17 March 2016), OASIS

URL: http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html

3. Terminology and Conventions

3.1 Conventions

This is an informative document, which is not intended to provide testable requirements to implementations.

3.2 Definitions

For the purpose of this WP, all definitions from the OMA Dictionary [OMADICT) generally apply. In addition, the following definitions are applicable to the subject matter in this document.
	Network Service Descriptor (NSD)
	A deployment template for a Network Service referencing all other descriptors which describe components that are part of that Network Service

	NFV Infrastructure (NFVI)
	The standardized physical hardware and interfaces used for instantiation of VNFs

	NFV Orchestrator (NFVO)
	Describes the orchestration function used to manipulate VNFs for the realization and use of a specific NFV/s

	OMA-VNF
	An implementation or deployment of an OMA service enabler as a VNF.

	Physical Network Function (PNF)
	Describes the connectivity, Interface and KPIs requirements of virtual Links to an attached Physical Network Function. This is needed if a physical device is incorporated in a Network Service to facilitate network evolution.

	Virtual Infrastructure Management (VIM)
	Systems that act as orchestrators / controllers for NFVI support of VNFs and services.

	Virtual Link (VL)
	A deployment template which describes the resource requirements that are needed for a link between VNFs, PNFs and endpoints of the Network Service, which could be met by various link options that are available in the NFVI. The NFVO can select an option following consultation of the VNFFG to determine the appropriate NFVI to be used based on functional (e.g., dual separate paths for resilience) and other needs (e.g., geography and regulatory requirements).

	VNF Component (VNFC)
	Describes Virtual Network Function Component. Software components (1 or more) that make up a VNF

	VNF Descriptor (VNFD)
	A deployment template which describes a Virtual Network Function in terms of its deployment and operational behaviour requirements. It is primarily used by the VNFM (VNF Manager) in the process of VNF instantiation and lifecycle management of a VNF instance. The information provided in the VNFD is also used by the NFVO (NFV Orchestrator) to manage and orchestrate Network Services and virtualised resources on the NFVI (NFV Infrastructure). The VNFD also contains connectivity, interface and KPIs requirements that can be used by NFV-MANO [ETSI GS NFV-MAN] functional blocks to establish appropriate Virtual Links within the NFVI between its VNFC instances, or between a VNF instance and the endpoint interface to the other Network Functions.

	VNF Forwarding Graph (VNFFG)
	A deployment template which describes a topology of the Network Service or a portion of the Network Service, by referencing VNFs and PNFs and Virtual Links that connect them.

3.3 Abbreviations

	Seville
	Service Enabler Virtualization work item

	CP
	Connection Point

	CPD
	Connection Point Descriptor

	EMS
	Element Management System

	LBS
	Location Based Services

	NF
	Network Function

	NFV
	Network Function Virtualization

	NFVI
	Network Function Virtualization Infrastructure

	NFVO
	NFV Orchestrator

	NS
	Network Service

	NSD
	Network Service Descriptor

	OMA
	Open Mobile Alliance

	OPNFV
	Open Platform for NFV

	OSI
	Open Systems Interconnection

	PNF
	Physical Network Function

	SDO
	Standards-Defining Organizations

	SSO
	Standards-Setting Organizations

	VC
	Virtualization Container

	VDU
	Virtual Deployment Unit

	VIM
	Virtual Infrastructure Management

	VL
	Virtual Link

	VLD
	Virtual Link Descriptor

	VNF
	Virtualized Network Function

	VNFD
	VNF Descriptor

	VNFC
	VNF Component

	VNFFG
	VNF Forwarding Graph

	VNFM
	VNF Manager

4. Introduction

The Seville work item was initiated to help establish some awareness and guidelines for the subject of OMA service enabler virtualization within an NFV/SDN environment. These guidelines are further intended to:

· Aid development and deployment of OMA service enabler implementations as Virtualized Network Functions (VNFs), for brevity referred to in this document as “OMA-VNFs”
· Help reduce the potential variations in approaches to development/deployment of OMA-VNFs which could result in OMA-VNF market fragmentation, and thus inhibit successful evolution of current OMA service enabler deployments into OMA-VNF based deployments
· Establish concrete examples for virtualization of network functions at the service enabler layer, i.e. at OSI model layers 4-7, above the typical focus of SDN on the lower layers of the OSI model (layers 2-3 specifically), as these examples may be more broadly useful to other SDOs/SSOs in refinement of the underlying technical concepts and standards-based frameworks, and to open source projects e.g. the Open Platform for NFV [OPNFV] as they develop NFV Infrastructure (NFVI) reference platforms
The development and deployment of NFV/SDN platforms is rapidly accelerating. Network service providers (for brevity, referred to as “Operators” in this paper) are looking to take advantage of the potential of NFV/SDN as soon as possible, even as standards for NFV/SDN are still being written (e.g. in ETSI, OASIS, TM Forum, IETF). It can be expected that initial OMA-VNFs based upon widely deployed and stable enablers such as Multimedia Messaging Service (MMS) will be serving users in the very near future, well before standards are complete. As this paper will describe, “pre-standard” deployment of OMA-VNFs can take advantage of various simplified approaches to packaging and deployment, while deferring the architectural/deployment optimizations that may be obtained in time, e.g. as enablers are “re-factored/re-architected” for functional reuse and deployment more targeted to leverage the elasticity of the cloud computing environments that support NFV.
However in these early days of OMA-VNF deployment, OMA can still provide useful guidance to developers and deployers of pre-standard OMA-VNFs, promoting consistency in as many areas as reasonably possible given the immature state of standards. This consistency and the related avoidance of market fragmentation will be important as Operators increasingly push vendors to provide pre-standard OMA-VNFs for deployment. The baseline of considerations and guidelines presented here can further help initiate future OMA work items and other SDOs/SSOs work that provide a solid core of interoperability for OMA-VNF packaging and deployment, and lead to the perhaps more complex work of re-factoring / re-architecting OMA enablers for more optimized deployment as OMA-VNFs.
As NFV/SDN is a deployment-paradigm shift being addressed in many places in standardization efforts and the market, these guidelines can further help initiate cross-SDO/SSO collaboration and engagement with open source communities such as OPNFV. Such collaboration will benefit the broader considerations of how NFV/SDN concepts can support vitualization of “services” and OMA service enablers particularly, as the most widely deployed examples of mobile-service-focused specifications and a key driver of Operator-managed services revenue world-wide. Thus the overall services market can benefit from OMA’s guidance in how the application/service-layer concepts can be adapted to NFV/SDN. Further, as the deployment of IMS-based services and OMA service enablers that underlie the GSMA’s Rich Communication Services (RCS) suite of service specifications accelerate world-wide, Operators face an extended period of opportunity to leverage OMA-VNF enabled services. Based upon the probability that IMS-based services will serve the market at least as long as the first-generation OMA service enablers have (fifteen years and counting), OMA’s work in this area can help guide development of virtualized service specifications for at least the next ten years.

Open source approaches to platform and application development, especially as they are influencing the development of NFV/SDN and the underlying cloud service environments, promise to significantly disrupt the current vendor-Operator ecosystem supporting the market for OMA service enabler implementations. Projects such as the Linux Foundation’s OPNFV are key examples of a new approach to collaborative vendor-Operator engagement in “code-first” development of service frameworks. OPNFV’s initial focus on an NFVI reference platform both provides an opportunity for OMA members to engage directly in development of the underlying environment supporting OMA-VNFs, as well as solidify the concepts for VNF design and packaging that will establish the interoperable core of OMA-VNF support described above. This paper thus intends to provide useful input and motivation for OMA to establish a relationship with these open source projects, similar to their developing relationship with other SDOs/SSOs and the “upstream” open source projects that initiatives such as OPNFV depend upon. As OMA members are principally how this relationship will be realized, OMA as a community should be motivated through this paper to get actively engaged in collaborative development projects, and strengthen the role of OMA service enablers in the market for many years to come.
4.1 Release 1.0

Seville 1.0 includes:
· OMA Guidelines for Network Service Description (Non-Normative)

· Recommendations for application of NFV concepts to OMA enablers, as expressed though the various “descriptors” used in VNF management and orchestration (MANO)

· VNF Descriptor (VNFD)

· Physical Network Function (PNF) Descriptor (PNFD)

· Virtual Link (VL) Descriptor (VLD)

· VNF Forwarding Graph (VNFFG) Descriptor (VNFFGD)

· Address the role of

· OASIS’s TOSCA (Topology and Orchestration Specification for Cloud Applications)

· IETF’s YANG

· OMA Guidelines for Enabler Deployment as VNFs and VNFCs (Non-Normative)

· Initial architectural assessments of OMA enablers to guide future work items

· Example VNFDs, e.g. for OMA SUPL

4.2 Principles and Goals of Virtualized OMA Service Enablers

It is desirable that virtualized OMA service enablers exhibit the characteristics described in this sub-section.
Principles or assumptions for OMA service enablers operating as a singular VNF or a composite set of VNFs to realize applications and services:

· Software-based (i.e. software defined / software packaged): VNFs generally are comprised of software components deployed within virtualization environments that isolate the software from direct dependency physical hardware components for compute, storage, and network.
a. Exceptions: where needed, e.g. for performance reasons, VNFs may have specific dependencies on (and thus leverage) hardware capabilities either by bypassing some virtualization functions, e.g. use of SR-IOV to optimize network performance, or leveraging the virtualization host’s ability to access hardware features, e.g. CPU pinning and NUMA.
·
·
· Managed by VNFMs: VNFs are designed for management via generic VNFMs as part of the NFVI, e.g. for cloud-based scaling and reliability techniques.
a. Exceptions: where needed, e.g. for first-generation VNFs that still depend heavily upon a vendor/application-specific EMS, a subset set of management functions may be provided by VNFMs.
· Componentized: VNFs are built out of one or more ‘components’ (VNFCs) and ideally not specific to a particular service, rather reusable as building blocks for various services.

a. Exceptions: specialized VNFs or VNFCs may be needed for some services, e.g. OMA SUPL and its enabler-unque components are specific to support of location-based services.
· Hybridized: at least (or especially) initially, VNFs will often be deployed in “brownfield” (vs “greenfield”) environments in which the VNF depends upon a combination of virtual and physical network functions (PNFs), e.g. hardware-based switches, storage systems, etc. This is because existing Operator investments in hardware functions will have to be leveraged in a hybrid NFV environment for some time, or for cases in which performance or other reasons require use of physical NFs.
Goals for virtualized OMA service enablers:

1. Software Modularity and Reusability: designed to advance homogeneity (VNFs are designed for reusability and distributed) versus heterogeneity (silos with minimum reusability).
2. Capable of being configured, managed and monitored by VNFMs, e.g. for scalable use of NFVI resources (storage, compute and network connectivity) and other conventional node-based OAMP functions (i.e. Fault, Configuration, Accounting, Performance and Security “FCAPS”), while retaining internal cohesion as a VNF.

3. As applicable, supports incorporation of necessary support elements (e.g. load balancers) via service function chaining (see 6.1.4).

4. As applicable, supports load balancing intrinsically to the VNF or through NFVI support (e.g. scale in/out policy and auto-recovery).
5. As applicable, provides high availability intrinsically to the VNF or through NFVI support (e.g. HA policy).
6. As applicable, can be supported over both private and public infrastructure.
7. As applicable, can be instantiated across geographically dispersed infrastructure resources, and provide geographic diversity (GD) support intrinsically to the VNF or through NFVI support (e.g. GD policy).
8.
9. Comprehensive Automation: designed to support deterministic closed loop control and automation.

5. OMA’s Challenge under NFV

The mobile data services industry is only about fifteen years old. Since 1998 when the mobile data services industry really got off the ground, we've been through WAP1, WAP2, the rise of the smartphone era and horizontal platforms such as the mobile web, and now were at the edge of the virtualization era.

Over that time we've seen deployments follow a twisting road of siloed enablers, walled gardens, to open gardens, back to silos with smartphones and social networks. OMA service enabler deployments are still largely siloed, and that may be one of their key weaknesses in the coming cloud-based era of service virtualization, in which much of what has been deployed will need to be dismantled and redeployed as smaller, reusable, and arbitrarily arranged modules.

Even with all the change of the last 15 years, we see that acceleration in change is increasing. The next 7 years will likely match or exceed the last 15 in disruptive change. With Network Function Virtualization, a key disruptor will be the cloud-based deployment of services, in which specialized software and hardware nodes are superseded by general purpose functions that can provide the same capabilities, with more scalability and manageability.
These shifts will start with simpler functions at the lower layers of data services architectures, e.g. routing and domain name services. But we can expect pressure to rapidly virtualize the upper layers of the service architecture and for competitive services and applications which are built from the ground up using virtualized functions, to hit the market soon, adding extra pressure on standards organizations such as OMA to evolve their enabler specifications.

Virtualization will also open up completely new ways of designing and orchestrating services, potentially opening up a new landscape of arbitrarily developed services that begs the question; what is the future role of standards at the service layer?

As with any sea change or paradigm shift, many questions confront us. Just like the dinosaurs, we may be seeing a fundamental environment shift that will make extinct any entity that can't adapt, e.g. as expressed by the warning “If you don’t like change, you’re going to like irrelevance even less”. If so, how do we prepare?

The good thing is that of course we can change what we are and how we do business, but we need to understand the enablers of change. Two such enablers for virtualization will likely be the ability of services to be deployed as orchestrated virtual functions, and perhaps more importantly with the end-to-end operational efficiency to be scalable as virtual service deployments.

But to start we need to speak the language of virtualization, to re-imagine how OMA enablers can be architected through that language, and in doing so ensure the functions are reusable and enabler entities and interfaces are optimized for operational scalability.
6. Application of NFV Concepts
This section will describe NFV concepts as they apply to OMA service enablers, and include examples of the applicability to specific OMA enablers, e.g. SUPL and MMS. While describing these concepts, we will address how they relate to the new technologies and processes relevant in NFV, including:
· TOSCA as applied to NFV [TOSCA-NFV]

· Information Modeling for VNFs [ETSI NFV Info-Model] and services [ETSI NFV NSD]
· Key aspects of enabler packaging as VNFs [ETSI NFV Packaging]
6.1 OMA Architecture
6.1.1 Service Enablers and Services

6.1.2 In OMA, the “service” concept is represented primarily as a service provider (e.g. Operator) offering that is provided through “service enablers” defined by OMA, individually, or as a combination of service enablers that together deliver a service that can be offered to users. For example, “location based services” (LBS) depend upon a collection of OMA service enablers as illustrated in Figure 1, including the SUPL enabler as the “core” service enabler for LBS.
6.1.3 Being explicitly focused on the specification of service enablers as reusable components of end-user services, OMA is inherently aligned with the VNF concept, as a component of Network Services (NS)..

6.1.4 In information modeling terms:

· OMA service enablers can map directly to the VNF concept and the associated ETSI NFV and TOSCA definition of the VNF Descriptor (VNFD) as the overall specification of VNF characteristics and behavior
· OMA-enabled services can map directly to the network service concept and the associated ETSI NFV and TOSCA definition of the Network Service Descriptor (NSD), as an ordered graph of VNFs that together provide a network service. VNFs in TOSCA are specified in VNF Descriptors (VNFD) as information elements of the NSD (referred to here as NSD-IE from here on).
6.1.5 Clients and Servers

NFV concepts and deployments are initially focused on network-based functions most often associated with deployment on “servers”. However the client-server roles and relationships which influence many OMA service enablers are in principle all applicable to NFV, in which “clients” can be virtualized (e.g. as in virtual CPE or vCPE products) and deployed in cloud environments, just as traditional “server” functions are. Further, the most generic meaning of client-server relationships, in which some client consumes a service/interface exposed by a server, are basic concepts applicable to NFV as well. What NFV brings that is new is the challenge for OMA-VNFs to describe, as much necessary, the client-server relationships that OMA-VNF components support. See section 6.1.3 for further description of this challenge.
NFV concepts are further generally applicable to various virtualization hosts, e.g. cloud-based server environments, end-user devices (e.g. smartphones), or distributed / “locally installed” platforms (e.g. whitebox vCPE e.g. as home gateway or communications service devices). While initial deployments are expected to be focused on traditional cloud environments, opportunities to redevelop/redeploy OMA service enabler clients (meaning traditionally, end-user device clients) in virtualization environments provided by end-user devices will increase in the near future, especially as hardware virtualization support and multi-core platforms proliferate in end-user devices. Thus all aspects of OMA service enabler functions can be deployed as OMA-VNFs, whether in network-based servers or end-user devices, are important for OMA to consider.
From an information model view, the roles of clients and servers are largely unspecified. Instead, the focus is on the relationships (meaning principally the need for network connectivity) between:

· VNF nodes (a typical data model term referring to a specific VNFC, as deployed on a VDU) and their connection over virtual links (network connections, described in a VLD) between connection points (the connection of a network interface with a virtual link, described in a CPD)

· VNFs, as components in a network service (described by a NSD, including VNFFGs and VLDs) that are invoked in a specific sequence (a forwarding graph, described in a VNFFG) across virtual links connecting the VNF external connection points (described in a VLD)
Further, unless client-server relationships are internal to the VNF or NS, the client is absent from the information model, except for the presence of an external VNF/NSD connection point over which a node provides an interface (again, unspecified in detail by the information model).
6.1.6 Enabler Decomposition into Functional Components
OMA service enablers typically include multiple functional components, e.g. as shown in the following architecture diagram from the SUPL 2.1 enabler. For SUPL, the three main components described by the enabler are the SET and the network component SLP containing the SLC and SPC systems. While in practice the SLC and SPC may be implemented as a single SUPL Location Platform application, this paper describes considerations for development/packaging of these components as a single VNF Component (VNFC) or multiple VNFCs. However as in most cases the SET MLS Application is expected to be running on an end-user device, and the Location Platform running on network servers, the SUPL OMA-VNF is likely to contain only SLC and SPC components.
From an information model view, the SLC and SPC would be represented as VNFCs of the VNF, which are deployed in Virtualization Deployment Units (VDUs, which describe the deployment and operational behaviour of a VNF component) and execute within Virtualization Containers (VCs). VDUs are further described thru Virtual Compute Descriptors (VCDs, defining the CPU, Memory and acceleration characteristics of the VC realizing the VDU) and Virtual Storage Descriptors (VSDs, defining storage requirements of the VDU).
The other OMA and non-OMA components in the SUPL architecture diagram also need to be considered in the design of the SUPL OMA-VNF (referred to as the “SUPL-VNF” from here on), even though they are not part of the SUPL-VNF. For example as described in section 6.1.3, the reference points and interfaces that the SUPL-VNF components expose or use may need to be described in the SUPL-VNF package, and overall the chaining (as in Service Function Chaining (SFC), see section 6.1.4) of these dependent (and in some cases, optional) components into an overall SUPL service need to be considered in the SUPL-VNF design and deployment.
From an information model view, the SUPL service would be defined in an NSD (called “SUPL-NSD” from here on), and reference the SUPL-VNF as well as the SUPL-external network functions necessary for the overall SUPL service as VNFs (thru VNFDs) with forwarding relationships (thru VNFFGs) across virtual links (thru VLDs).
As a commonly agreed architectural principle, OMA enablers have been architected where possible to reuse available enabler specifications, rather than duplicate functionality which is available in at least one other enabler specification. A prime example is the OMA Push enabler which includes the WAP PPG function shown in the figure below, which is referenced by many other enablers as a general-purpose notification engine. The rationales for function reuse are expected to increase in cloud-based deployment, in which optimizing resource overhead is a key goal. Thus while due to development/deployment expediences early OMA-VNF deployments may include some VNF-internal support for functions that could otherwise be factored out of the implementation, Operators are likely to value implementations which offer support for dependent functions which can be integrated through SFC or other techniques. However, as described in section 6.1.4, the availability of techniques for SFC at the service layer may limit the ability to integrate multiple VNFs into a service chain, without development of standards for chaining at OSI layer 4-7.

[image: image2.emf]SUPL Location Platform

Llp

MLS Application/

SUPL Agent

Le/L1

WAP PPG

SMSC/MC

PAP (P-1)

SET

MLS Application/

SUPL Agent

Home / Requesting /

Visiting / Discovered /

Emergency

SUPL Positioning Center

POTAP (P-2)

SMS (Lup)

Home / Requesting /

Visiting / Discovered /

Emergency

SUPL Location Center

UDP/IP

SET-to-SLP (Lup)

SMS Telecommunication/

Teleservice (Lup)

SET-to-SLC* (Lup)

SET-to-SPC* (Lup)

Lr/LCS-z

*SET-to-SLC/SPC interface is applicable only

to Non-Proxy mode operation

SIP/IP

Core

SIP Push (P-2)

S

I

P

P

u

s

h

(

P

-

1

)

SIP Push (P-2)

Lz

Lh/Lg/L2

Lpp

to Charging

Gm

Emergency

IMS Core

Figure 1: SUPL Architecture
6.1.7 Reference Points and Interfaces

OMA service enablers are typically specified to expose or use interfaces of enabler sub-components or other components that are not part of the OMA enabler. When developed, OMA-VNFs must adhere to the mandatory aspects of these interfaces just as with traditionally deployed enablers. For example, in a traditional SUPL deployment the interface address and other relevant parameters for interconnection of the Location Center to the WAP PPG, SMSC, SIP/IMS Core, etc. are typically established through manual/scripted deployment procedures in various provisioned systems. In an NFV environment however, the setup of these interfaces is a combination of:

· The automated and data-driven role of the NFVO and VNFM, which arrange the various network connections between VNFs and VNFCs as described by the various information elements of the VNFD (referred to as VNFD-IEs from here on), e.g. VNFFGs, VLDs, and CPDs associated the service or its component VNFs.

· The unspecified (from an information model perspective, not defined as VNFD-IE) nature of VNFC interaction across virtual links, i.e. the specific reference points, interfaces, related protocols, and client-server roles taken by the VNFCs as part of service chains or the internal functions of a VNF. Such details may be included at the data model level, e.g. in deployment templates (specific deployment requirements as used by a VNFM), as characteristics of a specific image implementing a specific component of the VNF.
While the specific methods to provision/disclose/discover interface details are TBD as of this Seville WP version, in concept a SUPL service may be designed and packaged for:

· Use of pre-configured interface parameters, included as SUPL-VNF component image startup data, e.g. configuration files/scripts that SUPL-VNF components use when brought up in a virtual machine (VM).
· Use of lifecycle event processing hooks defined for the SUPL-VNF in the TOSCA data model [TOSCA-NFV] VNFD, as “interfaces” elements in the SUPL-VNF VDUs, referencing domain-specific language scripts for processing various lifecycle events, e.g. “install”, “start”, “stop”, “uninstall”.
· Use of a SUPL-VNF implementation-specific Element Management System (EMS) as described in section 6.1.5.3, e.g. which provides a provisioning service for configuration of the SUPL-VNF component interfaces as the components are deployed in VMs.

·
Especially for early OMA-VNF deployments, these alternatives may be essential as:

· standards may not yet exist for how interfaces can be described in VNFP-IEs or established by NFVO/VNFM, or be supported by the OMA-VNF developer or Operator
· some interface concepts may only be expressable as application constraints, i.e. not amenable to expression or support as SFC-enabled configurations

6.1.8 Service Function Chaining

The term Service Function Chaining (SFC) is typically used to express the creation of a “chain” of VNFs that participate in a particular service as an ordered graph of functions that process and forward data packets as required by the service. For example, a mobile web browsing service may include these service chain elements:
· an HTTP proxy VNF, which is inserted into the chain by virtual router instructions to forward TCP port 80 and 443 traffic from browsing service users to the southbound (client-side) interface of the HTTP proxy VNF

· a transparent Web Cache VNF, which is inserted into the chain by virtual router instructions to forward TCP port 80 requests from the HTTP Proxy VNF’s northbound (web server side) interfaces to the southbound interface of the Web Cache VNF

· a Firewall VNF, which is inserted into the chain by virtual router instructions to forward both TCP port 80 requests from the Web Cache VNF, and TCP port 443 requests from the HTTP Proxy VNF’s northbound interfaces, to the southbound interface of the Firewall VNF
From an information model view, SFCs are defined through the “VNF Forwarding Graph” (VNFFG) NSD-IE, which associates VLs and VCs related to VNFs into an ordered graph of functions providing the NS.

6.1.9 Deployment Support Functions

Deployment support functions are aspects of enabler implementation that typically are unspecified by OMA. However in an OMA-VNF context, many of these previously unspecified aspects will nonetheless need to be considered by implementers in the design of OMA-VNFs, and in some cases specified in the VNFP.
6.1.9.1 Compute, Storage, and Network Resources
The NFVI provides the virtual infrastructure (VI) resources which serve VNF needs for compute, storage, and networking. These resources, and physical resources in hybrid environments, are allocated and configured for the VNF by management and orchestration (MANO) functions such as the VNF Manager (VNFM) and NFV Orchestrator (NFVO) defined by ETSI [ETSI NFV MANO], based upon information in the VNFP. The information may include resource configuration (as requirements or constraints), lifecycle (e.g. actions to take on start, stop), and policy (e.g. scaling, high availability, fault management). Specific types of resources that may need to be addressed include the examples:

· Types and amounts of compute, storage, and network resources needed for initial configuration of the VNF

· Resource clustering, e.g. compute and storage

· Workload placement for VNFCs, e.g. affinity and anti-affinity rules for specific resources

· For host placement, e.g. whether VMs for VNFCs should be placed on the same physical compute host

· For storage placement, e.g. whether storage resources for a VNFC should be placed on the compute host

· Scaling requirements for specific resources

· Network services, e.g. configuration of VLANs and forwarding rules for VNF-internal traffic, VNF-external traffic, VNFM traffic (as applicable)

From an information model view, these resources are defined in TOSCA IEs for the related model components:

· VDUs: node resources e.g. CPU (required cores and CPU features), memory, storage
· VLs: internal network(s) over which the VNF nodes are connected
· CPs: network interfaces at which nodes connect to VLs or provide ingress/egress for the VNF
·
·
6.1.9.2 Orchestration

Orchestration in NFV relates to ETSI-specified MANO stack functions at a high layer (the NFV Orchestrator (NFVO)) and at a low layer (VNFM and Virtual Infrastructure Management (VIM)). For the VNFM and VIM, orchestration is focused primarily on configuring NFVI resources per the requirements of the VNF throughout the VNF lifecycle and in response to events that occur within it (e.g. scaling, fault management, etc.). For NVFO, orchestration is focused primarily on the selection of VNF packages that will be used to bring up or support services, establishment of inter-VNF connections (e.g. service chains) per NSD VNFFGs, and working through the VNFM to configure VNFs.

Near-term considerations for the OMA architecture include addressing the aspects of OMA-VNFs that can be most usefully defined for the purposes of orchestration, e.g. as VNFP-IEs or other data associated with VNFs as they are orchestrated. While standards (e.g. the TOSCA for NFV profile) are still being developed, and SDOs are still in the process of alignment (e.g. across ETSI NFV, OASIS, etc), good examples exist for how network services and service enablers can be specified. These include the vIMS TOSCA blueprint for Metaswitch’s Clearwater IMS open source project, as integrated by Orange [Cloudify-Clearwater] into a functional test scenario which is being used in the OPNFV continuous integration / continuous deployment (CI/CD) process. This blueprint describes a complex VNF and illustrates many of the TOSCA features that are in use today, leveraging Cloudify’s extensions to TOSCA as needed (since the TOSCA for NFV standards are still being defined). The vIMS blueprint has been used as a basis for prototyping a TOSCA blueprint for the OMA SUPL 2.1 service enabler (see section 7), which is intended to help familiarize OMA members with the various TOSCA features and related artifacts that go into making a real deployable blueprint for an OMA enabler. This example will be extended with a prototype NSD defining the forwarding graph across hypothetical VNFs for enablers that together with the SUPL enabler are required to deploy a functioning OMA SUPL service.
In addition to cloud-focused orchestration through TOSCA, YANG has a similar objective for SDN functions. The use of YANG in deploying and managing OMA service enablers is for futher study. Some examples of where YANG can serve OMA’s needs may be:

· For the LWM2M enabler, in defining the data model and interface operations of LWM2M-managed devices.

· For establishing service chains across VNFs.

6.1.9.3 Element Management
Element management refers to the proprietary vendor-supplied functionality of Element Management Systems (EMS) specific to OMA enabler implementations, the ETSI-defined VNF Management (VNFM) functions, or a combination of these. Element management plays a key role in the lifecycle of VNFs as it provides support for functions that VNFs cannot address on their own, are VNF-specific, and not addressed by a VIM, e.g.
· Configuration of VNF functions as a block or as individual VNFCs

· FCAPS (Fault, Configuration, Accounting, Performance, and Security) management

· A common management UI or application, which interfaces with the VNF via a standard or proprietary interface

An EMS may be aware of the virtualized operation of VNFs, and also may serve as element manager for both VNF and node-based deployment of the OMA enabler implementation.

OMA architecture considerations for element management include defining goals/opportunities for factoring out common functions from proprietary EMSs, e.g. recommendations for OMA-VNF support of standardized VNFM interfaces for FCAPS management. Although proprietary EMSs can be expected to be necessary or vendor-preferred for some time e.g. due to hybrid VNF/non-VNF enabler deployment, the trend should be that element management becomes a common function served over standardized interfaces to a VNFM.
6.2
6.2.1

·
·
·

6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.7.1
6.2.7.2
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.3
6.3.1
6.3.2
7. OMA-VNF Examples

7.1 Enabler as a Single or Multi-VNF Package
The diagram below shows an enabler deployed as a multiple VNF package with multiple VNFCs in one VNF. The single-VNF case is similar, just with one or the other VNFs being shown.
For multi-VNF cases, OMA-VNFs may be designed to use standardized or proprietary interfaces between the VNFs and/or VNFCs. Standardized interfaces are expected to be used if specific VNFs of different vendors are intended to swapped in/out of the OMA-VNF package, i.e. multi-vendor OMA-VNF packages are expected to contain interoperable VNFs.
[image: image1.jpg]«“+OMa

Open Mobile Alliance

Figure2 Enabler deployed as a multiple VNF package with multiple VNF Components in one VNF
The following diagram illustrates an OMA-VNF deployed from a multi-VNF package with virtual network links between the VNFs. Such virtual links are defined in VNFP-IEs, and can be used for internal communication of the OMA-VNF.

[image: image3.png]onnection polnt, VL = Virtual link

igure 6.3: Network connection topology of a Network Service using VNFs, VLs,
and Connection Points

Figure3 Example of Enabler VNFs as linked into a Network Service
8.
8.1
8.2
8.3
9. OMA-VNF Example: SUPL
9.1 TOSCA Blueprint
###

Copyright (c) 2015 Orange

valentin.boucher@orange.com

#

All rights reserved. This program and the accompanying materials

are made available under the terms of the Apache License, Version 2.0

which accompanies this distribution, and is available at

http://www.apache.org/licenses/LICENSE-2.0

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git
as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

##

This Blueprint deploys the OMA SUPL 2.1 enabler on an openstack environment

##

tosca_definitions_version: cloudify_dsl_1_2

imports:

 - http://www.getcloudify.org/spec/cloudify/3.3/types.yaml

 - http://www.getcloudify.org/spec/openstack-plugin/1.3/plugin.yaml

 - http://www.getcloudify.org/spec/diamond-plugin/1.3/plugin.yaml

 - types/monitoring.yaml

 - types/supl.yaml

 - types/bind.yaml

inputs:

 image_id:

 type: string

 description: Image ID of the agent VM's (Ubuntu 14.04 for supl)

 flavor_id:

 type: string

 description: Flavor ID of the agent VM's (RAM >= 2 GB)

 agent_user:

 type: string

 default: ubuntu

 description: User for connecting to agent VM's

 external_network_name:

 type: string

 description: Network that will be the floating IP

 public_domain:

 type: string

 description: Sip domain for sip users and bono load-balancing

node_types:

 # Global types for VMs

 # - specifies defaults flavor, image and user agent to use for VMs

 # - install monitoring agent on VMs

 # - adding some monitoring collectors (CPU, RAM, DISK and Network)

 supl.nodes.MonitoredServer:

 derived_from: cloudify.openstack.nodes.Server

 properties:

 cloudify_agent:

 default:

 user: { get_input: agent_user }

 server:

 default:

 image: { get_input: image_id }

 flavor: { get_input: flavor_id }

 interfaces:

 cloudify.interfaces.monitoring_agent:

 install:

 implementation: diamond.diamond_agent.tasks.install

 inputs:

 diamond_config:

 default:

 interval: 5

 start: diamond.diamond_agent.tasks.start

 stop: diamond.diamond_agent.tasks.stop

 uninstall: diamond.diamond_agent.tasks.uninstall

 cloudify.interfaces.monitoring:

 start:

 implementation: diamond.diamond_agent.tasks.add_collectors

 inputs:

 collectors_config:

 default:

 CPUCollector: {}

 MemoryCollector: {}

 LoadAverageCollector: {}

 DiskUsageCollector:

 config:

 devices: x?vd[a-z]+[0-9]*$

 NetworkCollector: {}

node_templates:

 # Declare host VMs and attach them at floating ip or security group

 slc_host:

 type: supl.nodes.MonitoredServer

 instances:

 deploy: 2

 relationships:

 - target: base_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: internal_slp_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: slc_security_group

 type: cloudify.openstack.server_connected_to_security_group

 spc_host:

 type: supl.nodes.MonitoredServer

 instances:

 deploy: 2

 relationships:

 - target: base_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: internal_slp_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: spc_security_group

 type: cloudify.openstack.server_connected_to_security_group

 bind_host:

 type: supl.nodes.MonitoredServer

 relationships:

 - target: base_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: bind_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: bind_floatingip

 type: cloudify.openstack.server_connected_to_floating_ip

 proxy_host:

 type: cloudify.openstack.nodes.Server

 properties:

 cloudify_agent:

 user: { get_input: agent_user }

 image: { get_input: image_id }

 flavor: { get_input: flavor_id }

 interfaces:

 cloudify.interfaces.monitoring_agent:

 install:

 implementation: diamond.diamond_agent.tasks.install

 inputs:

 diamond_config:

 interval: 10

 start: diamond.diamond_agent.tasks.start

 stop: diamond.diamond_agent.tasks.stop

 uninstall: diamond.diamond_agent.tasks.uninstall

 # Declare supl and other software

 slc:

 type: supl.nodes.slc

 properties:

 private_domain: supl.local

 relationships:

 - type: cloudify.relationships.contained_in

 target: slc_host

 - type: app_connected_to_bind

 target: bind

 - type: monitors_slc_nodes

 target: proxy_node

 spc:

 type: supl.nodes.spc

 properties:

 private_domain: supl.local

 relationships:

 - type: cloudify.relationships.contained_in

 target: spc_host

 - type: app_connected_to_bind

 target: bind

 - type: monitors_spc_nodes

 target: proxy_node

 bind:

 type: supl.infra.bind

 properties:

 private_domain: supl.local

 public_domain: { get_input: public_domain }

 secret_code: secret

 relationships:

 - type: cloudify.relationships.contained_in

 target: bind_host

 proxy_node:

 type: SNMPProxy

 relationships:

 - type: cloudify.relationships.contained_in

 target: proxy_host

 # Declare all security groups for SUPL and other nodes

 base_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_base

 description: SSH

 rules:

TODO: Modify per SUPL base open port requirements

 - remote_ip_prefix: 0.0.0.0/0

 port: 22

 - remote_ip_prefix: 0.0.0.0/0

 port: 4000

 - remote_ip_prefix: 0.0.0.0/0

 port: 2380

 - remote_ip_prefix: 0.0.0.0/0

 port: 161

 protocol: udp

 slp_internal_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_slc

 description: memcached Chronos 0MQ

 rules:

TODO: Modify per SLP-internal open port requirements (e.g. SLC-SLP)

 - remote_ip_prefix: 0.0.0.0/0

 port: 11211

 - remote_ip_prefix: 0.0.0.0/0

 port: 7253

 - remote_ip_prefix: 0.0.0.0/0

 port: 6666

 slc_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_slc

 description: memcached Chronos 0MQ

 rules:

TODO: Modify per SLC open port requirements

 - remote_ip_prefix: 0.0.0.0/0

 port: 11211

 - remote_ip_prefix: 0.0.0.0/0

 port: 7253

 - remote_ip_prefix: 0.0.0.0/0

 port: 6666

 spc_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_spc

 description: memcached Chronos 0MQ

 rules:

TODO: Modify per SPC open port requirements

 - remote_ip_prefix: 0.0.0.0/0

 port: 11211

 - remote_ip_prefix: 0.0.0.0/0

 port: 7253

 - remote_ip_prefix: 0.0.0.0/0

 port: 6666

 bind_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_bind

 description: DNS

 rules:

 - remote_ip_prefix: 0.0.0.0/0

 port: 53

 protocol: udp

 - remote_ip_prefix: 0.0.0.0/0

 port: 53

 # Declare floating IP for SLC and SPC nodes

 slc_floatingip:

 type: cloudify.openstack.nodes.FloatingIP

 properties:

 floatingip:

 floating_network_name: { get_input: external_network_name }

 spc_floatingip:

 type: cloudify.openstack.nodes.FloatingIP

 properties:

 floatingip:

 floating_network_name: { get_input: external_network_name }

 bind_floatingip:

 type: cloudify.openstack.nodes.FloatingIP

 properties:

 floatingip:

 floating_network_name: { get_input: external_network_name }

 # Declare scaling policies for supl nodes

groups:

 supl_hosts:

 members: [slc_host spc_host]

 policies:

 mem_scale_policy:

 type: cloudify.policies.types.threshold

 properties:

 service: slc_incoming

 threshold: 20

 triggers:

 scale_trigger:

 type: cloudify.policies.triggers.execute_workflow

 parameters:

 workflow: scale

 workflow_parameters:

 node_id: slc

 delta: 1

outputs:

 dns_ip:

9.2 value: { get_attribute: [bind_floatingip, floating_ip_address] }
9.3 Types YAML File for SUPL
###

Copyright (c) 2015 Orange

valentin.boucher@orange.com

#

All rights reserved. This program and the accompanying materials

are made available under the terms of the Apache License, Version 2.0

which accompanies this distribution, and is available at

http://www.apache.org/licenses/LICENSE-2.0

#

Adaptations of the original clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

node_types:

 # Global type for SUPL nodes (create local_config file)

 supl.nodes.config:

 derived_from: cloudify.nodes.SoftwareComponent

 properties:

 private_domain:

 description: Private domain for SUPL internal load-balancing

 type: string

 interfaces:

 cloudify.interfaces.lifecycle:

 create:

 implementation: scripts/supl/other/supl.py

 inputs:

 invocation:

 default:

 function: configure

 # Specific types for SUPLnodes (install role etc.)

 supl.nodes.slc:

 derived_from: supl.nodes.config

 interfaces:

 cloudify.interfaces.lifecycle:

 configure: scripts/supl/slc/install-slc.sh

 stop: scripts/supl/slc/stop-slc.sh

 delete: scripts/supl/other/remove-cluster-node.sh

 supl.nodes.spc:

 derived_from: supl.nodes.config

 interfaces:

 cloudify.interfaces.lifecycle:

 configure: scripts/supl/spc/install-spc.sh

 stop: scripts/supl/spc/stop-spc.sh

 delete: scripts/supl/other/remove-cluster-node.sh

relationships:

 # Specific relationships types for monitor slc and spc nodes

 monitors_slc_nodes:

 derived_from: cloudify.relationships.monitors

 target_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 preconfigure:

 implementation: scripts/monitoring/proxy_snmp/append_proxy_snmp_conf.py

 executor: central_deployment_agent

 inputs:

 port:

 default: 161

 description: snmp port

 community:

 default: supl

 description: snmp community

 oids:

 description: snmp oids to poll

 default:

TODO: Add SUPL OIDs

 monitors_spc_nodes:

 derived_from: cloudify.relationships.monitors

 target_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 preconfigure:

 implementation: scripts/monitoring/proxy_snmp/append_proxy_snmp_conf.py

 executor: central_deployment_agent

 inputs:

 port:

 default: 161

 description: snmp port

 community:

 default: supl

 description: snmp community

 oids:

 description: snmp oids to poll

 default:

9.4 # TODO: Add SUPL OIDs
9.5 Complete Blueprint
10.
[image: image4.emf]cloudify-supl.zip

Appendix A. Change History
(Informative)

	Document Identifier
	Date
	Sections
	Description

	OMA-WP-Service_Enabler_Virtualization
	20150607
	All
	Baseline version.

	
	
	
	

(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WhitePaper-20140101-I]
(2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WhitePaper-20150101-I]

_1380440351.vsd

_1523653485/cloudify-supl.zip

cloudify-supl/inputs/openstack.yaml.template

image_id: ''

flavor_id: ''

agent_user: ''

external_network_name: ''

public_domain: ''

cloudify-supl/LICENSE

 Apache License

 Version 2.0, January 2004

 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,

 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by

 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all

 other entities that control, are controlled by, or are under common

 control with that entity. For the purposes of this definition,

 "control" means (i) the power, direct or indirect, to cause the

 direction or management of such entity, whether by contract or

 otherwise, or (ii) ownership of fifty percent (50%) or more of the

 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity

 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,

 including but not limited to software source code, documentation

 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical

 transformation or translation of a Source form, including but

 not limited to compiled object code, generated documentation,

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or

 Object form, made available under the License, as indicated by a

 copyright notice that is included in or attached to the work

 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object

 form, that is based on (or derived from) the Work and for which the

 editorial revisions, annotations, elaborations, or other modifications

 represent, as a whole, an original work of authorship. For the purposes

 of this License, Derivative Works shall not include works that remain

 separable from, or merely link (or bind by name) to the interfaces of,

 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including

 the original version of the Work and any modifications or additions

 to that Work or Derivative Works thereof, that is intentionally

 submitted to Licensor for inclusion in the Work by the copyright owner

 or by an individual or Legal Entity authorized to submit on behalf of

 the copyright owner. For the purposes of this definition, "submitted"

 means any form of electronic, verbal, or written communication sent

 to the Licensor or its representatives, including but not limited to

 communication on electronic mailing lists, source code control systems,

 and issue tracking systems that are managed by, or on behalf of, the

 Licensor for the purpose of discussing and improving the Work, but

 excluding communication that is conspicuously marked or otherwise

 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity

 on behalf of whom a Contribution has been received by Licensor and

 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of

 this License, each Contributor hereby grants to You a perpetual,

 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

 copyright license to reproduce, prepare Derivative Works of,

 publicly display, publicly perform, sublicense, and distribute the

 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of

 this License, each Contributor hereby grants to You a perpetual,

 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

 (except as stated in this section) patent license to make, have made,

 use, offer to sell, sell, import, and otherwise transfer the Work,

 where such license applies only to those patent claims licensable

 by such Contributor that are necessarily infringed by their

 Contribution(s) alone or by combination of their Contribution(s)

 with the Work to which such Contribution(s) was submitted. If You

 institute patent litigation against any entity (including a

 cross-claim or counterclaim in a lawsuit) alleging that the Work

 or a Contribution incorporated within the Work constitutes direct

 or contributory patent infringement, then any patent licenses

 granted to You under this License for that Work shall terminate

 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the

 Work or Derivative Works thereof in any medium, with or without

 modifications, and in Source or Object form, provided that You

 meet the following conditions:

 (a) You must give any other recipients of the Work or

 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices

 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works

 that You distribute, all copyright, patent, trademark, and

 attribution notices from the Source form of the Work,

 excluding those notices that do not pertain to any part of

 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its

 distribution, then any Derivative Works that You distribute must

 include a readable copy of the attribution notices contained

 within such NOTICE file, excluding those notices that do not

 pertain to any part of the Derivative Works, in at least one

 of the following places: within a NOTICE text file distributed

 as part of the Derivative Works; within the Source form or

 documentation, if provided along with the Derivative Works; or,

 within a display generated by the Derivative Works, if and

 wherever such third-party notices normally appear. The contents

 of the NOTICE file are for informational purposes only and

 do not modify the License. You may add Your own attribution

 notices within Derivative Works that You distribute, alongside

 or as an addendum to the NOTICE text from the Work, provided

 that such additional attribution notices cannot be construed

 as modifying the License.

 You may add Your own copyright statement to Your modifications and

 may provide additional or different license terms and conditions

 for use, reproduction, or distribution of Your modifications, or

 for any such Derivative Works as a whole, provided Your use,

 reproduction, and distribution of the Work otherwise complies with

 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,

 any Contribution intentionally submitted for inclusion in the Work

 by You to the Licensor shall be under the terms and conditions of

 this License, without any additional terms or conditions.

 Notwithstanding the above, nothing herein shall supersede or modify

 the terms of any separate license agreement you may have executed

 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade

 names, trademarks, service marks, or product names of the Licensor,

 except as required for reasonable and customary use in describing the

 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or

 agreed to in writing, Licensor provides the Work (and each

 Contributor provides its Contributions) on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied, including, without limitation, any warranties or conditions

 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

 PARTICULAR PURPOSE. You are solely responsible for determining the

 appropriateness of using or redistributing the Work and assume any

 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,

 whether in tort (including negligence), contract, or otherwise,

 unless required by applicable law (such as deliberate and grossly

 negligent acts) or agreed to in writing, shall any Contributor be

 liable to You for damages, including any direct, indirect, special,

 incidental, or consequential damages of any character arising as a

 result of this License or out of the use or inability to use the

 Work (including but not limited to damages for loss of goodwill,

 work stoppage, computer failure or malfunction, or any and all

 other commercial damages or losses), even if such Contributor

 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing

 the Work or Derivative Works thereof, You may choose to offer,

 and charge a fee for, acceptance of support, warranty, indemnity,

 or other liability obligations and/or rights consistent with this

 License. However, in accepting such obligations, You may act only

 on Your own behalf and on Your sole responsibility, not on behalf

 of any other Contributor, and only if You agree to indemnify,

 defend, and hold each Contributor harmless for any liability

 incurred by, or claims asserted against, such Contributor by reason

 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following

 boilerplate notice, with the fields enclosed by brackets "{}"

 replaced with your own identifying information. (Don't include

 the brackets!) The text should be enclosed in the appropriate

 comment syntax for the file format. We also recommend that a

 file or class name and description of purpose be included on the

 same "printed page" as the copyright notice for easier

 identification within third-party archives.

 Copyright {yyyy} {name of copyright owner}

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 See the License for the specific language governing permissions and

 limitations under the License.

cloudify-supl/openstack-blueprint.yaml

###

Copyright (c) 2015 Orange

valentin.boucher@orange.com

#

All rights reserved. This program and the accompanying materials

are made available under the terms of the Apache License, Version 2.0

which accompanies this distribution, and is available at

http://www.apache.org/licenses/LICENSE-2.0

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

##

This Blueprint deploys the OMA SUPL 2.1 enabler on an openstack environment

##

tosca_definitions_version: cloudify_dsl_1_2

imports:

 - http://www.getcloudify.org/spec/cloudify/3.3/types.yaml

 - http://www.getcloudify.org/spec/openstack-plugin/1.3/plugin.yaml

 - http://www.getcloudify.org/spec/diamond-plugin/1.3/plugin.yaml

 - types/monitoring.yaml

 - types/supl.yaml

 - types/bind.yaml

inputs:

 image_id:

 type: string

 description: Image ID of the agent VM's (Ubuntu 14.04 for supl)

 flavor_id:

 type: string

 description: Flavor ID of the agent VM's (RAM >= 2 GB)

 agent_user:

 type: string

 default: ubuntu

 description: User for connecting to agent VM's

 external_network_name:

 type: string

 description: Network that will be the floating IP

 public_domain:

 type: string

 description: Sip domain for sip users and bono load-balancing

node_types:

 # Global types for VMs

 # - specifies defaults flavor, image and user agent to use for VMs

 # - install monitoring agent on VMs

 # - adding some monitoring collectors (CPU, RAM, DISK and Network)

 supl.nodes.MonitoredServer:

 derived_from: cloudify.openstack.nodes.Server

 properties:

 cloudify_agent:

 default:

 user: { get_input: agent_user }

 server:

 default:

 image: { get_input: image_id }

 flavor: { get_input: flavor_id }

 interfaces:

 cloudify.interfaces.monitoring_agent:

 install:

 implementation: diamond.diamond_agent.tasks.install

 inputs:

 diamond_config:

 default:

 interval: 5

 start: diamond.diamond_agent.tasks.start

 stop: diamond.diamond_agent.tasks.stop

 uninstall: diamond.diamond_agent.tasks.uninstall

 cloudify.interfaces.monitoring:

 start:

 implementation: diamond.diamond_agent.tasks.add_collectors

 inputs:

 collectors_config:

 default:

 CPUCollector: {}

 MemoryCollector: {}

 LoadAverageCollector: {}

 DiskUsageCollector:

 config:

 devices: x?vd[a-z]+[0-9]*$

 NetworkCollector: {}

node_templates:

 # Declare host VMs and attach them at floating ip or security group

 slc_host:

 type: supl.nodes.MonitoredServer

 instances:

 deploy: 2

 relationships:

 - target: base_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: internal_slp_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: slc_security_group

 type: cloudify.openstack.server_connected_to_security_group

 spc_host:

 type: supl.nodes.MonitoredServer

 instances:

 deploy: 2

 relationships:

 - target: base_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: internal_slp_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: spc_security_group

 type: cloudify.openstack.server_connected_to_security_group

 bind_host:

 type: supl.nodes.MonitoredServer

 relationships:

 - target: base_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: bind_security_group

 type: cloudify.openstack.server_connected_to_security_group

 - target: bind_floatingip

 type: cloudify.openstack.server_connected_to_floating_ip

 proxy_host:

 type: cloudify.openstack.nodes.Server

 properties:

 cloudify_agent:

 user: { get_input: agent_user }

 image: { get_input: image_id }

 flavor: { get_input: flavor_id }

 interfaces:

 cloudify.interfaces.monitoring_agent:

 install:

 implementation: diamond.diamond_agent.tasks.install

 inputs:

 diamond_config:

 interval: 10

 start: diamond.diamond_agent.tasks.start

 stop: diamond.diamond_agent.tasks.stop

 uninstall: diamond.diamond_agent.tasks.uninstall

 # Declare supl and other software

 slc:

 type: supl.nodes.slc

 properties:

 private_domain: supl.local

 relationships:

 - type: cloudify.relationships.contained_in

 target: slc_host

 - type: app_connected_to_bind

 target: bind

 - type: monitors_slc_nodes

 target: proxy_node

 spc:

 type: supl.nodes.spc

 properties:

 private_domain: supl.local

 relationships:

 - type: cloudify.relationships.contained_in

 target: spc_host

 - type: app_connected_to_bind

 target: bind

 - type: monitors_spc_nodes

 target: proxy_node

 bind:

 type: supl.infra.bind

 properties:

 private_domain: supl.local

 public_domain: { get_input: public_domain }

 secret_code: secret

 relationships:

 - type: cloudify.relationships.contained_in

 target: bind_host

 proxy_node:

 type: SNMPProxy

 relationships:

 - type: cloudify.relationships.contained_in

 target: proxy_host

 # Declare all security groups for SUPL and other nodes

 base_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_base

 description: SSH

 rules:

TODO: Modify per SUPL base open port requirements

 - remote_ip_prefix: 0.0.0.0/0

 port: 22

 - remote_ip_prefix: 0.0.0.0/0

 port: 4000

 - remote_ip_prefix: 0.0.0.0/0

 port: 2380

 - remote_ip_prefix: 0.0.0.0/0

 port: 161

 protocol: udp

 slp_internal_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_slc

 description: memcached Chronos 0MQ

 rules:

TODO: Modify per SLP-internal open port requirements (e.g. SLC-SLP)

 - remote_ip_prefix: 0.0.0.0/0

 port: 11211

 - remote_ip_prefix: 0.0.0.0/0

 port: 7253

 - remote_ip_prefix: 0.0.0.0/0

 port: 6666

 slc_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_slc

 description: memcached Chronos 0MQ

 rules:

TODO: Modify per SLC open port requirements

 - remote_ip_prefix: 0.0.0.0/0

 port: 11211

 - remote_ip_prefix: 0.0.0.0/0

 port: 7253

 - remote_ip_prefix: 0.0.0.0/0

 port: 6666

 spc_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_spc

 description: memcached Chronos 0MQ

 rules:

TODO: Modify per SPC open port requirements

 - remote_ip_prefix: 0.0.0.0/0

 port: 11211

 - remote_ip_prefix: 0.0.0.0/0

 port: 7253

 - remote_ip_prefix: 0.0.0.0/0

 port: 6666

 bind_security_group:

 type: cloudify.openstack.nodes.SecurityGroup

 properties:

 security_group:

 name: supl-sg_bind

 description: DNS

 rules:

 - remote_ip_prefix: 0.0.0.0/0

 port: 53

 protocol: udp

 - remote_ip_prefix: 0.0.0.0/0

 port: 53

 # Declare floating IP for SLC and SPC nodes

 slc_floatingip:

 type: cloudify.openstack.nodes.FloatingIP

 properties:

 floatingip:

 floating_network_name: { get_input: external_network_name }

 spc_floatingip:

 type: cloudify.openstack.nodes.FloatingIP

 properties:

 floatingip:

 floating_network_name: { get_input: external_network_name }

 bind_floatingip:

 type: cloudify.openstack.nodes.FloatingIP

 properties:

 floatingip:

 floating_network_name: { get_input: external_network_name }

 # Declare scaling policies for supl nodes

groups:

 supl_hosts:

 members: [slc_host spc_host]

 policies:

 mem_scale_policy:

 type: cloudify.policies.types.threshold

 properties:

 service: slc_incoming

 threshold: 20

 triggers:

 scale_trigger:

 type: cloudify.policies.triggers.execute_workflow

 parameters:

 workflow: scale

 workflow_parameters:

 node_id: slc

 delta: 1

outputs:

 dns_ip:

 value: { get_attribute: [bind_floatingip, floating_ip_address] }

cloudify-supl/resources/bind/dnsmasq.template

;###

;#

;# Adaptations of the original Clearwater IMS blueprint at

;# https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

;# as an OMA SUPL 2.1 blueprint are

;# Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

;#

;# Licensed under the Apache License, Version 2.0 (the "License");

;# you may not use this file except in compliance with the License.

;# You may obtain a copy of the License at

;#

;# http://www.apache.org/licenses/LICENSE-2.0

;#

;# Unless required by applicable law or agreed to in writing, software

;# distributed under the License is distributed on an "AS IS" BASIS,

;# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

;# See the License for the specific language governing permissions and

;# limitations under the License.

;#

;##

{% for bind_ip in binds %}

nameserver	{{bind_ip}}

{% endfor %}

cloudify-supl/resources/bind/named.conf.local.template

;###

;#

;# Adaptations of the original Clearwater IMS blueprint at

;# https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

;# as an OMA SUPL 2.1 blueprint are

;# Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

;#

;# Licensed under the Apache License, Version 2.0 (the "License");

;# you may not use this file except in compliance with the License.

;# You may obtain a copy of the License at

;#

;# http://www.apache.org/licenses/LICENSE-2.0

;#

;# Unless required by applicable law or agreed to in writing, software

;# distributed under the License is distributed on an "AS IS" BASIS,

;# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

;# See the License for the specific language governing permissions and

;# limitations under the License.

;#

;##

zone "{{private_domain}}" IN { type master; file "/etc/bind/db.{{private_domain}}"; };

zone "{{public_domain}}" IN { type master; file "/etc/bind/db.{{public_domain}}"; };

cloudify-supl/resources/bind/private.domain.db.template

;###

;#

;# Adaptations of the original Clearwater IMS blueprint at

;# https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

;# as an OMA SUPL 2.1 blueprint are

;# Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

;#

;# Licensed under the Apache License, Version 2.0 (the "License");

;# you may not use this file except in compliance with the License.

;# You may obtain a copy of the License at

;#

;# http://www.apache.org/licenses/LICENSE-2.0

;#

;# Unless required by applicable law or agreed to in writing, software

;# distributed under the License is distributed on an "AS IS" BASIS,

;# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

;# See the License for the specific language governing permissions and

;# limitations under the License.

;#

;##

$TTL 5m ; Default TTL

; SOA, NS and A record for DNS server itself

@ 3600 IN SOA ns admin (2014010800 ; Serial

 3600 ; Refresh

 3600 ; Retry

 3600 ; Expire

 300) ; Minimum TTL

@ 3600 IN NS ns

ns 3600 IN A {{host_ip}} ; IPv4 address of BIND server

; slc

; ===

; TODO: Modify these records as needed for SUPL SLC

;

{% if backends.slc is defined %}

{% for id, backend in backends.slc.iteritems() %}

{{backend.name}}		 	IN A 		{{ backend.private_address }}

{% endfor %}

{% endif %}

;

{% if backends.slc is defined %}

{% for id, backend in backends.slc.iteritems() %}

slc	 	IN A 		{{ backend.private_address }}

{% endfor %}

{% endif %}

;

slc IN NAPTR 1 1 "S" "SIP+D2T" "" _sip._tcp

slc IN NAPTR 2 1 "S" "SIP+D2U" "" _sip._udp

{% if backends.slc is defined %}

{% for id, backend in backends.slc.iteritems() %}

_sip._tcp IN SRV 0 0 5060 {{backend.name}}	

_sip._udp IN SRV 0 0 5060 {{backend.name}}	

{% endfor %}

{% endif %}

; spc

; ===

; TODO: Modify these records as needed for SUPL SLC

;

{% if backends.spc is defined %}

{% for id, backend in backends.spc.iteritems() %}

{{backend.name}}		 	IN A 		{{ backend.private_address }}

{% endfor %}

{% endif %}

;

{% if backends.spc is defined %}

{% for id, backend in backends.spc.iteritems() %}

spc	 	IN A 		{{ backend.private_address }}

{% endfor %}

{% endif %}

;

spc IN NAPTR 1 1 "S" "SIP+D2T" "" _sip._tcp

spc IN NAPTR 2 1 "S" "SIP+D2U" "" _sip._udp

{% if backends.spc is defined %}

{% for id, backend in backends.spc.iteritems() %}

_sip._tcp IN SRV 0 0 5060 {{backend.name}}	

_sip._udp IN SRV 0 0 5060 {{backend.name}}	

{% endfor %}

{% endif %}

cloudify-supl/resources/bind/public.domain.db.template

;###

;#

;# Adaptations of the original Clearwater IMS blueprint at

;# https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

;# as an OMA SUPL 2.1 blueprint are

;# Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

;#

;# Licensed under the Apache License, Version 2.0 (the "License");

;# you may not use this file except in compliance with the License.

;# You may obtain a copy of the License at

;#

;# http://www.apache.org/licenses/LICENSE-2.0

;#

;# Unless required by applicable law or agreed to in writing, software

;# distributed under the License is distributed on an "AS IS" BASIS,

;# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

;# See the License for the specific language governing permissions and

;# limitations under the License.

;#

;##

$TTL 5m ; Default TTL

; SOA, NS and A record for DNS server itself

@ 3600 IN SOA ns admin (2014010800 ; Serial

 3600 ; Refresh

 3600 ; Retry

 3600 ; Expire

 300) ; Minimum TTL

@ 3600 IN NS ns

ns 3600 IN A {{public_ip}} ; IPv4 address of BIND server

; slc

; ===

; TODO: Modify these records as needed for SUPL SLC

;

; Per-node records - not required to have both IPv4 and IPv6 records

{% if backends.bono is defined %}

{% for id, backend in backends.slc.iteritems() %}

{{backend.name}}		 	IN A 		{{ backend.public_address }}

{% endfor %}

{% endif %}

;

; Cluster A and AAAA records - UEs that don't support RFC 3263 will simply

; resolve the A or AAAA records and pick randomly from this set of addresses.

{% if backends.slc is defined %}

{% for id, backend in backends.slc.iteritems() %}

@ 	 	IN A 		{{ backend.public_address }}

{% endfor %}

{% endif %}

;

; NAPTR and SRV records - these indicate a preference for TCP and then resolve

; to port 5060 on the per-node records defined above.

@ IN NAPTR 1 1 "S" "SIP+D2T" "" _sip._tcp

@ IN NAPTR 2 1 "S" "SIP+D2U" "" _sip._udp

{% if backends.slc is defined %}

{% for id, backend in backends.slc.iteritems() %}

_sip._tcp IN SRV 0 0 5060 {{backend.name}}	

_sip._udp IN SRV 0 0 5060 {{backend.name}}	

{% endfor %}

{% endif %}

; spc

; ===

; TODO: Modify these records as needed for SUPL SPC

;

; Per-node records - not required to have both IPv4 and IPv6 records

{% if backends.bono is defined %}

{% for id, backend in backends.spc.iteritems() %}

{{backend.name}}		 	IN A 		{{ backend.public_address }}

{% endfor %}

{% endif %}

;

; Cluster A and AAAA records - UEs that don't support RFC 3263 will simply

; resolve the A or AAAA records and pick randomly from this set of addresses.

{% if backends.spc is defined %}

{% for id, backend in backends.spc.iteritems() %}

@ 	 	IN A 		{{ backend.public_address }}

{% endfor %}

{% endif %}

;

; NAPTR and SRV records - these indicate a preference for TCP and then resolve

; to port 5060 on the per-node records defined above.

@ IN NAPTR 1 1 "S" "SIP+D2T" "" _sip._tcp

@ IN NAPTR 2 1 "S" "SIP+D2U" "" _sip._udp

{% if backends.spc is defined %}

{% for id, backend in backends.spc.iteritems() %}

_sip._tcp IN SRV 0 0 5060 {{backend.name}}	

_sip._udp IN SRV 0 0 5060 {{backend.name}}	

{% endfor %}

{% endif %}

cloudify-supl/resources/supl/local_config.template

local_ip={{host_ip}}

public_ip={{public_ip}}

public_hostname={{name}}.{{private_domain}}

etcd_cluster={{etcd_ip}}

cloudify-supl/resources/supl/shared_config.template

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

Deployment definitions

home_domain={{public_domain}}

slp_hostname=slp.{{private_domain}}

slc_hostname=slc.{{private_domain}}

spc_hostname=spc.{{private_domain}}

cloudify-supl/scripts/bind/bind.py

###

coding: utf8

#

Copyright (c) 2015 Orange

valentin.boucher@orange.com

#

All rights reserved. This program and the accompanying materials

are made available under the terms of the Apache License, Version 2.0

which accompanies this distribution, and is available at

http://www.apache.org/licenses/LICENSE-2.0

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

import os

import subprocess

import tempfile

import re

from contextlib import contextmanager

from jinja2 import Template

from cloudify_rest_client import exceptions as rest_exceptions

from cloudify import ctx

from cloudify.state import ctx_parameters as inputs

from cloudify import exceptions

from cloudify import utils

-*- coding: utf-8 -*-

config files destination

CONFIG_PATH_NAMED = '/etc/bind/named.conf.local'

CONFIG_PATH_NAMESERVER = '/etc/dnsmasq.resolv.conf'

CONFIG_PATH_ETCD = '/etc/supl/shared_config'

CONFIG_PATH_LOCAL_CONF = '/etc/supl/local_config'

Path of jinja template config files

TEMPLATE_RESOURCE_NAME_NAMED = 'resources/bind/named.conf.local.template'

TEMPLATE_RESOURCE_NAME_PRIVATE = 'resources/bind/private.domain.db.template'

TEMPLATE_RESOURCE_NAME_PUBLIC = 'resources/bind/public.domain.db.template'

TEMPLATE_RESOURCE_NAME_NAMESERVER = 'resources/bind/dnsmasq.template'

TEMPLATE_RESOURCE_NAME_ETCD = 'resources/supl/shared_config.template'

TEMPLATE_RESOURCE_NAME_LOCAL_CONF = 'resources/supl/local_config.template'

def configure(subject=None):

 subject = subject or ctx

 # Get bind floating IP

 relationships = subject.instance.relationships

 public_ip = ''

 for element in relationships:

 if element.type == 'cloudify.relationships.contained_in':

 for elements in element.target.instance.relationships:

 if elements.type == 'cloudify.openstack.server_connected_to_floating_ip':

 public_ip = elements.target.instance.runtime_properties['floating_ip_address']

 ctx.logger.info('Creating private domain file')

 template = Template(ctx.get_resource(TEMPLATE_RESOURCE_NAME_PRIVATE))

 PRIVATE_DOMAIN = subject.node.properties['private_domain']

 CONFIG_PATH_PRIVATE = '/etc/bind/db.{0}'.format(PRIVATE_DOMAIN)

 ctx.logger.debug('Building a dict object that will contain variables '

 'to write to the Jinja2 template.')

 config = subject.node.properties.copy()

 config.update(dict(

 backends=subject.instance.runtime_properties.get('backends', {}),

 host_ip=subject.instance.host_ip,

 public_ip=public_ip))

 # Generate private domain file from jinja template

 ctx.logger.debug('Rendering the Jinja2 template to {0}.'.format(CONFIG_PATH_PRIVATE))

 ctx.logger.debug('The config dict: {0}.'.format(config))

 with tempfile.NamedTemporaryFile(delete=False) as temp_config:

 temp_config.write(template.render(config))

 _run('sudo mv {0} {1}'.format(temp_config.name, CONFIG_PATH_PRIVATE),

 error_message='Failed to write to {0}.'.format(CONFIG_PATH_PRIVATE))

 _run('sudo chmod 644 {0}'.format(CONFIG_PATH_PRIVATE),

 error_message='Failed to change permissions {0}.'.format(CONFIG_PATH_PRIVATE))

 ctx.logger.info('Creating public domain file')

 PUBLIC_DOMAIN = subject.node.properties['public_domain']

 CONFIG_PATH_PUBLIC = '/etc/bind/db.{0}'.format(PUBLIC_DOMAIN)

 ctx.logger.debug('Rendering the Jinja2 template to {0}.'.format(CONFIG_PATH_PUBLIC))

 ctx.logger.debug('The config dict: {0}.'.format(config))

 template = Template(ctx.get_resource(TEMPLATE_RESOURCE_NAME_PUBLIC))

 # Generate public domain file from jinja template

 with tempfile.NamedTemporaryFile(delete=False) as temp_config:

 temp_config.write(template.render(config))

 _run('sudo mv {0} {1}'.format(temp_config.name, CONFIG_PATH_PUBLIC),

 error_message='Failed to write to {0}.'.format(CONFIG_PATH_PUBLIC))

 _run('sudo chmod 644 {0}'.format(CONFIG_PATH_PUBLIC),

 error_message='Failed to change permissions {0}.'.format(CONFIG_PATH_PUBLIC))

 # Reload bind server to reload new domain configuration

 reload()

def install(subject=None):

 subject = subject or ctx

 # Install bind server and dependancies

 ctx.logger.debug('Installing BIND DNS server')

 _run('sudo apt-get update',

 error_message='Failed to update package lists')

 _run('sudo DEBIAN_FRONTEND=noninteractive apt-get install bind9 --yes',

 error_message='Failed to install BIND packages')

 # Generate bind config files from jinja template

 template = Template(ctx.get_resource(TEMPLATE_RESOURCE_NAME_LOCAL_CONF))

 config = subject.node.properties.copy()

 config.update(dict(

 name='bind',

 host_ip=subject.instance.host_ip,

 etcd_ip=subject.instance.host_ip))

 ctx.logger.debug('Rendering the Jinja2 template to {0}.'.format(CONFIG_PATH_LOCAL_CONF))

 ctx.logger.debug('The config dict: {0}.'.format(config))

 with tempfile.NamedTemporaryFile(delete=False) as temp_config:

 temp_config.write(template.render(config))

 _run('sudo mkdir -p /etc/supl', error_message='Failed to create supl config directory.')

 _run('sudo mv {0} {1}'.format(temp_config.name, CONFIG_PATH_LOCAL_CONF),

 error_message='Failed to write to {0}.'.format(CONFIG_PATH_LOCAL_CONF))

 _run('sudo chmod 644 {0}'.format(CONFIG_PATH_LOCAL_CONF),

 error_message='Failed to change permissions {0}.'.format(CONFIG_PATH_LOCAL_CONF))

 ctx.logger.debug('Rendering the Jinja2 template to {0}.'.format(CONFIG_PATH_NAMED))

 ctx.logger.debug('The config dict: {0}.'.format(config))

 template = Template(ctx.get_resource(TEMPLATE_RESOURCE_NAME_NAMED))

 with tempfile.NamedTemporaryFile(delete=False) as temp_config:

 temp_config.write(template.render(config))

 _run('sudo mv {0} {1}'.format(temp_config.name, CONFIG_PATH_NAMED),

 error_message='Failed to write to {0}.'.format(CONFIG_PATH_NAMED))

 _run('sudo chmod 644 {0}'.format(CONFIG_PATH_NAMED),

 error_message='Failed to change permissions {0}.'.format(CONFIG_PATH_NAMED))

 # Generate shared_config file for supl-etcd software

 template = Template(ctx.get_resource(TEMPLATE_RESOURCE_NAME_ETCD))

 ctx.logger.debug('Rendering the Jinja2 template to {0}.'.format(CONFIG_PATH_ETCD))

 ctx.logger.debug('The config dict: {0}.'.format(config))

 with tempfile.NamedTemporaryFile(delete=False) as temp_config:

 temp_config.write(template.render(config))

 _run('sudo mv {0} {1}'.format(temp_config.name, CONFIG_PATH_ETCD),

 error_message='Failed to write to {0}.'.format(CONFIG_PATH_ETCD))

 _run('sudo chmod 644 {0}'.format(CONFIG_PATH_ETCD),

 error_message='Failed to change permissions {0}.'.format(CONFIG_PATH_ETCD))

 configure(subject=None)

Add a new entre on the DNS domains

def add_backend(backend_address=None):

 role = name = ctx.source.instance.id

 role = re.split(r'_',role)[0]

 relationships = ctx.source.instance.relationships

 public_ip = ''

 for element in relationships:

 if element.type == 'cloudify.relationships.contained_in':

 for elements in element.target.instance.relationships:

 if elements.type == 'cloudify.openstack.server_connected_to_floating_ip':

 public_ip = elements.target.instance.runtime_properties['floating_ip_address']

 with _backends_update() as backends:

 try:

 backends[role]

 except:

 backends[role] = {}

 backends[role][ctx.source.instance.id] = {

 'private_address': backend_address or ctx.source.instance.host_ip,

 'name': name.replace('_','-'),

 'public_address' : public_ip

 }

remove entre on the DNS domains

def remove_backend():

 role = ctx.source.instance.id

 role = re.split(r'_',role)[0]

 with _backends_update() as backends:

 backends[role].pop(ctx.source.instance.id, None)

@contextmanager

def _backends_update():

 backends = ctx.target.instance.runtime_properties.get('backends', {})

 yield backends

 ctx.target.instance.runtime_properties['backends'] = backends

 # being explict because errors in unlink are ignored and

 # not retried without being explicit.

 # also, this way, we make sure that configure/reload

 # are only called with a fully update configuration

 try:

 ctx.target.instance.update()

 configure(subject=ctx.target)

 except rest_exceptions.CloudifyClientError as e:

 if 'conflict' in str(e):

 # cannot 'return' in contextmanager

 ctx.operation.retry(

 message='Backends updated concurrently, retrying.',

 retry_after=1)

 else:

 raise

def start():

 _service('start')

def stop():

 _service('stop')

def reload():

 _service('reload')

def _service(state):

 _run('sudo service bind9 {0}'.format(state),

 error_message='Failed setting state to {0}'.format(state))

def _run(command, error_message):

 runner = utils.LocalCommandRunner(logger=ctx.logger)

 try:

 runner.run(command)

 except exceptions.CommandExecutionException as e:

 raise exceptions.NonRecoverableError('{0}: {1}'.format(error_message, e))

def _main():

 invocation = inputs['invocation']

 function = invocation['function']

 args = invocation.get('args', [])

 kwargs = invocation.get('kwargs', {})

 globals()[function](*args, **kwargs)

if __name__ == '__main__':

 _main()

cloudify-supl/scripts/monitoring/cacti/add-device-to-cacti.sh

#!/bin/bash

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

ctx logger debug "${COMMAND}"

ip=$(ctx source instance host_ip)

name=$(ctx source instance id)

tmpl_name=(${name//_/ })

case $tmpl_name in

	slc)

		tmpl_name=SLC

		;;

	spc)

		tmpl_name=SPC

		;;

esac

cd /usr/share/cacti/cli

Get the template number from the name

tmpl=`sudo ./add_device.php --list-host-templates | grep $tmpl_name | cut -f1`

Add the host, associating it with the appropriate template

sudo ./add_device.php --ip=$ip --description=$name --community=supl --template=$tmpl --avail=snmp

Find the ID of this host

this_node=`sudo ./add_graphs.php --list-hosts | grep $name | cut -f1`

Add an entry for this host to the graphs tree

sudo ./add_tree.php --type=node --node-type=host --host-id=$this_node --tree-id=1

Add each graph for the host

for graph in `sudo ./add_graphs.php --list-graph-templates --host-template-id=$tmpl | grep -E "^[0-9]" |

 cut -f 1`

do

 sudo ./add_graphs.php --host-id=$this_node --graph-type=cg --graph-template-id=$graph

done

cloudify-supl/scripts/monitoring/cacti/install-cacti.sh

#!/bin/bash -e

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

TODO: determine if Cacti will be used as a monitoring solution per

http://clearwater.readthedocs.io/en/stable/Cacti.html?highlight=cacti

If so, additional changes are likely needed to the below.

If not, other monitoring scripts etc are likely needed.

ctx logger debug "${COMMAND}"

ctx logger info "Install cacti"

sudo apt-get update

sudo DEBIAN_FRONTEND=noninteractive apt-get install git cacti cacti-spine --yes --force-yes

sudo apt-get install -y --force-yes git ruby1.9.3 build-essential libzmq3-dev

sudo gem install bundler --no-ri --no-rdoc

TODO: Needs to be modified for SUPL

sudo git clone https://github.com/Metaswitch/cpp-common.git

cd cpp-common/scripts/stats

sudo bundle install

sudo mkdir -p /usr/share/supl/cacti/templates

sudo chmod 777 -R /usr/share/supl/cacti/

cd /usr/share/supl/cacti

TODO: Needs to be modified for SUPL

wget https://raw.githubusercontent.com/Metaswitch/chef/master/cookbooks/clearwater/files/default/cacti/cactidb.sql

mysql -u root cacti < cactidb.sql

cd templates

TODO: Needs to be modified for SUPL, e.g. SLC and SPC cookbooks

wget https://raw.githubusercontent.com/Metaswitch/chef/master/cookbooks/clearwater/files/default/cacti/templates/cacti_host_template_sprout.xml

wget https://raw.githubusercontent.com/Metaswitch/chef/master/cookbooks/clearwater/files/default/cacti/templates/cacti_host_template_sipp.xml

wget https://raw.githubusercontent.com/Metaswitch/chef/master/cookbooks/clearwater/files/default/cacti/templates/cacti_host_template_bono.xml

cd /usr/share/cacti/cli

sudo find /usr/share/supl/cacti/templates -type f -exec php ./import_template.php --filename={} --with-template-rras \;

cloudify-supl/scripts/monitoring/cacti/rm-device-to-cacti.sh

#!/bin/bash

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

ctx logger debug "${COMMAND}"

ip=$(ctx source instance host_ip)

name=$(ctx source instance id)

cd /usr/share/cacti/cli

Get the id device from the name

id=`sudo ./remove_device.php --list-devices | grep $name | cut -f1`

Delete the host

sudo ./remove_device.php --device-id=$id

cloudify-supl/scripts/monitoring/proxy_snmp/add-snmpproxy-collector.py

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

from cloudify import ctx

from cloudify import exceptions

import diamond_agent.tasks as diamond

import os

paths = diamond.get_paths(None)

name = 'SNMPProxyCollector'

collector_dir = os.path.join(paths['collectors'], name)

if not os.path.exists(collector_dir):

 os.mkdir(collector_dir)

 collector_file = os.path.join(collector_dir, '{0}.py'.format(name))

 ctx.download_resource('scripts/monitoring/proxy_snmp/snmpproxy.py', collector_file)

config = ctx.target.instance.runtime_properties.get('snmp_collector_config', {})

config.update({'enabled': True,

 'hostname': '{0}.{1}.{2}'.format(diamond.get_host_id(ctx.target),

 ctx.target.node.name,

 ctx.target.instance.id)

 })

config_full_path = os.path.join(paths['collectors_config'], '{0}.conf'.format(name))

diamond.write_config(config_full_path, config)

try:

	diamond.stop_diamond(paths['config'])

except:

	pass

try:

	diamond.start_diamond(paths['config'])

except:

	exceptions.RecoverableError("Failed to start diamond", 30)

	pass

cloudify-supl/scripts/monitoring/proxy_snmp/append_proxy_snmp_conf.py

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

from cloudify import ctx

from cloudify.state import ctx_parameters as inputs

target_instance = ctx.source.instance

target_node = ctx.source.node

src_instance = ctx.target.instance

config = src_instance.runtime_properties.get('snmp_collector_config', {})

devices_conf = config.get('devices', {})

devices_conf[ctx.source.instance.id] = device_config = {}

device_config['node_instance_id'] = target_instance.id

device_config['node_id'] = target_node.id

if 'host' in inputs:

 device_config['host'] = inputs.host

else:

 device_config['host'] = target_instance.host_ip

device_config['port'] = inputs.port

device_config['community'] = inputs.community

device_config['oids'] = inputs.oids

config['devices'] = devices_conf

src_instance.runtime_properties['snmp_collector_config'] = config

cloudify-supl/scripts/monitoring/proxy_snmp/install_requirements.sh

#!/bin/bash

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

pip install pysnmp==4.2.5

cloudify-supl/scripts/monitoring/proxy_snmp/snmpproxy.py

###

coding=utf-8

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

import time

from snmpraw import SNMPRawCollector

from diamond.metric import Metric

class SNMPProxyCollector(SNMPRawCollector):

 def collect_snmp(self, device, host, port, community):

 """

 Collect SNMP interface data from device

 """

 self.log.debug(

 'Collecting raw SNMP statistics from device \'{0}\''.format(device)

)

 try:

 self.skip_time

 except:

 self.skip_time = time.time()

 time_diff = time.time() - self.skip_time

 if (time_diff) > 30:

 self.skip_list[:] = []

 self.skip_time = time.time()

 dev_config = self.config['devices'][device]

 if 'oids' in dev_config:

 for oid, metricName in dev_config['oids'].items():

 if (device, oid) in self.skip_list:

 self.log.debug(

 'Skipping OID \'{0}\' ({1}) on device \'{2}\''.format(

 oid, metricName, device))

 continue

 timestamp = time.time()

 value = self._get_value(device, oid, host, port, community)

 if value is None:

 continue

 self.log.debug(

 '\'{0}\' ({1}) on device \'{2}\' - value=[{3}]'.format(

 oid, metricName, device, value))

 device_path = '{}.{}.{}'.format(

 dev_config['node_id'],

 device,

 dev_config['node_instance_id']

)

 path = '.'.join([self.config['path_prefix'], device_path,

 self.config['path_suffix'], metricName])

 metric = Metric(path=path, value=value, timestamp=timestamp,

 precision=self._precision(value),

 host=device_path, metric_type='GAUGE')

 self.publish_metric(metric)

cloudify-supl/scripts/supl/other/install-etcd.sh

#!/bin/bash -e

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

ctx logger debug "${COMMAND}"

TODO: if etcd is not used by the implementation as a shared configuration

manager this file and references to it should be removed or modified

for the applicable configuration manager

ctx logger info "Configure the APT software source"

TODO: reference other package repo

echo 'deb http://repo.cw-ngv.com/stable binary/' | sudo tee --append /etc/apt/sources.list.d/supl.list

curl -L http://repo.cw-ngv.com/repo_key | sudo apt-key add -

sudo apt-get update

ctx logger info "Now install the software"

TODO: reference other package name as required for config manager

sudo DEBIAN_FRONTEND=noninteractive apt-get install supl-config-manager --yes --force-yes

ctx logger info "The software is installed"

TODO: if etcd is used as config manager, these scripts may be modified,

otherwise other config manager setup commands may be required

sudo /usr/share/supl/supl-config-manager/scripts/upload_shared_config

sudo /usr/share/supl/supl-config-manager/scripts/apply_shared_config

ctx logger info "Installation is done"

cloudify-supl/scripts/supl/other/remove-cluster-node.sh

#!/bin/bash

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

TODO: if etcd is not used by the implementation as a shared configuration

manager this file and references to it should be removed or modified

for the applicable configuration manager

ctx logger info "Remove node in ETCD cluster"

sudo timeout 180 service supl-etcd decommission

cloudify-supl/scripts/supl/other/supl.py

###

coding: utf8

#

Copyright (c) 2015 Orange

valentin.boucher@orange.com

#

All rights reserved. This program and the accompanying materials

are made available under the terms of the Apache License, Version 2.0

which accompanies this distribution, and is available at

http://www.apache.org/licenses/LICENSE-2.0

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

import os

import subprocess

import tempfile

import re

from contextlib import contextmanager

from jinja2 import Template

from cloudify_rest_client import exceptions as rest_exceptions

from cloudify import ctx

from cloudify.state import ctx_parameters as inputs

from cloudify import exceptions

from cloudify import utils

-*- coding: utf-8 -*-

config files destination

CONFIG_PATH = '/etc/SUPL/local_config'

CONFIG_PATH_NAMESERVER = '/etc/dnsmasq.resolv.conf'

Path of jinja template config files

TEMPLATE_RESOURCE_NAME = 'resources/SUPL/local_config.template'

TEMPLATE_RESOURCE_NAME_NAMESERVER = 'resources/bind/dnsmasq.template'

def configure(subject=None):

 subject = subject or ctx

 ctx.logger.info('Configuring SUPL node.')

 template = Template(ctx.get_resource(TEMPLATE_RESOURCE_NAME))

 ctx.logger.debug('Building a dict object that will contain variables '

 'to write to the Jinja2 template.')

 # Get the host public IP

 name = ctx.instance.id

 relationships = ctx.instance.relationships

 public_ip = ''

 for element in relationships:

 if element.type == 'cloudify.relationships.contained_in':

 for elements in element.target.instance.relationships:

 if elements.type == 'cloudify.openstack.server_connected_to_floating_ip':

 public_ip = elements.target.instance.runtime_properties['floating_ip_address']

 # Get bind host IP

 binds = []

 for element in relationships:

 text = element.target.instance.id

 if re.split(r'_',text)[0] == 'bind':

 binds.append(element.target.instance.host_ip)

 config = subject.node.properties.copy()

 config.update(dict(

 name=name.replace('_','-'),

 host_ip=subject.instance.host_ip,

 etcd_ip=binds[0],

 public_ip=public_ip))

 ctx.logger.debug('Rendering the Jinja2 template to {0}.'.format(CONFIG_PATH))

 ctx.logger.debug('The config dict: {0}.'.format(config))

 # Generate local_config file from jinja template

 with tempfile.NamedTemporaryFile(delete=False) as temp_config:

 temp_config.write(template.render(config))

 _run('sudo mkdir -p /etc/SUPL', error_message='Failed to create SUPL config directory.')

 _run('sudo mv {0} {1}'.format(temp_config.name, CONFIG_PATH),

 error_message='Failed to write to {0}.'.format(CONFIG_PATH))

 _run('sudo chmod 644 {0}'.format(CONFIG_PATH),

 error_message='Failed to change permissions {0}.'.format(CONFIG_PATH))

 template = Template(ctx.get_resource(TEMPLATE_RESOURCE_NAME_NAMESERVER))

 config = subject.node.properties.copy()

 config.update(dict(binds=binds))

 # Generate dnsmasq file from jinja template

 with tempfile.NamedTemporaryFile(delete=False) as temp_config:

 temp_config.write(template.render(config))

 _run('sudo mv {0} {1}'.format(temp_config.name, CONFIG_PATH_NAMESERVER),

 error_message='Failed to write to {0}.'.format(CONFIG_PATH_NAMESERVER))

 _run('sudo chmod 644 {0}'.format(CONFIG_PATH_NAMESERVER),

 error_message='Failed to change permissions {0}.'.format(CONFIG_PATH_NAMESERVER))

def start():

 _service('start')

def stop():

 _service('stop')

def _service(state):

 role = re.split(r'_',ctx.instance.id)[0]

 _run('sudo service {0} {1}'.format(role,state),

 error_message='Failed setting state to {0}'.format(state))

def _run(command, error_message):

 runner = utils.LocalCommandRunner(logger=ctx.logger)

 try:

 runner.run(command)

 except exceptions.CommandExecutionException as e:

 raise exceptions.NonRecoverableError('{0}: {1}'.format(error_message, e))

def _main():

 invocation = inputs['invocation']

 function = invocation['function']

 args = invocation.get('args', [])

 kwargs = invocation.get('kwargs', {})

 globals()[function](*args, **kwargs)

if __name__ == '__main__':

 _main()

cloudify-supl/scripts/supl/slc/install-slc.sh

#!/bin/bash -e

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

ctx logger debug "${COMMAND}"

TODO: add other configuration commands as needed (eg /etc data setup)

ctx logger info "Configure the APT software source"

TODO: reference other package repo

echo 'deb http://repo.cw-ngv.com/stable binary/' | sudo tee --append /etc/apt/sources.list.d/supl.list

curl -L http://repo.cw-ngv.com/repo_key | sudo apt-key add -

sudo apt-get update

ctx logger info "Installing SLC and other SUPL packages"

sudo DEBIAN_FRONTEND=noninteractive apt-get install slc --yes --force-yes -o DPkg::options::=--force-confnew

TODO: remove next line if no specific management package is needed

sudo DEBIAN_FRONTEND=noninteractive apt-get install supl-management --yes --force-yes

ctx logger info "The installation packages is done correctly"

ctx logger info "Use the DNS server"

echo 'RESOLV_CONF=/etc/dnsmasq.resolv.conf' | sudo tee --append /etc/default/dnsmasq

sudo service dnsmasq force-reload

ctx logger info "Installation is done"

cloudify-supl/scripts/supl/slc/stop-slc.sh

#!/bin/bash -e

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

ctx logger info "Stopping slc node"

sudo monit unmonitor -g slc

sudo timeout 180 service slc quiesce

sudo monit unmonitor supl_cluster_manager

sudo monit unmonitor supl_config_manager

sudo monit unmonitor -g etcd

cloudify-supl/scripts/supl/spc/install-spc.sh

#!/bin/bash -e

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

ctx logger debug "${COMMAND}"

TODO: add other configuration commands as needed (eg /etc data setup)

ctx logger info "Configure the APT software source"

TODO: reference other package repo

echo 'deb http://repo.cw-ngv.com/stable binary/' | sudo tee --append /etc/apt/sources.list.d/supl.list

curl -L http://repo.cw-ngv.com/repo_key | sudo apt-key add -

sudo apt-get update

ctx logger info "Installing SPC and other SUPL packages"

sudo DEBIAN_FRONTEND=noninteractive apt-get install spc --yes --force-yes -o DPkg::options::=--force-confnew

TODO: remove next line if no specific management package is needed

sudo DEBIAN_FRONTEND=noninteractive apt-get install supl-management --yes --force-yes

ctx logger info "The installation packages is done correctly"

ctx logger info "Use the DNS server"

echo 'RESOLV_CONF=/etc/dnsmasq.resolv.conf' | sudo tee --append /etc/default/dnsmasq

sudo service dnsmasq force-reload

ctx logger info "Installation is done"

cloudify-supl/scripts/supl/spc/stop-spc.sh

#!/bin/bash -e

###

#

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git

as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

ctx logger info "Stopping spc node"

sudo monit unmonitor -g spc

sudo timeout 180 service spc quiesce

sudo monit unmonitor supl_cluster_manager

sudo monit unmonitor supl_config_manager

sudo monit unmonitor -g etcd

cloudify-supl/types/bind.yaml

###

Copyright (c) 2015 Orange

valentin.boucher@orange.com

#

All rights reserved. This program and the accompanying materials

are made available under the terms of the Apache License, Version 2.0

which accompanies this distribution, and is available at

http://www.apache.org/licenses/LICENSE-2.0

#

Adaptations of the original clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

node_types:

 # Specific type for bind node

 # - install bind

 # - create dns domains

 # - create shared_config file

 # - install and configure etcd cluster

 supl.infra.bind:

 derived_from: cloudify.nodes.SoftwareComponent

 properties:

 public_domain:

 description: Domain for connecting to SUPL service nodes

 type: string

 private_domain:

 description: Private domain for SUPL internal load-balancing

 type: string

 interfaces:

 cloudify.interfaces.lifecycle:

 create:

 implementation: scripts/bind/bind.py

 inputs:

 invocation:

 default:

 function: install

 configure: scripts/clearwater/other/install-etcd.sh

relationships:

Specific relationships types to add or remove SUPL node on DNS domains

 app_connected_to_bind:

 derived_from: cloudify.relationships.connected_to

 target_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 establish:

 implementation: scripts/bind/bind.py

 inputs:

 invocation:

 default:

 function: add_backend

 unlink:

 implementation: scripts/bind/bind.py

 inputs:

 invocation:

 default:

 function: remove_backend

cloudify-supl/types/cloudify.yaml

##

Base type definitions

##

node_types:

 # base type for provided cloudify types

 cloudify.nodes.Root:

 interfaces:

 cloudify.interfaces.lifecycle:

 create: {}

 configure: {}

 start: {}

 stop: {}

 delete: {}

 cloudify.interfaces.validation:

 creation: {}

 deletion: {}

 cloudify.interfaces.monitoring:

 start: {}

 stop: {}

 # A tier in a topology

 cloudify.nodes.Tier:

 derived_from: cloudify.nodes.Root

 # A host (physical / virtual or LXC) in a topology

 cloudify.nodes.Compute:

 derived_from: cloudify.nodes.Root

 properties:

 install_agent:

 default: true

 cloudify_agent:

 default: {}

 ip:

 default: ''

 interfaces:

 cloudify.interfaces.worker_installer:

 install: agent_installer.worker_installer.tasks.install

 start: agent_installer.worker_installer.tasks.start

 stop: agent_installer.worker_installer.tasks.stop

 uninstall: agent_installer.worker_installer.tasks.uninstall

 restart: agent_installer.worker_installer.tasks.restart

 cloudify.interfaces.plugin_installer:

 install: plugin_installer.plugin_installer.tasks.install

 cloudify.interfaces.host: # DEPRECATED

 get_state: {}

 cloudify.interfaces.monitoring_agent:

 install: {}

 start: {}

 stop: {}

 uninstall: {}

 # A Linux container with or without docker

 cloudify.nodes.Container:

 derived_from: cloudify.nodes.Compute

 # A storage volume in a topology

 cloudify.nodes.Volume:

 derived_from: cloudify.nodes.Root

 # A file system a volume should be formatted to

 cloudify.nodes.FileSystem:

 derived_from: cloudify.nodes.Root

 properties:

 use_external_resource:

 description: >

 Enables the use of already formatted volumes.

 type: boolean

 default: false

 partition_type:

 description: >

 The partition type. 83 is a Linux Native Partition.

 type: integer

 default: 83

 fs_type:

 description: >

 The type of the File System.

 Supported types are [ext2, ext3, ext4, fat, ntfs, swap]

 type: string

 fs_mount_path:

 description: >

 The path of the mount point.

 type: string

 interfaces:

 cloudify.interfaces.lifecycle:

 configure:

 implementation: script.script_runner.tasks.run

 inputs:

 script_path:

 default: https://raw.githubusercontent.com/cloudify-cosmo/cloudify-manager/master/resources/rest-service/cloudify/fs/mkfs.sh

 # A storage Container (Object Store segment)

 cloudify.nodes.ObjectStorage:

 derived_from: cloudify.nodes.Root

 # An isolated virtual layer 2 domain or a logical / virtual switch

 cloudify.nodes.Network:

 derived_from: cloudify.nodes.Root

 # An isolated virtual layer 3 subnet with IP range

 cloudify.nodes.Subnet:

 derived_from: cloudify.nodes.Root

 cloudify.nodes.Port:

 derived_from: cloudify.nodes.Root

 # A network router

 cloudify.nodes.Router:

 derived_from: cloudify.nodes.Root

 # A virtual Load Balancer

 cloudify.nodes.LoadBalancer:

 derived_from: cloudify.nodes.Root

 # A virtual floating IP

 cloudify.nodes.VirtualIP:

 derived_from: cloudify.nodes.Root

 # A security group

 cloudify.nodes.SecurityGroup:

 derived_from: cloudify.nodes.Root

 # A middleware component in a topology

 cloudify.nodes.SoftwareComponent:

 derived_from: cloudify.nodes.Root

 cloudify.nodes.DBMS:

 derived_from: cloudify.nodes.SoftwareComponent

 cloudify.nodes.Database:

 derived_from: cloudify.nodes.Root

 cloudify.nodes.WebServer:

 derived_from: cloudify.nodes.SoftwareComponent

 properties:

 port:

 default: 80

 cloudify.nodes.ApplicationServer:

 derived_from: cloudify.nodes.SoftwareComponent

 cloudify.nodes.MessageBusServer:

 derived_from: cloudify.nodes.SoftwareComponent

 # An application artifact to deploy

 cloudify.nodes.ApplicationModule:

 derived_from: cloudify.nodes.Root

 # A type for a Cloudify Manager, to be used in manager blueprints

 cloudify.nodes.CloudifyManager:

 derived_from: cloudify.nodes.SoftwareComponent

 properties:

 cloudify:

 description: >

 Configuration for Cloudify Manager

 default:

 resources_prefix: ''

 cloudify_agent:

 min_workers: 2

 max_workers: 5

 remote_execution_port: 22

 user: ubuntu

 workflows:

 task_retries: -1 # this means forever

 task_retry_interval: 30

 policy_engine:

 start_timeout: 30

 cloudify_packages:

 description: >

 Links to Cloudify packages to be installed on the manager

##

Base relationship definitions

##

relationships:

 cloudify.relationships.depends_on:

 source_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 preconfigure: {}

 postconfigure: {}

 establish: {}

 unlink: {}

 target_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 preconfigure: {}

 postconfigure: {}

 establish: {}

 unlink: {}

 properties:

 connection_type:

 default: all_to_all

 cloudify.relationships.connected_to:

 derived_from: cloudify.relationships.depends_on

 cloudify.relationships.contained_in:

 derived_from: cloudify.relationships.depends_on

 cloudify.relationships.file_system_depends_on_volume:

 derived_from: cloudify.relationships.depends_on

 source_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 preconfigure:

 implementation: script.script_runner.tasks.run

 inputs:

 script_path:

 default: https://raw.githubusercontent.com/cloudify-cosmo/cloudify-manager/master/resources/rest-service/cloudify/fs/fdisk.sh

 device_name:

 default: { get_attribute: [TARGET, device_name] }

 cloudify.relationships.file_system_contained_in_compute:

 derived_from: cloudify.relationships.contained_in

 source_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 establish:

 implementation: script.script_runner.tasks.run

 inputs:

 script_path:

 default: https://raw.githubusercontent.com/cloudify-cosmo/cloudify-manager/master/resources/rest-service/cloudify/fs/mount.sh

 unlink:

 implementation: script.script_runner.tasks.run

 inputs:

 script_path:

 default: https://raw.githubusercontent.com/cloudify-cosmo/cloudify-manager/master/resources/rest-service/cloudify/fs/unmount.sh

##

Workflows

##

workflows:

 install: default_workflows.cloudify.plugins.workflows.install

 uninstall: default_workflows.cloudify.plugins.workflows.uninstall

 execute_operation:

 mapping: default_workflows.cloudify.plugins.workflows.execute_operation

 parameters:

 operation: {}

 operation_kwargs:

 default: {}

 allow_kwargs_override:

 default: null

 run_by_dependency_order:

 default: false

 type_names:

 default: []

 node_ids:

 default: []

 node_instance_ids:

 default: []

 heal:

 mapping: default_workflows.cloudify.plugins.workflows.auto_heal_reinstall_node_subgraph

 parameters:

 node_instance_id:

 description: Which node instance has failed

 diagnose_value:

 description: Diagnosed reason of failure

 default: Not provided

 scale:

 mapping: default_workflows.cloudify.plugins.workflows.scale

 parameters:

 node_id:

 description: Which node (not node instance) to scale

 delta:

 description: >

 How many nodes should be added/removed.

 A positive number denotes increase of instances.

 A negative number denotes decrease of instances.

 default: 1

 scale_compute:

 description: >

 If node is contained (transitively) within a compute node

 and this property is 'true', operate on compute node instead

 of 'node_id'

 default: true

##

Base artifact definitions

##

plugins:

 agent_installer:

 executor: central_deployment_agent

 install: false

 plugin_installer:

 executor: host_agent

 install: false

 windows_agent_installer:

 executor: central_deployment_agent

 install: false

 windows_plugin_installer:

 executor: host_agent

 install: false

 default_workflows:

 executor: central_deployment_agent

 install: false

 script:

 executor: host_agent

 install: false

##

Policy types definitions

##

policy_types:

 cloudify.policies.types.host_failure:

 properties: &BASIC_AH_POLICY_PROPERTIES

 policy_operates_on_group:

 description: |

 If the policy should maintain its state for the whole group

 or each node instance individually.

 default: false

 is_node_started_before_workflow:

 description: Before triggering workflow, check if the node state is started

 default: true

 interval_between_workflows:

 description: |

 Trigger workflow only if the last workflow was triggered earlier than interval-between-workflows seconds ago.

 if < 0 workflows can run concurrently.

 default: 300

 service:

 description: Service names whose events should be taken into consideration

 default:

 - service

 source: https://raw.githubusercontent.com/cloudify-cosmo/cloudify-manager/3.2/resources/rest-service/cloudify/policies/host_failure.clj

 cloudify.policies.types.threshold:

 properties: &THRESHOLD_BASED_POLICY_PROPERTIES

 <<: *BASIC_AH_POLICY_PROPERTIES

 service:

 description: The service name

 default: service

 threshold:

 description: The metric threshold value

 upper_bound:

 description: |

 boolean value for describing the semantics of the threshold.

 if 'true': metrics whose value is bigger than the threshold will cause the triggers to be processed.

 if 'false': metrics with values lower than the threshold will do so.

 default: true

 stability_time:

 description: How long a threshold must be breached before the triggers will be processed

 default: 0

 source: https://raw.githubusercontent.com/cloudify-cosmo/cloudify-manager/3.2/resources/rest-service/cloudify/policies/threshold.clj

 cloudify.policies.types.ewma_stabilized:

 properties:

 <<: *THRESHOLD_BASED_POLICY_PROPERTIES

 ewma_timeless_r:

 description: |

 r is the ratio between successive events. The smaller it is, the smaller impact on the computed value the most recent event has.

 default: 0.5

 source: https://raw.githubusercontent.com/cloudify-cosmo/cloudify-manager/3.2/resources/rest-service/cloudify/policies/ewma_stabilized.clj

##

Policy triggers definitions

##

policy_triggers:

 cloudify.policies.triggers.execute_workflow:

 parameters:

 workflow:

 description: Workflow name to execute

 workflow_parameters:

 description: Workflow paramters

 default: {}

 force:

 description: |

 Should the workflow be executed even when another execution

 for the same workflow is currently in progress

 default: false

 allow_custom_parameters:

 description: |

 Should parameters not defined in the workflow parameters

 schema be accepted

 default: false

 socket_timeout:

 description: Socket timeout when making request to manager REST in ms

 default: 1000

 conn_timeout:

 description: Connection timeout when making request to manager REST in ms

 default: 1000

 source: https://raw.githubusercontent.com/cloudify-cosmo/cloudify-manager/3.2/resources/rest-service/cloudify/triggers/execute_workflow.clj

cloudify-supl/types/monitoring.yaml

###

Adaptations of the original Clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

node_types:

 SNMPProxy:

 derived_from: cloudify.nodes.Root

 interfaces:

 cloudify.interfaces.lifecycle:

 create: scripts/monitoring/proxy_snmp/install_requirements.sh

relationships:

 cloudify.relationships.monitors:

 derived_from: cloudify.relationships.connected_to

 target_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 preconfigure:

 implementation: scripts/monitoring/proxy_snmp/append_proxy_snmp_conf.py

 executor: central_deployment_agent

 inputs:

 port:

 default: 161

 description: snmp port

 community:

 default: public

 description: the community

 oids:

 description: the oids to poll

 establish:

 implementation: scripts/monitoring/proxy_snmp/add-snmpproxy-collector.py

cloudify-supl/types/supl.yaml

###

Copyright (c) 2015 Orange

valentin.boucher@orange.com

#

All rights reserved. This program and the accompanying materials

are made available under the terms of the Apache License, Version 2.0

which accompanies this distribution, and is available at

http://www.apache.org/licenses/LICENSE-2.0

#

Adaptations of the original clearwater IMS blueprint at

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater.git as an OMA SUPL 2.1 blueprint are

Copyright (c) 2016 AT&T Intellectual Property. All rights reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

##

node_types:

 # Global type for SUPL nodes (create local_config file)

 supl.nodes.config:

 derived_from: cloudify.nodes.SoftwareComponent

 properties:

 private_domain:

 description: Private domain for SUPL internal load-balancing

 type: string

 interfaces:

 cloudify.interfaces.lifecycle:

 create:

 implementation: scripts/supl/other/supl.py

 inputs:

 invocation:

 default:

 function: configure

 # Specific types for SUPLnodes (install role etc.)

 supl.nodes.slc:

 derived_from: supl.nodes.config

 interfaces:

 cloudify.interfaces.lifecycle:

 configure: scripts/supl/slc/install-slc.sh

 stop: scripts/supl/slc/stop-slc.sh

 delete: scripts/supl/other/remove-cluster-node.sh

 supl.nodes.spc:

 derived_from: supl.nodes.config

 interfaces:

 cloudify.interfaces.lifecycle:

 configure: scripts/supl/spc/install-spc.sh

 stop: scripts/supl/spc/stop-spc.sh

 delete: scripts/supl/other/remove-cluster-node.sh

relationships:

 # Specific relationships types for monitor slc and spc nodes

 monitors_slc_nodes:

 derived_from: cloudify.relationships.monitors

 target_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 preconfigure:

 implementation: scripts/monitoring/proxy_snmp/append_proxy_snmp_conf.py

 executor: central_deployment_agent

 inputs:

 port:

 default: 161

 description: snmp port

 community:

 default: supl

 description: snmp community

 oids:

 description: snmp oids to poll

 default:

TODO: Add SUPL OIDs

 monitors_spc_nodes:

 derived_from: cloudify.relationships.monitors

 target_interfaces:

 cloudify.interfaces.relationship_lifecycle:

 preconfigure:

 implementation: scripts/monitoring/proxy_snmp/append_proxy_snmp_conf.py

 executor: central_deployment_agent

 inputs:

 port:

 default: 161

 description: snmp port

 community:

 default: supl

 description: snmp community

 oids:

 description: snmp oids to poll

 default:

TODO: Add SUPL OIDs

