OMA-TS-REST_NetAPI-Twinning-V1_0-20150817-D
Page 26 V(111)

	[image: image1.jpg]
	

	RESTful Network API for Twinning Devices

	Draft Version 1.0 – 17 Aug 2015

	Open Mobile Alliance

	OMA-TS-REST_NetAPI-Twinning-V1_0-20150817-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

91.
Scope

2.
References
10
2.1
Normative References
10
2.2
Informative References
10
3.
Terminology and Conventions
11
3.1
Conventions
11
3.2
Definitions
11
3.3
Abbreviations
11
4.
Introduction
13
4.1
Version 1.0
13
5.
Twinning Devices API definition
14
5.1
Concepts
14
5.1.1
Twinning relationship
14
5.1.2
Secondary device interactions with Primary device’s network
15
5.1.3
Inter-MNO Twinning
15
5.2
Resources Summary
15
5.2.1
To allow a client to manage Twinning Relationship
18
5.2.2
To allow a client to manage subscriptions to notifications related to Twinning events
19
5.2.3
To allow an MNO to interact with another MNO to request an Activation code
19
5.2.4
Resources allowing the server to notify a client about Twinning events
20
5.3
Data Types
21
5.3.1
XML Namespaces
21
5.3.2
Structures
21
5.3.2.1
Type: TwinningSubscriptionList
21
5.3.2.2
Type: TwinningSubscription
21
5.3.2.3
Type: SubscriptionDuration
22
5.3.2.4
Type: TwinningList
22
5.3.2.5
Type: Twinning
23
5.3.2.6
Type: TwinningUpdate
27
5.3.2.7
Type: OtherDevice
27
5.3.2.8
Type: InterMnoActivationCode
28
5.3.2.9
Type: TwinningActivationCode
28
5.3.2.10
Type: Instruction
28
5.3.2.11
Type: Mno
28
5.3.2.12
Type: UserPreference
29
5.3.2.13
Type: Status
29
5.3.2.14
Type: TwinningEventNotification
30
5.3.3
Enumerations
30
5.3.3.1
Enumeration: TwinningRole
30
5.3.3.2
Enumeration: TwinningStatus
30
5.3.3.3
Enumeration: TwinningEventType
31
5.3.4
Values of the Link “rel” attribute
31
5.4
Sequence Diagrams
31
5.4.1
Subscription to Twinning notifications
32
5.4.2
Activate a Twinning relationship (intra-MNO scenario)
34
5.4.3
Retrieve Twinning relationship(s)
35
5.4.4
Toggle On/Off a Twinning relationship
36
5.4.5
Update Twinning relationships’ s user preference data
37
5.4.6
Deactivate a Twinning relationship
38
5.4.7
Activate a Twinning relationship (inter-MNO scenario)
39
6.
Detailed specification of the resources
42
6.1
Resource: Twinning Relationships
42
6.1.1
Request URL variables
42
6.1.2
Response Codes and Error Handling
43
6.1.3
GET
43
6.1.3.1
Example 1: Retrieve a Primary device’s existing Twinning relationships (Informative)
43
6.1.3.1.1
Request
43
6.1.3.1.2
Response
43
6.1.3.2
Example 2: Retrieve a Secondary device’s existing Twinning relationship using “auth” keyword (Informative)
44
6.1.3.2.1
Request
44
6.1.3.2.2
Response
44
6.1.3.3
Example 3: Retrieve Twinning instruction from a Secondary device (Informative)
45
6.1.3.3.1
Request
45
6.1.3.3.2
Response
45
6.1.3.4
Example 4: Retrieve Twinning instruction from a Primary device (Informative)
46
6.1.3.4.1
Request
46
6.1.3.4.2
Response
46
6.1.4
PUT
47
6.1.5
POST
47
6.1.5.1
Example 1: A Secondary device initiates a new Twinning relationship (Informative)
47
6.1.5.1.1
Request
47
6.1.5.1.2
Response
47
6.1.5.2
Example 2: A Primary device initiates and activates a new Twinning relationship (Informative)
48
6.1.5.2.1
Request
48
6.1.5.2.2
Response
48
6.1.5.3
Example 3: A Primary device initiates and activates a new Twinning relationship, response with HTTP 202 Accepted (Informative)
49
6.1.5.3.1
Request
49
6.1.5.3.2
Response
49
6.1.5.4
50
6.1.5.5
Example 4: A Primary device initiates and activates a new Twinning relationship, response with location of created resource (Informative)
50
6.1.5.5.1
Request
50
6.1.5.5.2
Response
50
6.1.5.6
Example 5: A Secondary device initiates a new inter-MNO Twinning relationship (Informative)
51
6.1.5.6.1
Request
51
6.1.5.6.2
Response
51
6.1.5.7
Example 6: A Primary device initiates and activates a new inter-MNO Twinning relationship (Informative)
51
6.1.5.7.1
Request
51
6.1.5.7.2
Response
52
6.1.5.8
Example 7: A Primary device initiates Twinning relationship activation, failure due to an expired activation code (Informative)
52
6.1.5.8.1
Request
52
6.1.5.8.2
Response
53
6.1.5.9
Example 7: A Secondary device initiates Twinning relationship activation, failure due to undefined twinning role (Informative)
53
6.1.5.9.1
Request
53
6.1.5.9.2
Response
53
6.1.6
DELETE
54
6.2
Resource: An individual Twinning relationship
54
6.2.1
Request URL variables
54
6.2.2
Response Codes and Error Handling
54
6.2.3
GET
54
6.2.3.1
Example 1: Retrieve an individual Twinning relationship (Informative)
54
6.2.3.1.1
Request
54
6.2.3.1.2
Response
55
6.2.3.2
Example 2: Retrieve an individual Twinning relationship (Informative)
55
6.2.3.2.1
Request
55
6.2.3.2.2
Response
55
6.2.3.3
Example 3: Retrieve information about a non-existent individual Twinning relationship (Informative)
56
6.2.3.3.1
Request
56
6.2.3.3.2
Response
56
6.2.4
PUT
56
6.2.5
POST
56
6.2.5.1
Example 1: Activate an inter-MNO “Pending” Twinning relationship (Informative)
56
6.2.5.1.1
Request
56
6.2.5.1.2
Response
57
6.2.5.2
Example 2: Updating information about an already active Twinning relationship fails (Informative)
58
6.2.5.2.1
Request
58
6.2.5.2.2
Response
58
6.2.6
DELETE
58
6.2.6.1
Example: Delete a Twinning relationship (Informative)
59
6.2.6.1.1
Request
59
6.2.6.1.2
Response
59
6.3
Resource: Twinning status
59
6.3.1
Request URL variables
59
6.3.2
Response Codes and Error Handling
59
6.3.3
GET
59
6.3.3.1
Example 1: Retrieve status of an individual Twinning relationship (Informative)
59
6.3.3.1.1
Request
59
6.3.3.1.2
Response
60
6.3.4
PUT
60
6.3.4.1
Example 1: Toggle Off a Twinning relationship (Informative)
60
6.3.4.1.1
Request
60
6.3.4.1.2
Response
60
6.3.4.2
Example 2: Toggle Off a Twinning relationship, response with HTTP 202 Accepted (Informative)
61
6.3.4.2.1
Request
61
6.3.4.2.2
Response
61
6.3.5
POST
61
6.3.6
DELETE
61
6.4
Resource: Twinning user preference parameters
61
6.4.1
Request URL variables
61
6.4.2
Response Codes and Error Handling
62
6.4.3
GET
62
6.4.4
PUT
62
6.4.4.1
Example 1: Rename a Twinning relationship (Informative)
62
6.4.4.1.1
Request
62
6.4.4.1.2
Response
62
6.4.4.2
Example 2: Rename a Twinning relationship and also turn on the “Out-of-band” notifications to Primary user (Informative)
63
6.4.4.2.1
Request
63
6.4.4.2.2
Response
63
6.4.4.3
Example 3: Turn on the “Out-of-band” notifications to Primary user and set the Primary user’s notification endpoint (Informative)
63
6.4.4.3.1
Request
63
6.4.4.3.2
Response
64
6.4.4.4
Example 4: Turn on the “Out-of-band” notifications to Primary user and set the Primary user’s notification endpoint, failure due to not allowed value (Informative)
64
6.4.4.4.1
Request
64
6.4.4.4.2
Response
64
6.4.5
POST
64
6.4.6
DELETE
65
6.5
Resource: All subscriptions to Twinning notifications
65
6.5.1
Request URL variables
65
6.5.2
Response Codes and Error Handling
65
6.5.3
GET
65
6.5.3.1
Example: Reading all active subscriptions (Informative)
65
6.5.3.1.1
Request
65
6.5.3.1.2
Response
66
6.5.4
PUT
66
6.5.5
POST
66
6.5.5.1
Example 1: Creating a new subscription, response with copy of created resource (Informative)
66
6.5.5.1.1
Request
66
6.5.5.1.2
Response
67
6.5.5.2
Example 2: Creating a new subscription, response with location of created resource (Informative)
67
6.5.5.2.1
Request
67
6.5.5.2.2
Response
67
6.5.6
DELETE
68
6.6
Resource: Individual subscription to Twinning notifications
68
6.6.1
Request URL variables
68
6.6.2
Response Codes and Error Handling
68
6.6.3
GET
68
6.6.3.1
Example 1: Reading an individual subscription (Informative)
68
6.6.3.1.1
Request
68
6.6.3.1.2
Response
69
6.6.3.2
Example 2: Retrieve information about a non-existent individual subscription (Informative)
69
6.6.3.2.1
Request
69
6.6.3.2.2
Response
69
6.6.4
PUT
69
6.6.5
POST
69
6.6.6
DELETE
70
6.6.6.1
Example: Cancelling a subscription (Informative)
70
6.6.6.1.1
Request
70
6.6.6.1.2
Response
70
6.7
Resource: Subscription duration
70
6.7.1
Request URL variables
70
6.7.2
Response Codes and Error Handling
70
6.7.3
GET
70
6.7.4
PUT
70
6.7.4.1
Refresh an existing subscription (Informative)
71
6.7.4.1.1
Request
71
6.7.4.1.2
Response
71
6.7.5
POST
71
6.8
Resource: Client notification about Twinning events
71
6.8.1
Request URL variables
72
6.8.2
Response Codes and Error Handling
72
6.8.3
GET
72
6.8.4
PUT
72
6.8.5
POST
72
6.8.5.1
Example 1: Notify a client about Twinning status change (Informative)
72
6.8.5.1.1
Request
72
6.8.5.1.2
Response
73
6.8.5.2
Example 2: Notify a client about Twinning status toggle event (Informative)
73
6.8.5.2.1
Request
73
6.8.5.2.2
Response
73
6.8.6
DELETE
73
6.9
Resource: Inter-MNO Twinning activation code
73
6.9.1
Request URL variables
73
6.9.2
Response Codes and Error Handling
74
6.9.3
GET
74
6.9.4
PUT
74
6.9.5
POST
74
6.9.5.1
Secondary device’s server requests a new Twinning Activation Code from the Primary device’s server (Informative)
74
6.9.5.1.1
Request
74
6.9.5.1.2
Response
74
6.9.6
DELETE
75
7.
Fault definitions
76
7.1
Service Exceptions
76
7.1.1
SVC1014: Undefined twinning role
76
7.2
Policy Exceptions
76
7.2.1
POL1037: Twinning role mixture not allowed
76
7.2.2
POL1038: Twinning data update not allowed
76
Appendix A.
Change History (Informative)
77
A.1
Approved Version History
77
A.2
Draft/Candidate Version 1.0 History
77
Appendix B.
Static Conformance Requirements (Normative)
79
B.1
SCR for REST.TWINNING Server
79
B.1.1
SCR for REST.TWINNING.Relationships Server
79
B.1.2
SCR for REST.TWINNING.ARelationship Server
79
B.1.3
SCR for REST.TWINNING.ARelationship.Status Server
79
B.1.4
SCR for REST.TWINNING.Subscriptions Server
80
B.1.5
SCR for REST.TWINNING.IndSubscription Server
80
B.1.6
SCR for REST.TWINNING.Notifications Server
80
B.1.7
SCR for REST.TWINNING.InterMNO Server
80
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
81
Appendix D.
JSON examples (Informative)
82
D.1
Retrieve a Primary device’s existing Twinning relationship (section 6.1.3.1)
82
D.2
Retrieve a Secondary device’s existing Twinning relationship using “auth” keyword (section 6.1.3.2)
83
D.3
Retrieve Twinning instruction from a Secondary device (section 6.1.3.3)
83
D.4
Retrieve Twinning instruction from a Primary device (section 6.1.3.4)
84
D.5
A Secondary device initiates a new Twinning relationship (section 6.1.5.1)
85
D.6
A Primary device initiates and activates a new Twinning relationship (section 6.1.5.2)
86
D.7
A Primary device initiates and activates a new Twinning relationship, response with location of created resource (section 6.1.5.3)
87
D.8
A Secondary device initiates a new inter-MNO Twinning relationship (section 6.1.5.3)
87
D.9
A Primary device initiates and activates a new inter-MNO Twinning relationship (section 6.1.5.4)
88
D.10
A Primary device initiates Twinning relationship activation, failure due to an expired activation code (section 6.1.5.8)
89
D.11
A Secondary device initiates Twinning relationship activation, failure due to undefined twinning role (section 6.1.5.9)
90
D.12
Retrieve an individual Twinning relationship (section 6.2.3.1)
90
D.13
Retrieve an individual Twinning relationship (section 6.2.3.2)
91
D.14
Retrieve information about a non-existent individual Twinning relationship (section 6.2.3.3)
92
D.15
Activate an inter-MNO “Pending” Twinning relationship (section 6.2.5.1)
92
D.16
Updating information about an already active Twinning relationship fails (section 6.2.5.2)
93
D.17
Delete a Twinning relationship (section 6.2.6.1)
94
D.18
Retrieve status of an individual Twinning relationship (section 6.3.3.1)
94
D.19
Toggle Off a Twinning relationship (section 6.3.4.1)
95
D.20
Rename a Twinning relationship (section 6.4.4.1)
95
D.21
Rename a Twinning relationship and also turn Out-of-band notifications to Primary user on (section 6.4.4.2)
96
D.22
Turn on the “Out-of-band” notifications to Primary user and set the Primary user’s notification endpoint (section 6.4.4.3)
96
D.23
Turn on the “Out-of-band” notifications to Primary user and set the Primary user’s notification endpoint, failure due to not allowed value (section 6.4.4.4)
97
D.24
Reading all active subscriptions (section 6.4.3.1)
97
D.25
Creating a new subscription, response with copy of created resource (section 6.4.5.1)
98
D.26
Creating a new subscription, response with location of created resource (section 6.4.5.2)
99
D.27
Reading an individual subscription (section 6.5.3.1)
99
D.28
Retrieve information about a non-existent individual subscription (section 6.5.3.2)
100
D.29
Refresh an existing subscription (section 6.6.4.1)
100
D.30
Cancelling a subscription (section 6.5.6.1)
101
D.31
Notify a client about Twinning status change (section 6.6.5.1)
101
D.32
Notify a client about Twinning status toggle event (section 6.6.5.2)
102
D.33
Secondary device’s server requests a new Twinning Activation Code from the Primary device’s server (section 6.7.5.1)
102
Appendix E.
Operations mapping (Informative)
104
Appendix F.
Light-weight Resources (Informative)
105
Appendix G.
Authorization aspects (Normative)
106
G.1
Use with OMA Authorization Framework for Network APIs
106
G.1.1
Scope values
106
G.1.1.1
Definitions
106
G.1.1.2
Downscoping
107
G.1.1.3
Mapping with resources and methods
107
G.1.2
Use of ‘acr:auth’
111

Figures

16Figure 1 Resource structure defined by this specification

33Figure 2 Twinning notifications subscription

35Figure 3 Twinning activation (intra-MNO)

36Figure 4 Twinning data

37Figure 5 Toggling Twinning status

38Figure 6 Update user-preference data

39Figure 7 Twinning deactivation

40Figure 8 Twinning activation (inter-MNO)

Tables

72Table 1: Twinning event notification

107Table 2: Scope values for RESTful Twinning Devices API

110Table 3: Required scope values for: Twinning relationship management

110Table 4: Required scope values for: acquiring/generating inter_MNO Twinning activation code

1. Scope

This specification defines a RESTful API for Twinning Devices using HTTP protocol bindings.
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_ACR]
	“RESTful Network API for Anonymous Customer Reference Management”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_ACR-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_Twinning]
	“XML schema for the RESTful Network API for Twinning Devices”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_twinning-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL: http://tools.ietf.org/html/rfc2119

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL: http://tools.ietf.org/html/rfc2616

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://tools.ietf.org/html/rfc3966

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://tools.ietf.org/html/rfc3986

	[RFC7159]
	“The JavaScript Object Notation (JSON) Data Interchange Format”, T. Bray, Ed., March 2014, URL: http://tools.ietf.org/html/rfc7159

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures Second Edition, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-1/

	
	

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-2/

	
	

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_Messaging]
	“RESTful Network API for Messaging”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Messaging-V1_0, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_NMS]
	“RESTful Network API for Network Message Storage”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NMS-V1_0, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].
	Secondary device
	A device in a Twinning relationship which assumes the identity of the Primary device.

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Primary device
	A device in a Twinning relationship which shares its identity with another device referred to as the Secondary device.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	MCC
	Mobile Country Code

	MNC
	Mobile Network Code

	MNO
	Mobile Network Operator

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Twinning Devices contains HTTP protocol bindings for Twinning functionality, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations. These operations also support the inter-MNO Twinning interactions between two MNOs (i.e. use cases involving Primary and Secondary devices served by different Mobile Network Operators).

· Activate a Twinning relationship between a Primary and a Secondary device

· Retrieve the list of devices which a given device is in Twinning relationship with

· Request a Twinning “Activation Code”

· Toggle Twinning status On/Off

· Deactivate a Twinning relationship

· Retrieve information for a given Twinning relationship

· Retrieve status of a Twinning relationship

· Manage subscriptions to notifications related to Twinning relationship events
· Notify changes in the Twinning relationship status (On/Off or deactivation)

· Update Twinning relationship information (used for inter-MNO interactions only)

In addition, this specification provides:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in an ACR
5. Twinning Devices API definition
This section is organized to support a comprehensive understanding of the Twinning Devices API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a description of the concepts used by this API (section 5.1). This is followed by a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.3). A sample of typical use cases is included in section 5.4, described as high level flow diagrams.
Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body, while JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.
Appendix B provides the Static Conformance Requirements (SCR).
Appendix C provides application/x-www-form-urlencoded examples, where applicable.

 Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all Light-weight Resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Concepts

5.1.1 Twinning relationship
A Twinning relationship consists of two devices where one takes on the Primary role and the other takes on the role of the Secondary device. As a result of the Twinning relationship activation, the Secondary device would assume the identity of the Primary device. Twinning activation would result in the Secondary device being able to receive voice calls and messages destined for the Primary device, originate calls/messages and be perceived by the destination as the Primary device.
A Secondary device MAY form a Twinning relationship with only one Primary device. However, a Primary device MAY form Twinning relationship with several Secondary devices.

If a Primary device has several Twinning relationships then, its role towards all of its Twinning relationships SHALL be Primary.

As a result of the Twinning activation, a Secondary device SHALL have access to all the Primary device’s services as authorized by the Primary device (e.g. as defined by the Primary device’s OAuth access_token provided to the Secondary device as part of the Twinning activation). Whether a Secondary device can take advantage of the Primary device’s authorized services is dependent on the Secondary device’s capability as well as the Secondary device MNO’s network capabilities.

FFS: How is the service configuration between the two devices managed? (e.g. if secondary has a1000 minute bucket/mon and makes calls using Primary’s identity, whose minutes are counted by the network)?
5.1.2 Secondary device interactions with Primary device’s network

Once the Twinning activation is in place, the Secondary device, depending upon its inherent capabilities, is able to send/receive messages in addition to place/receive calls on behalf of the Primary device.

In order to send/receive messages, the Secondary device can directly interface with the Primary device’s network. For this purpose the Primary device’s MNO should provide an appropriate OAuth access token to the Secondary device. For further information see “authCode” parameter in section 5.3.2.4.

For further information on how a Secondary device can send and receive messages on behalf of the Primary device see [REST_NetAPI_Messaging] and in [REST_NetAPI_NMS] respectively.

By the same token, the Secondary device can place voice calls on behalf of the Primary device (i.e. be perceived by the destination endpoint as if the calls are originated from the Primary device) and also receive voice calls which are destined for the Primary device. However, the voice call related functionalities are managed by a direct communication between the Secondary device and its own network (i.e. there is no need for the Secondary device to receive an OAuth access token from the Primary device in order to directly communicate with the Primary device’s network).

5.1.3 Inter-MNO Twinning

In an inter-MNO Twinning scenario, the Primary and Secondary devices are managed by different MNOs. As a result, Twinning operations (e.g. Twining activation, Twinning deactivation and Twinning Status Toggle) which are initiated by one Twinning device (e.g. Primary) in one network is expected to be relayed by the respective MNO server to the other device’s (e.g. Secondary) MNO server. Such interactions are supported by the resources defined in section 5.2of this specification.
5.2 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Twinning Devices.

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree which have associated HTTP methods defined in this specification are depicted by solid boxes.
[image: image2.png]
Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
5.2.1 To allow a client to manage Twinning Relationship
	Resource

	URL
Base URL: //{serverRoot}/twinning/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Twinning Relationships
	/twinningRelations

	TwinningList
(used for GET)
Twinning
(used for POST)
common:ResourceReference (optional alternative for POST response)
	Retrieves the existing Twinning relationships for the end user’s device identified by the {userId}.
Note: Query string parameter used to provide Twinning activation instruction and MNO list.
	no
	Creates a new Twinning relationship

	no

	An individual Twinning relationship

	/twinningRelations/{twinningId}

	Twinning
(used for GET and POST Response)
TwinningUpdate
(used for POST Request)
	Retrieves Twinning data
	no
	Activates an inter-MNO “pending” Twinning relationship (specifically used in inter-MNO use cases)
	Removes a Twinning relationship

	Twinning status
	/twinningRelations/{twinningId}/status

	Status

	Retrieves Twinning status
	Toggles Twinning status (to “On/Off”)
	no
	no

	Twinning user preference parameters
	/twinningRelations/{twinningId}/userPreference

	UserPreference

	no
	Updates Twinning user preferences parameters (e.g. Twinning name)
	no
	no

5.2.2 To allow a client to manage subscriptions to notifications related to Twinning events
	Resource
	URL
Base URL: //{serverRoot}/twinning/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to Twinning notifications
	/subscriptions
	TwinningSubscriptionList
(used for GET)
TwinningSubscription
(used for POST)

 common:ResourceReference (optional alternative for POST response)
	Retrieves all active Twinning notification subscriptions
	no
	Creates new subscription for notification for Twinning status changes
	no

	Individual subscription to Twinning notifications
	/subscriptions/{subscriptionId}
	TwinningSubscription
(used for GET response)

	Retrieves an individual subscription
	no
	no
	Cancels subscription and stop corresponding notifications

	Subscription duration
	/subscriptions/{subscriptionId}/duration

	SubscriptionDuration

	no
	Extends (“refreshes”) the duration of a subscription
	no
	no

5.2.3 To allow an MNO to interact with another MNO to request an Activation code
	Resource

	URL
Base URL: //{serverRoot}/twinning/{apiVersion}/
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Inter-MNO Twinning activation code
	/interMnoActivationCode

	InterMnoActivationCode

	no
	no
	Generates a new Twinning Activation Code

	no

5.2.4 Resources allowing the server to notify a client about Twinning events

	Resource
	URL
<specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about Twinning events
	<specified by the client when subscription is created or during provisioning process>

	TwinningEventNotification
	no
	no
	Notifies client about Twinning events
	no

5.3 Data Types
5.3.1 XML Namespaces

The XML namespace for the Twinning Devices data types is:

urn:oma:xml:rest:netapi:twinning:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_Twinning].
5.3.2 Structures

The subsections of this section define the data structures used in the Twinning Devices API.

Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.3.2.1 Type: TwinningSubscriptionList
 This type represents a list of subscriptions to notifications regarding Twinning events.
	Element
	Type
	Optional
	Description

	subscription
	TwinningSubscription[0..unbounded]
	Yes
	Array of notification subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named twinningSubscriptionList of type TwinningSubscriptionList is allowed in response bodies.
5.3.2.2 Type: TwinningSubscription
This type represents a subscription to notifications regarding Twinning events.
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData.

	duration
	xsd:unsignedInt
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), or omitted, a duration time will be chosen according to service provider policy.
This element MAY be given by the client during resource creation in order to signal the desired lifetime of the subscription. The server MUST return in this element the period of time for which the subscription will still be valid.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client can use to tag this particular resource representation during a request to create a resource on the server.

This element MAY be present.
Note: this allows the client to recover from communication failures during resource creation and therefore avoids duplicate subscriptions in such situations.

In case the element is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named twinningSubscription of type TwinningSubscription is allowed in request and/or response bodies.
5.3.2.3 Type: SubscriptionDuration
Duration of a subscription to notifications about Twinning events
	Element
	Type
	Optional
	Description

	duration
	xsd:unsignedInt
	Yes
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), or omitted (not present) in PUT requests, a default duration time will be chosen according to service provider policy.

This element can be specified by the client in PUT requests when refreshing a subscription however, the server in the response to the request may change the desired lifetime according to its server policy.

The server MUST always include the subscription duration (lifetime) in the response..

A root element named subscriptionDuration of type SubscriptionDuration is allowed in request and/or response bodies.
5.3.2.4 Type: TwinningList
This type represents a list of Twinning relationships.

	Element
	Type

	Optional
	Description

	twinning
	Twinning[0..unbounded]
	Yes
	List of Twinning relationships.

	instruction
	Instruction
	Yes
	General Twinning activation instruction and the list of available MNOs which a Twinning device (e.g. Secondary) may establish a Twinning relationship with.

Query parameter “Instruction” MAY be used by the application to request this element’s inclusion in the response from the server.

A root element named twinningList of type TwinningList is allowed in response bodies.

5.3.2.5 Type: Twinning
This type represents a Twinning relationship.

	Element
	Type

	Optional
	Description

	role
	TwinningRole
	Yes
	The role (“Primary” or “Secondary”) of this Twinning device as provided in the request (POST) body during resource creation request.

This parameter is required by the server in Twinning resource creation operation.

If “role” is not provided by the client in the request, it is assumed that the sever has other means of retrieving the role information (e.g. through OAuth token present in the request or in advance pre-configuration information at the server, etc.).
If the client does not provide the “role” as part of the request and the server has no way of determining the intended “role” through other means, an appropriate error SHALL be resulted (see sections 6.1.5.9 and 7.1.1)

	primaryMno
	Mno
	Yes
	This element MAY be present in the request (POST) body during resource creation only if role = Secondary.

· If role = Secondary, the value of primaryMno determines which server (i.e. MNO) is to generate the “ activationCode”. If primaryMno is different than Secondary’s MNO, the server SHALL interact with the Primary’s MNO server to obtain an “activationCode. This results in an inter-MNO interaction between the two MNO’s (see interMnoActivationCode resource in section 5.2 for further information).

· If role = Secondary and this element is not present the server SHALL assume the Primary device’s MNO is the same as Secondary’s.

· If role = Primary, this element is not relevant and MUST be absent (if present, it SHALL be ignored by the server).

	name
	xsd:string
	Yes
	Human readable name (e.g. myCar or myWatch) of the Twinning relationship which SHOULD be provided by the client (e.g. by Primary’s device) in the request (POST) body during resource creation

If name is not provided by the client, the server SHALL assign a unique name (e.g. car1, wearable1).

The server SHALL ensure the name is unique within the context of a given Primary device.

	otherDevice
	OtherDevice
	Yes
	Information pertaining to the other device in this Twinning relationship.

This element SHALL be populated by the server upon successful Twinning activation.
It SHALL NOT be present in the request (POST) body during resource creation.
In inter-MNO scenarios (where the primary and secondary devices are managed by different MNOs), Primary device’s server SHALL use a POST request to update the Secondary device’s resource with information pertaining to the Primary device. (see section 5.3.2.5 5.4.6 and 6.2.5).

	activationCode
	TwinningActivationCode
	Yes
	A single-use Twinning “activationCode”.
This element MUST be present in POST requests only if role = Primary.

If role = Secondary, this element is not relevant and MUST be absent from the POST requests (if present, it SHALL be ignored by the server).

The “activationCode” SHALL be generated by the server and MUST be provided in the response to the resource creation request (POST) when role=Secondary.
Once the Twinning relationship is activated successfully, the “activationCode” SHALL be invalidated by the server (i.e. it MAY no longer be used in a subsequent resource creation requests (POST) by the Primary device).

	twinningStatus
	TwinningStatus
	Yes
	The status of the Twinning relationship.
The twinningStatus SHALL NOT be present in the POST request body during resource creation. It SHALL be Set by the server and returned in the response.
Secondary device’s twinningStatus SHALL by default be set to “Pending” by the server upon creation of the Twinning resource (i.e. due to POST request).
Primary device’s twinningStatus SHALL be set to “On” by the server upon successful activation of the Twinning resource on the Primary device’s side.

The twinningStatus of the Secondary device SHALL be updated to twinningStatus = On by Primary device’s server upon successful Twinning relationship activation on the Primary’s side.
 In inter-MNO scenarios (where the primary and secondary devices are managed by different MNOs), Primary device’s server SHALL use a POST request to update the Secondary device’s twinningStatus accordingly. See section 5.3.2.5 5.4.6 and 6.2.5 for further information.

	authCode
	xsd:string
	Yes
	This element contains an OAuth authorization code which SHALL be generated by the Primary device’s server and populated in the Secondary device’s Twinning resource (i.e. {twinningId}) upon successful activation of the Twinning relationship.
It SHALL NOT be present in the POST request body during resource creation.
In an inter-MNO scenario (where the primary and secondary participants are managed by different MNOs), Primary device’s server SHALL use a POST request to populate the Secondary device’s Twinning resource accordingly. See section 5.3.2.5, 5.4.6 and 6.2.5 for further information.
authCode is to be used by the Secondary device to communicate with the Primary device’s Authorization server (e.g. OAuth 2.0) and obtain an appropriate OAuth Access Token (and possibly Refresh Token) which enables it to interact with the Primary’s network enablers (e.g. messaging enabler in order to send/receive messages on behalf of the primary device). See [Autho4API_10] for further details on obtaining OAuth Access Token using Authorization Code flow.
This element is not relevant when role=Primary.

	primaryDeviceVMAddress
	xsd:anyURI
	Yes
	This element SHALL be present if role=Secondary.

The Primary device’s Voice Mail retrieval access address (e.g. 'sip' URI, 'tel' URI, 'acr' URI).

This element SHALL be populated by the server upon successful Twinning activation.
It SHALL NOT be present in the POST request body during resource creation.
This element SHALL be present if role = Secondary.

In inter-MNO scenarios (where the primary and secondary devices are managed by different MNOs), Primary device’s server SHALL use a POST request to update the Secondary device’s resource with information pertaining to Primary device’s Voice Mail retrieval access address along with other necessary parameters. See section 5.3.2.5 for further information.

	outOfBandNotifyPrimaryUser
	xsd:boolean
	Yes
	This element MAY be present in the request (POST) body during resource creation only if role = Primary.

If set to true, the server SHALL inform the Primary user of Twinning events via other “out of band” means (e.g. SMS, email, etc.).

If set to false, then based on server’s policy, the server either SHALL NOT send any “out of band” Twinning events or limit the Twinning events which are sent “out of band” (e.g. stop toggle on/off events but still send “deactivate” event) to the Primary user.

The default value (i.e. when this parameter is absent), is false.
If role = Secondary, this element is not relevant and MUST be absent (if present, it SHALL be ignored by the server).

Note: Notifying Primary user “out of band”, of Twinning events is independent of direct Twinning event notifications which may be sent to the Primary device’s Twinning application client (through event subscription).

	outOfBandNotifyPrimaryUserId
	xsd:anyURI
	Yes
	The endpoint at which the user would prefer to receive out of band (e.g. SMS) Twinning status change notifications (see outOfBandNotifyPrimaryUser element for further information).

The server’s policy MAY limit the value of this element to a set of known/verifiable values (e.g. Primary’s MSISDN, Primary user’s email address). In that case, attempting to set the value of this element to any value other than the permitted values SHALL result in a Policy error.

The default value (i.e. when this parameter is absent), is Primary’s MSISDN.
If role = Secondary, this element is not relevant and MUST be absent (if present, it SHALL be ignored by the server).

	ownAddress
	xsd:anyURI
	Yes
	Self referring address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of this device. This element SHALL be populated by the server.

It SHALL NOT be present in the POST request body during resource creation.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL.

The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

 A root element named twinning of type Twinning is allowed in request and/or response bodies.
5.3.2.6 Type: TwinningUpdate
This type represents a Twinning update (See section 6.2.5 for further information).

	Element
	Type

	Optional
	Description

	name
	xsd:string
	No
	Human readable name (e.g. myCar or myWatch) of the Twinning relationship.

	otherDevice
	OtherDevice
	No
	Information pertaining to Primary device in this Twinning relationship.

	authCode
	xsd:string
	Yes
	This element contains an OAuth authorization code. If present, it SHALL be generated by the Primary device’s server and populated in the Secondary device’s Twinning resource (i.e. {twinningId}) upon successful activation of the Twinning relationship.

authCode is to be used by the Secondary device to communicate with the Primary device’s Authorization server (e.g. OAuth 2.0) and obtain an appropriate OAuth Access Token (and possibly Refresh Token) which enables it to interact with the Primary’s network enablers (e.g. messaging enabler and network message store enabler in order to send/receive messages on behalf of the primary device). See [Autho4API_10] for further details on obtaining OAuth Access Token using Authorization Code flow.

	primaryDeviceVMAddress
	xsd:anyURI
	Yes
	The Primary device’s Voice Mail retrieval access address (e.g. 'sip' URI, 'tel' URI, 'acr' URI).

 A root element named twinningUpdate of type TwinningUpdate is allowed in request bodies.
5.3.2.7 Type: OtherDevice
This type represents the other device in a given Twinning relationship.
	Element

	Type
	Optional
	Description

	resourceURL
	xsd:anyURI
	No
	The other device’s Twinning resourceURL (i.e. ../{twinningId}) in this Twinning relationship.

	address
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the other device in this Twinning relationship.

	mno
	Mno
	No
	The MNO serving the other device in this Twinning relationship.

5.3.2.8 Type: InterMnoActivationCode
This type represents an inter-MNO Twinning activation code associated with a Twinning resource managed by another MNO.

	Element

	Type
	Optional
	Description

	resourceURL
	xsd:anyURI
	No
	The resourceURL of the Twinning resource on the requesting MNO side which is enquiring a Twinning activationCode.

	address
	xsd:anyURI
	No
	The address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Twinning device on the requesting MNO side which is enquiring a Twinning activationCode.

	activationCode
	TwinningActivationCode
	Yes
	A single-use Twinning “activationCode”.
It SHALL NOT be present in the POST request.
The “activationCode” SHALL be generated by the server and MUST be provided in the response to the POST request.

A root element named interMnoActivationCode of type InterMnoActivationCode is allowed in request and/or response bodies.
5.3.2.9 Type: TwinningActivationCode
This type represents a Twinning Activation Code.
	Element

	Type
	Optional
	Description

	code
	xsd:string
	No
	Single-use Twinning activation code.

	mno
	Mno
	Yes
	Identifying the MNO which generated the activation “code”.
This element MUST be populated by the server and included in server’s response.

5.3.2.10 Type: Instruction
This type represents Twinning activation instructions.

	Element
	Type

	Optional
	Description

	mno
	Mno[0..unbounded]
	Yes
	List of MNOs which a Twinning device (e.g. Secondary) may form a Twinning relationship with.

	activationInstruction
	xsd:string
	Yes
	Instruction which MAY be used by an end user to know what are the steps in performing a Twinning activation between two devices.

5.3.2.11 Type: Mno
This type represents an MNO’s identity

	Element

	Type
	Optional
	Description

	name
	xsd:string
	No
	MNO name.

	ncc
	xsd:string
	No
	Network code (ncc) is the concatenation MCC and MNC. An example ncc of “23415” consists of the concatenation of MCC=“234” and MNC=“15”.

5.3.2.12 Type: UserPreference
This type represents the Twinning relationship’s user preference parameters.

	Element
	Type
	Optional
	Description

	name
	xsd:string
	Yes
	Human readable name (e.g. myCar or myWatch) of the Twinning relationship.

	outOfBandNotifyPrimaryUser
	xsd:boolean
	Yes
	If set to true, the server SHALL inform the Primary user of Twinning events via other “out of band” means (e.g. SMS, email, etc.).
If set to false, then based on server’s policy, the server either SHALL NOT send any “out of band” Twinning events or limit the Twinning events which are sent “out of band” (e.g. stop toggle on/off events but still send “deactivate” event) to the Primary user.
The default value (i.e. when this parameter is absent), is false.
If role = Secondary, this element is not relevant and MUST be absent (if present, it SHALL be ignored by the server).

	outOfBandNotifyPrimaryUserId
	xsd:anyURI
	Yes
	The endpoint at which the user would prefer to receive out of band (e.g. SMS) Twinning status change notifications (see outOfBandNotifyPrimaryUser element in section 5.3.2.5 for further information).

The server’s policy MAY limit the value of this element to a set of known/verifiable values (e.g. Primary’s MSISDN, Primary user’s email address). In that case, attempting to set the value of this element to any value other than the permitted values SHALL result in a Policy error.

The default value (i.e. when this parameter is absent), is Primary’s MSISDN.
If role = Secondary, this element is not relevant and MUST be absent (if present, it SHALL be ignored by the server).

A root element named userPreference of type UserPreference is allowed in request and/or response bodies.
5.3.2.13 Type: Status
This type represents the Twinning status.

	Element
	Type
	Optional
	Description

	twinningStatus
	TwinningStatus
	No
	The Twinning status.

A root element named status of type Status is allowed in request and/or response bodies.
5.3.2.14 Type: TwinningEventNotification

This type represents a notification about a Twinning event.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	The ‘callbackData’ element if it was passed by the application in the ‘callbackReference’ element when creating a subscription to notifications about Twinning events.
See [REST_NetAPI_Common]

	eventType
	TwinningEventType
	No
	Type of event

	resourceURL
	xsd:anyURI
	No
	The resource URL of the Twinning object. This can be used by the client application to retrieve further information about the Twinning relationship (e.g. “otherDevice”, “authCode”, etc).

	link
	Common:Link [0..unbounded]
	Yes
	Link to other resources that are in relationship with this notification.
The server SHOULD include a link to the related subscription. No other links are required or suggested by this specification.

A root element named twinningEventNotification of type TwinningEventNotification is allowed in notification request bodies.
5.3.3 Enumerations

The subsections of this section define the enumerations used in the Twinning Devices API.
5.3.3.1 Enumeration: TwinningRole
This enumeration defines the Twinning role of a device.
	Enumeration
	Description

	Primary
	Primary device in a Twinning relationship.

	Secondary
	Secondary device in a Twinning relationship.

5.3.3.2 Enumeration: TwinningStatus

This enumeration defines the Twinning Status of a Twinning resource (i.e. {twinningId}).
	Enumeration
	Description

	On
	Twinning status is on.

	Off
	Twinning status is off.

	Pending
	Twinning status is pending.

It SHALL be set by the server only.

TwinningStatus values in the request (e.g. PUT) body represent the desired status of the Twinning resource upon successful completion of the operation. In the response it represents the current status of Twinning resource.
An operation can be accepted for processing but the processing has not been completed, i.e. the Twinning resource is not in its final status. In such a case the Server MAY return an HTTP 202 Accepted status code, along with a representation of the resource, in response to the request. In this response the TwinningStatus value SHALL be “Pending”. The application client can later check the twinning status using a GET operation on the resource or receive a notification of the final status of the twinning resource once the execution of the request is complete.

The support of the HTTP 202 Accepted response is OPTIONAL for the server although the application client MUST support it. If the server supports the HTTP 202 Accepted response, the server SHALL also support GET operations on {twinningId} and/or “status” resource and SHOULD support notification of final status of twinning resource.

5.3.3.3 Enumeration: TwinningEventType

This enumeration defines the types of events. It is used in notifications.
	Enumeration
	Description

	Activated
	Twinning relationship is activated.

When a pending twinning relationship becomes active (i.e. TwinningStatus is changed from Pending to On) an event notification with this event type is emitted.

	Deactivated
	Twinning relationship is permanently removed (i.e. deactivated).

When a Twinning relationship is removed, an event notification with this event type is emitted.

	ToggledOn
	Twinning relationship is Toggled On (i.e. TwinningStatus is set to On).

When a Twinning relationship is toggled On, an event notification with this event type is emitted.

	ToggledOff
	Twinning relationship is Toggled Off (i.e. TwinningStatus is set to Off).

When a Twinning relationship is toggled Off, an event notification with this event type is emitted.

5.3.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· TwinningSubscription

These values indicate the kind of resource that the link points to.
5.4 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST” refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel [REST_NetAPI_NotificationChannel].
In the following sequence diagrams, the actor lines “Primary device”, “Secondary device” or “Application” refer to the corresponding Twining Application executing on the Primary or the Secondary device.

5.4.1 Subscription to Twinning notifications
This figure below shows a scenario for an application subscribing to Twinning notifications (i.e. status change), querying for a list of active subscriptions, querying information pertaining to a subscription, extending the duration of a subscription and unsubscribing to Twinning notifications
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use.
The resources:

· To subscribe to Twinning notifications, create a new resource under http://{serverRoot}/twinning/{apiVersion}/{userId}/subscriptions
· To retrieve list of active subscriptions, read the following resource http://{serverRoot}/twinning/{apiVersion}/{userId}/subscriptions
· To retrieve information about an individual subscription, read the following resource http://{serverRoot}/twinning/{apiVersion}/{userId}/subscriptions/{subscriptionId}
· To extend the duration of a subscription, update the following resource http://{serverRoot}/twinning/{apiVersion}/{userId}/subscriptions/{subscriptionId}/duration
· To cancel subscription to Twinning notifications delete the resource under http://{serverRoot}/twinning/{apiVersion}/{userId}/subscriptions/{subscriptionId}
[image: image3.png]
Figure 2 Twinning notifications subscription
Outline of the flows:

1. An application subscribes to Twinning notifications using the POST method to submit the TwinningSubscription data structure to the resource containing all subscriptions.

2. The application receives the result resource URL containing the subscriptionId.
3. An application requests the list of active subscriptions, using the GET method to the resource containing all subscriptions.

4. The server returns subscriptions list belonging to the application in the response.

5. An application requests information pertaining to an individual subscription using the GET method to the resource.

6. The server returns subscription’s data which includes duration, etc. in the response.

7. An application requests to extend the life of an individual subscription using the PUT method to the resource.

8. The server returns subscription’s new duration in the response (note: duration returned in the response may be different from what was requested due to service provider’s policy).

9. The application stops receiving notifications (on a given subscription) using DELETE with the resource URL containing the subscriptionId.
10. Deletion confirmation.

5.4.2 Activate a Twinning relationship (intra-MNO scenario)
The figure below shows a Twinning activation scenario in an intra-MNO scenario where both the Primary and the Secondary devices are served by the same MNO.

The resources:
· To retrieve Twinning instructions from Primary or Secondary device read the following resource http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations
· To initiate a Twinning activation from Primary or Secondary device, create a new resource under http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations
Note: As depicted in the figure below, Twinning activation SHOULD first be initiated from the Secondary device as this results in an activation code which is subsequently used by the Primary device in its Twinning activation request.
[image: image4.png]
Figure 3 Twinning activation (intra-MNO)
Outline of the flows:

1. Upon user’s demand, the application on the Primary device initiates the Twinning activation
2. The server returns the Twinning activation instruction plus the need to enter a valid activation code
3. As per instruction user initiates the Twinning activation from the Secondary device

4. The server returns the list of MNO’s from which the user selects the Primary device’s MNO. Assuming the user doesn’t select any or selects the MNO which is the same as the one serves the Secondary device.

Note: step 4 can be ignored if inter-MNO Twinning activation is not supported.

5. Upon user’s confirmation, the application on the Secondary device requests Twinning activation

6. The server returns an activation code and the resource URL for the newly created twinning resource which is in a “Pending” state.

a. Note: The way the activation code is acquired from the Secondary and entered into the Primary device is beyond the scope of this specification.

7. Upon entering the activation code into the Primary device, the application requests Twinning activation.

8. The server creates a new twinning resource for the Primary device, provisions the network accordingly and updates the twinning resource of the Secondary’s device (e.g. otherDevice parameters of Secondary’s {twinningId} resource are populated and its status is set to “On”). At this point the twinning resource’s status for both the Primary and the Secondary is “On”

Note: in an inter-MNO scenario, this step is accomplished by one API Server invoking POST operation onto the other API Server which is managing the associated resource (i.e./{twiningId}) for the Secondary device. See section 5.4.6.

9. The Server notifies the Secondary device of the twinning status change (from “Pending” to “On”). It is assumed that the Secondary earlier has subscribed to twinning events.

10. The Server confirms Twinning activation and returns in the body, the newly created twinning resource URL and other related information.

11. The application from the Secondary device may optionally query Twinning data (e.g. in use cases where the Twinning of messages is also involved, the Secondary device would need to have the Primary’s “authCode” in order to communicate with Primary’s network directly).
12. The server returns the entire Twinning data including the Primary device’s “authCode” (see section 5.3.2.4 for details).
5.4.3 Retrieve Twinning relationship(s)
This figure below shows a scenario for an application reading the details of an individual Twinning relationship or retrieving the list of all the Twinning relationships a user (i.e. {userId}) is involved in.

The resources:
· To retrieve the existing Twinning relationship(s) a user/device is involved in, read the resource under http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations
· To retrieve information about an individual Twinning relationship, read the resource under http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}
[image: image5.png]
Figure 4 Twinning data
Outline of the flows:

1. The application from the Secondary device requests Twinning data
2. The server returns the Twinning data
3. The application from the Primary device requests to have the list of all the Twinning relationships it is involved in
4. The server returns the list of existing Twinning relationships including the details
5.4.4 Toggle On/Off a Twinning relationship
This figure below shows a scenario for an application reading the status of a Twinning relationship and toggling the Twinning status On/Off.

Note: in figure below a step which involves updating the status of the other device’s Twinning resource (i.e. {twinningId}) is labeled with “PUT or UPDATE” where “PUT” refers to HTTP PUT method which is used in inter-MNO scenarios, and “UPDATE” refers to updates through Server’s internal means which is used in intra-MNO scenarios.
The resources:
· To retrieve the status of an individual Twinning relationship, read the resource under http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}/status
· To set the status of a Twinning relationship to On or Off, update the following resource http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}/status
[image: image6.png]
Figure 5 Toggling Twinning status
Outline of the flows:

1. The application from the Secondary device requests its Twinning status
2. The server returns the Twinning status as On
3. The application from the Primary device requests its Twinning status to be turned Off
4. The server confirms that the Twinning status is Off now
5. The server updates the Secondary device’s resource status accordingly (i.e. status =Off)
Note: in an inter-MNO scenario, this step is accomplished by one API Server invoking PUT operation onto the other API Server which is managing the associated resource (i.e./{twiningId}) for the Secondary device.
6. The server notifies the Secondary device that the Twinning status has been toggled Off. It is assumed that the Secondary device has already subscribed to Twinning event notifications.

7. Notification Confirmation

5.4.5 Update Twinning relationships’ s user preference data
This figure below shows a scenario for an application on the Primary device allowing the user to update the name of an existing Twinning relationship and also update Primary user’s out-of-band notification settings.

Note: in figure below a step which involves updating the userPreference of the other device’s Twinning resource (i.e. {twinningId-S}) is labeled with “PUT or UPDATE” where “PUT” refers to HTTP PUT method which is used in inter-MNO scenarios, and “UPDATE” refers to updates through Server’s internal means which is used in intra-MNO scenarios.
The resources:
· To set the userPreference data of a Twinning relationship, update the following resource http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}/userPreference
[image: image7.png]
Figure 6 Update user-preference data
Outline of the flows:

1. The application from the Primary device (based on user’s wish) requests to update the name of an existing Twinning relationship
2. The server confirms success including in the response the new userPreference setting
3. After some time, the application from the Primary device (based on user’s wish) requests to update the name of the Twinning relationship while also enables the out-of-band Twinning notifications by setting the ”outOfBandNotifyPrimaryUser” flag to true and also providing the phone number at which he/she would like to receive the out-of-band notifications at (i.e. +19585550109)
4. The server confirms success including in the response the new userPreference setting
5. The server updates the Secondary device’s resource with the new Twinning relationship name (if necessary). Note, since out-of-band Twinning notifications setting is a meant to be Primary user’s setting, such information MAY be hidden from the secondary (as shown in the figure above)
Note: in an inter-MNO scenario, this step is accomplished by one API Server invoking PUT operation onto the other API Server which is managing the associated resource (i.e./{twiningId}) for the Secondary device.
6. Upon user’s trigger, the application on the Secondary device refreshes its Twinning data by requesting a GET {twinningId-S}

7. Server responds with the Twinning data which contains the new Twining relationship name.

5.4.6 Deactivate a Twinning relationship
This figure below shows a scenario for an application permanently deactivating (i.e. removing) a Twinning relationship.

Note: in figure below a step which involves deleting the other device’s Twinning resource (i.e. {twinningId}) is labeled with “DELETE or REMOVE” where “DELETE” refers to HTTP DELETE method which is used in inter-MNO scenarios, and “REMOVE” refers to deletion through Server’s internal means which is used in intra-MNO scenarios.
The resources:

· To permanently remove a Twinning relationship, delete the following resource http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}
[image: image8.png]
Figure 7 Twinning deactivation
Outline of the flows:

1. The application from the Secondary device requests its Twinning be removed
2. The server confirms that the Twinning has been removed
3. The server removes the associated Primary device’s twinning resource.
Note: in an inter-MNO scenario, this step is accomplished by one API Server conveying DELETE operation onto the other API Server which is managing the associated resource (i.e./{twiningId}) for the Primary device.
4. The server notifies the Primary device of this event. Assuming that the Primary device has already subscribed to Twining event notifications.
5. Notification Confirmation
5.4.7 Activate a Twinning relationship (inter-MNO scenario)
The figure below shows a Twinning activation scenario in an inter-MNO scenario where the Primary and the Secondary devices are served by different MNO’s.

The resources:
· To retrieve Twinning instructions from Primary or Secondary device read the following resource http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations
· To initiate a Twinning activation from Primary or Secondary device, create a new resource under http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations
· To retrieve an inter-MNO activation code use resource under. http://{serverRoot}/twinning/{apiVersion}/interMNOActivationCode
· To set Secondary’s Twinning resource data, update the resource under http://{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}
Note: As depicted in the figure below, Twinning activation SHOULD first be initiated from the Secondary device as this results in an activation code which is subsequently used by the Primary device in its Twinning activation request.
[image: image9.png]
Figure 8 Twinning activation (inter-MNO)
Outline of the flows:

1. Upon user’s demand, the application on the Primary device initiates the Twinning activation
2. The server returns the Twinning activation instruction plus the need to enter a valid activation code
3. As per instruction user initiates the Twinning activation from the Secondary device

4. The server returns the list of MNO’s from which the user selects the Primary device’s MNO. Assuming the user selects an MNO which is different from the one serves the Secondary’s device.

5. Upon user’s confirmation, the application on the Secondary device requests Twinning activation

6. The server realizes that that the Primary device belongs to a different MNO. Hence, after creation of the Twinning resource for the Secondary (i.e. /{twinningId}), the server invokes a request onto the API Server of the Primary device for an interMNO activation code. The inter-MNO activationCode request contains the required Secondary device’s information (e.g. MSISDN and /{twinningId}).

7. The Primary device’s API Server returns an activation code.

8. The Secondary device’s Server returns the activation code and the resource URL (i.e. /{twinningId}) of the newly created resource which is in a “Pending” state.

· Note: The way the activation code is acquired from the Secondary and entered into the Primary device is beyond the scope of this specification.

9. Upon entering the activation code into the Primary device, the application requests Twinning activation.

10. The server creates a new twinning resource for the Primary device, provisions the network on the Primary’s side and invokes a POST request onto the API Server of the Secondary’s device in order to update the twinning resource of the Secondary’s device (e.g. otherDevice parameters of Secondary’s /{twinningId} resource are populated and its status is set to “On”). At this point the twinning resource’s status for both the Primary and the Secondary is “On”

Note: This step is accomplished by one API Server invoking POST operation onto the other API Server which is managing the associated resource (i.e./{twiningId}) for the Secondary device. The Primary’s API Server receives the resourceURL (i.e. /{twiningId}) of the Secondary as part of step 6.

11. The Secondary’s API server confirms a successful operation in a PUT response back to the Primary’s API Server
12. The Server notifies the Secondary device of the twinning status change (from “Pending” to “On”). It is assumed that the Secondary earlier has subscribed to twinning events.

13. The Server confirms Twinning activation and returns in the body, the newly created Primary’s twinning resource URL and other related information.

14. The application from the Secondary device may optionally request Twinning data (e.g. in cases where the Twinning of messages is also involved, the Secondary device needs to know of the Primary’s “authCode” in order to communicate with Primary’s network directly).

15. The server returns the entire Twinning data including the Primary device’s “authCode” (see section 5.3.2.4 for details).
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, application/x-www-form-urlencoded):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: Twinning Relationships
The resource used is:
//{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations
This resource is used for creating a new twinning relationship. as well as retrieving the list of existing twinning relationships for a specified user/device. This resource is also used to retrieve Twinning activation instructions from the network.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning Devices, see section 7.
6.1.3 GET
This operation is used for retrieving the existing Twinning relationship(s) a user (i.e. {userId}) is involved in.
Supported parameters in the query string of the Request URL are:
	Name
	Type/Values
	Optional
	Description

	instruction
	xsd:string
	Yes
	Controls whether Twinning instruction is required to be returned in the body of the GET response.
· If “instruction” query parameter is absent, GET response body SHALL NOT include the “instruction” element.

· If instruction=ForPrimary, GET response body SHALL include the “instruction” element. The instruction returned by the server is tailored for usage in the context of a Primary device (i.e. the request is invoked by a Primary device). The instruction MAY exclude the MNO list.

· If instruction=ForSecondary, GET response body SHALL include the “instruction” element. The instruction returned by the server is tailored for usage in the context of a Secondary device (i.e. the request is invoked by a Secondary device). The instruction SHALL include the MNO list.

6.1.3.1 Example 1: Retrieve a Primary device’s existing Twinning relationships
(Informative)
In this example the query is invoked by the user’s Primary device (i.e. {userId}) which is Twinned with two Secondary devices (a wearable watch and a connected car). Currently, the wearable watch’s twinning relationship is toggled off.
6.1.3.1.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf999
Accept: application/xml

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <twinning>

 <role>Primary</role>

 <name>MyCar</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550101/twinningRelations/1900</resourceURL>

 <address>tel:+19585550101</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <twinningStatus>On</twinningStatus>
 <ownAddress>tel:+19585550100</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/1800</resourceURL>
 </twinning>

 <twinning>

 <role>Primary</role>

 <name>MyWatch</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550102/twinningRelations/222</resourceURL>

 <address>tel:+19585550102</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <twinningStatus>Off</twinningStatus>
 <ownAddress>tel:+19585550100</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/111</resourceURL>
 </twinning>

</twinning:twinningList>

6.1.3.2 Example 2: Retrieve a Secondary device’s existing Twinning relationship using “auth” keyword
(Informative)
In this example, the query is invoked by the user’s Secondary device (i.e. {userId}) which may be Twinned with only one Primary device at a time. In this example the user/device is identified using the OAuth access token contained in the Authorization header.
6.1.3.2.1 Request

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf333
Accept: application/xml

6.1.3.2.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 02:54:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <twinning>

 <role>Secondary</role>

 <name>MyCar</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/1900</resourceURL>

 <address>tel:+19585550100</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <twinningStatus>On</twinningStatus>
 <ownAddress>tel:+19585550101</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550101/twinningRelations/1800</resourceURL>
 </twinning>
</twinning:twinningList>

6.1.3.3 Example 3: Retrieve Twinning instruction from a Secondary device
(Informative)
6.1.3.3.1 Request

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations?instruction=ForSecondary HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf333
Accept: application/xml

6.1.3.3.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 02:54:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <instruction>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 <mno>

 <name>MNO-B</name>

 <ncc>23415</ncc>

 </mno>

 <mno>

 <name>MNO-C</name>

 <ncc>310260</ncc>

 </mno>

 <mno>

 <name>MNO-D Wireless</name>

 <ncc>23208</ncc>

 </mno>

 <activationInstruction>If the Primary device with which this device is intended to be twinned is served by a different mobile service provider please select the Primary device's mobile service provider from the list above</activationInstruction>

 </instruction>
</twinning:twinningList>

6.1.3.4 Example 4: Retrieve Twinning instruction from a Primary device
(Informative)
In this example, the Primary device is already in two Twinning relationships and intends to form a third Twinning relationship.
6.1.3.4.1 Request

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations?instruction=ForPrimary HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b511111
Accept: application/xml

6.1.3.4.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 02:54:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <twinning>

 <role>Primary</role>

 <name>MyCar</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550101/twinningRelations/1900</resourceURL>

 <address>tel:+19585550101</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <twinningStatus>On</twinningStatus>
 <ownAddress>tel:+19585550100</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/1800</resourceURL>
 </twinning>

 <twinning>

 <role>Primary</role>

 <name>MyWatch</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550102/twinningRelations/222</resourceURL>

 <address>tel:+19585550102</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <twinningStatus>Off</twinningStatus>
 <ownAddress>tel:+19585550100</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/111</resourceURL>
 </twinning>

 <instruction>

 <activationInstruction>please enter an activation code acquired from the Secondary device with which this device is intended to be twinned with</activationInstruction>

 </instruction>

</twinning:twinningList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/]’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used to initiate and create a new Twinning relationship.

In order to create a Twinning relationship, both the Secondary and the Primary device independently need to invoke the POST method.

Invocation of the POST method by the Secondary device SHALL result in a new twinning resource representing the Secondary device’s side of the twinning relationship in a “Pending” status.

Subsequent invocation of the POST method by the Primary device SHALL result in a new twinning resource representing the Primary device’s side of the twinning relationship. A successful POST operation from the Primary device SHALL result in both twinning resources linked together in an “On” status.

6.1.5.1 Example 1: A Secondary device initiates a new Twinning relationship
(Informative)
In this example, the Secondary device is being Twinned with a Primary device which is served by the same MNO, hence the optional “primaryMno” element is not included in the POST request body. See example 2 below which is the continuation of example 1.

The response contains the resourceURL of the twinning resource created. When the twinning resource changes from its initial state of “pending” to “On”, the application on the Secondary device SHALL receive an appropriate notification. Optionally, if the application doesn’t subscribe to twinning events, it may periodically query the status of the twinning resource using the resourceURL received in the response.
6.1.5.1.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Secondary</role>

</twinning:twinning>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Secondary</role>

 <activationCode>

 <code>711711</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </activationCode>
 <twinningStatus>Pending</twinningStatus>
 <ownAddress>tel:+19585550103</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333</resourceURL>
</twinning:twinning>

6.1.5.2 Example 2: A Primary device initiates and activates a new Twinning relationship
(Informative)
6.1.5.2.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>FamilySUV</name>

 <activationCode>

 <code>711711</code>

 </activationCode>

</twinning:twinning>

6.1.5.2.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>FamilySUV</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333</resourceURL>

 <address>tel:+19585550103</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <activationCode>

 <code>711711</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </activationCode>

 <twinningStatus>On</twinningStatus>
 <ownAddress>tel:+19585550100</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000</resourceURL>
</twinning:twinning>

6.1.5.3 Example 3: A Primary device initiates and activates a new Twinning relationship, response with HTTP 202 Accepted
(Informative)
In this example, the server returns an HTTP 202 Accepted response with the body including “twinningStatus” = “Pending” to mean that, this is not the final status of the Twinning resource.

The application client can check the twinning status using a GET operation on the provided resourceURL (of the created resource provided in the response body or the Location header) or receive a notification of the final status of the twinning resource once the execution of the request is complete (see section 6.7.5.1 for an “Activated” notification example).

6.1.5.3.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>FamilySUV</name>

 <activationCode>

 <code>711711</code>

 </activationCode>

</twinning:twinning>

6.1.5.3.2 Response

	HTTP/1.1 202 Accepted
Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>FamilySUV</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333</resourceURL>

 <address>tel:+19585550103</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <activationCode>

 <code>711711</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </activationCode>

 <twinningStatus>Pending</twinningStatus>
 <ownAddress>tel:+19585550100</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000</resourceURL>
</twinning:twinning>

6.1.5.4 Example 4: A Primary device initiates and activates a new Twinning relationship, response with location of created resource
(Informative)
6.1.5.4.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>FamilySUV</name>

 <activationCode>

 <code>711711</code>

 </activationCode>

</twinning:twinning>

6.1.5.4.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">
 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000</resourceURL>
 </common:resourceReference>

6.1.5.5 Example 5: A Secondary device initiates a new inter-MNO Twinning relationship
(Informative)
In this example, the Secondary device (a Connected Car) is being Twinned with a Primary device which is served by another MNO, as identified by “primaryMno” element in the POST request body. See example 5 below which is the continuation of this example. Also see examples in sections 6.2.3.2, 6.2.4.1 and 6.6.5.1.
6.1.5.5.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Secondary</role>
 <primaryMno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </primaryMno>
</twinning:twinning>

6.1.5.5.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Secondary</role>

 <activationCode>

 <code>123123</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </activationCode>
 <twinningStatus>Pending</twinningStatus>
 <ownAddress>tel:+19585550104</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789</resourceURL>
</twinning:twinning>

6.1.5.6 Example 6: A Primary device initiates and activates a new inter-MNO Twinning relationship
(Informative)
6.1.5.6.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>ConnectedCar</name>

 <activationCode>

 <code>123123</code>

 </activationCode>

</twinning:twinning>

6.1.5.6.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>ConnectedCar</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789</resourceURL>

 <address>tel:+19585550104</address>

 <mno>

 <name>MNO-B</name>

 <ncc>310260</ncc>

 </mno>

 </otherDevice>

 <activationCode>

 <code>123123</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </activationCode>

 <twinningStatus>On</twinningStatus>
 <ownAddress>tel:+19585550100</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100</resourceURL>
</twinning:twinning>

6.1.5.7 Example 7: A Primary device initiates Twinning relationship activation, failure due to an expired activation code (Informative)
6.1.5.7.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>FamilySUV</name>

 <activationCode>

 <code>711711</code>

 </activationCode>

</twinning:twinning>

6.1.5.7.2 Response

	HTTP/1.1 400 Bad Request
Date: Tue, 03 Feb 2015 12:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <serviceException>

 <messageId>SVC2004</messageId>

 <text>Invalid input value for %1 %2: %3</text>

 <variables>activationCode</variables>

 <variables>711711</variables>
 <variables>has expired</variables>
 </serviceException>

</common:requestError>

6.1.5.8 Example 7: A Secondary device initiates Twinning relationship activation, failure due to undefined twinning role (Informative)
The twinning role must either be provided in the request or somehow known to the server in advance (e.g. in advance pre-configuration information at the server). In this example, the client does not provide the role parameter in the request and the server does not have a way to determine the role. This results into an error as shown below.
6.1.5.8.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningActivationReq xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1"/>

6.1.5.8.2 Response

	HTTP/1.1 400 Bad Request
Date: Tue, 03 Feb 2015 12:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <serviceException>

 <messageId>SVC1014</messageId>

 <text>Role is required to form a Twinning relationship</text>

 </serviceException>

</common:requestError>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: An individual Twinning relationship
The resource used is:

//{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}
This resource is used to manage (read, update and delete) an individual Twinning relationship.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	twinningId
	Identifier of the twinning

6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning Devices, see section 7.
6.2.3 GET
This operation is used for retrieving the information about an individual Twinning relationship.
6.2.3.1 Example 1: Retrieve an individual Twinning relationship
(Informative)
6.2.3.1.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf999
Accept: application/xml

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 04:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>
<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Primary</role>

 <name>ConnectedCar</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789</resourceURL>

 <address>tel:+19585550104</address>

 <mno>

 <name>MNO-B</name>

 <ncc>310260</ncc>

 </mno>

 </otherDevice>

 <activationCode>

 <code>123123</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </activationCode>

 <twinningStatus>On</twinningStatus>
 <ownAddress>tel:+19585550100</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100</resourceURL>
</twinning:twinning>

6.2.3.2 Example 2: Retrieve an individual Twinning relationship
(Informative)
6.2.3.2.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf
Accept: application/xml

6.2.3.2.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 04:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>
<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Secondary</role>

 <activationCode>

 <code>123123</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </activationCode>

 <twinningStatus>Pending</twinningStatus>
 <ownAddress>tel:+19585550104</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789</resourceURL>
</twinning:twinning>

6.2.3.3 Example 3: Retrieve information about a non-existent individual Twinning relationship
 (Informative)

6.2.3.3.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/399621 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf

Accept: application/xml

6.2.3.3.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 11 Apr 2014 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <serviceException>

 <messageId>SVC0004</messageId>

 <text>No valid addresses provided in message part %1</text>

 <variables>Request-URI</variables>

 </serviceException>
</common:requestError>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST
In inter-MNO Twinning activation ,this operation is used (in between the MNO servers) to update and turn “On” (i.e. activate) a “Pending” Twinning relationship.
In inter-MNO scenarios, once the Primary device side of the twinning relationship is activated, the Primary device’s server SHALL invoke the POST method onto the Secondary device’s server in order to update the twinning information on the Secondary’s side and effectively change its twinning status to “On” (the default status resulting from this operation).

Note: In intra-MNO twinning relationship since the same server has access to the twinning resources, the server normally relies on internal means to make the update as opposed to using the POST method.

6.2.5.1 Example 1: Activate an inter-MNO “Pending” Twinning relationship
(Informative)
6.2.5.1.1 Request
	POST /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789 HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningUpdate xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">
 <name>ConnectedCar</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100</resourceURL>

 <address>tel:+19585550100</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <authCode>6d0d-4aa6-a404</authCode>
 <primaryDeviceVMAddress>tel:+19585550199</primaryDeviceVMAddress>
</twinning:twinningUpdate>

6.2.5.1.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 04:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinning xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <role>Secondary</role>

 <name>ConnectedCar</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100</resourceURL>

 <address>tel:+19585550100</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <activationCode>

 <code>123123</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </activationCode>

 <twinningStatus>On</twinningStatus>

 <authCode>6d0d-4aa6-a404</authCode>
 <primaryDeviceVMAddress>tel:+19585550199</primaryDeviceVMAddress>
 <ownAddress>tel:+19585550104</ownAddress>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789</resourceURL>
</twinning:twinning>

6.2.5.2 Example 2: Updating information about an already active Twinning relationship fails
(Informative)
In this example the client attempts to change otherDevice’s information of an already active Twinning relationship. This operation is not allowed as indicated in the response.
6.2.5.2.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789 HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningUpdate xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">
 <name>ConnectedCar</name>

 <otherDevice>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550101/twinningRelations/101</resourceURL>

 <address>tel:+19585550101</address>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>

 </otherDevice>

 <authCode>6d0d-4aa6-a404</authCode>
</twinning:twinningUpdate>

6.2.5.2.2 Response

	HTTP/1.1 403 Forbidden

Date: Tue, 03 Feb 2015 04:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <policyException>

 <messageId>POL1038</messageId>

 <text>Updating Twinning data of an active Twinning relationship is not allowed</text>

 </policyException>

</common:requestError>

6.2.6 DELETE

This operation is used to delete a Twinning relationship.
In inter-MNO scenarios one server SHALL invoke the DELETE method onto the other device’s server in order to delete the corresponding twinning resource accordingly

The server responds to a DELETE request with an HTTP 204 No Content response.

6.2.6.1 Example: Delete a Twinning relationship
(Informative)
6.2.6.1.1 Request
	DELETE /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789 HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/xml

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Tue, 03 Feb 2015 06:55:59 GMT

6.3 Resource: Twinning status
The resource used is:

//{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}/status
This resource is used to manage (read, update) the status of a Twinning relationship.

6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	twinningId
	Identifier of the twinning

6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning Devices, see section 7.
6.3.3 GET
This operation is used for retrieving the status of an individual Twinning relationship.
6.3.3.1 Example 1: Retrieve status of an individual Twinning relationship
(Informative)
6.3.3.1.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100/status HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf999

Accept: application/xml

6.3.3.1.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 07:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>
<twinning:status xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <twinningStatus>On</twinningStatus>

</twinning:status>

6.3.4 PUT

This operation is used to change (Toggle On or Off) the status of a Twinning resource and effective turn on/off the Twinning relationship.

In inter-MNO scenarios one server SHALL invoke the PUT method onto the other device’s server in order to update the twinning status of the corresponding twinning resource accordingly.
6.3.4.1 Example 1: Toggle Off a Twinning relationship
(Informative)
6.3.4.1.1 Request
	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/status HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:status xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <twinningStatus>Off</twinningStatus>

</twinning:status>

6.3.4.1.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:status xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <twinningStatus>Off</twinningStatus>

</twinning:status>

6.3.4.2 Example 2: Toggle Off a Twinning relationship, response with HTTP 202 Accepted
(Informative)
6.3.4.2.1 Request
	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/status HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:status xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <twinningStatus>Off</twinningStatus>

</twinning:status>

6.3.4.2.2 Response

	HTTP/1.1 202 Accepted

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:status xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <twinningStatus>Pending</twinningStatus>

</twinning:status>

6.3.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT, DELETE field in the response as per section 14.7 of [RFC 2616].
6.4 Resource: Twinning user preference parameters
The resource used is:

//{serverRoot}/twinning/{apiVersion}/{userId}/twinningRelations/{twinningId}/userPreference
This resource is used to manage the Twinning relationship’s parameters related to user preferences (e.g. user turns on/off being notified of Twinning events out of band via SMS).

6.4.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	twinningId
	Identifier of the twinning

6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning Devices, see section 7.
6.4.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.4.4 PUT

This operation is used to update user preference parameters such as Twinning relationship “name” and/or “outOfBandNotifyPrimaryUser”.

In inter-MNO scenarios one server SHALL invoke the PUT method onto the other device’s server in order to update the corresponding twinning resource accordingly.

6.4.4.1 Example 1: Rename a Twinning relationship
(Informative)
6.4.4.1.1 Request
	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/userPreference HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:userPreference xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <name>MySportsCar</name>

</twinning:userPreference>

6.4.4.1.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:userPreference xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <name>MySportsCar</name>
</twinning:userPreference>

6.4.4.2 Example 2: Rename a Twinning relationship and also turn on the “Out-of-band” notifications to Primary user
(Informative)
6.4.4.2.1 Request
	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/userPreference HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:userPreference xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <name>newWatch</name>
 <outOfBandNotifyPrimaryUser>true</outOfBandNotifyPrimaryUser>
</twinning:userPreference>

6.4.4.2.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:userPreference xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <name>newWatch</name>
 <outOfBandNotifyPrimaryUser>true</outOfBandNotifyPrimaryUser>
</twinning:userPreference>

6.4.4.3 Example 3: Turn on the “Out-of-band” notifications to Primary user and set the Primary user’s notification endpoint
(Informative)
In this example, the service provider’s policy allows setting the outOfBandNotifyPrimaryUserId parameter to a random (non-verifiable) value other than the Primary’s MSISDN.
6.4.4.3.1 Request
	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/userPreference HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:userPreference xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <outOfBandNotifyPrimaryUser>true</outOfBandNotifyPrimaryUser>
 <outOfBandNotifyPrimaryUserId>tel:+19585550109</outOfBandNotifyPrimaryUserId>
</twinning:userPreference>

6.4.4.3.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:userPreference xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <outOfBandNotifyPrimaryUser>true</outOfBandNotifyPrimaryUser>
 <outOfBandNotifyPrimaryUserId>tel:+19585550109</outOfBandNotifyPrimaryUserId>
</twinning:userPreference>

6.4.4.4 Example 4: Turn on the “Out-of-band” notifications to Primary user and set the Primary user’s notification endpoint, failure due to not allowed value
(Informative)
In this example, due to service provider’s policy, setting the outOfBandNotifyPrimaryUserId parameter to a random phone number which can’t be verified to belong to the Primary user causes a policy error.
6.4.4.4.1 Request
	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550107/twinningRelations/777/userPreference HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:userPreference xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <outOfBandNotifyPrimaryUser>true</outOfBandNotifyPrimaryUser>
 <outOfBandNotifyPrimaryUserId>tel:+19585550109</outOfBandNotifyPrimaryUserId>
</twinning:userPreference>

6.4.4.4.2 Response

	HTTP/1.1 403 Forbidden

Date: Tue, 03 Feb 2015 04:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <policyException>

 <messageId>POL0002</messageId>

 <text>Privacy verification failed for address %1, request is refused</text>
 <variables>+19585550109</variables>

 </policyException>

</common:requestError>

6.4.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.5 Resource: All subscriptions to Twinning notifications
The resource used is:
//{serverRoot}/twinning/{apiVersion}/{userId}/subscriptions
This resource is used to manage subscriptions to event notifications related to Twinning devices.

This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.5.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.2

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

 See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning devices, see section 7.

6.5.3 GET

This operation is used for reading the list of active notification subscriptions. Note that only the subscriptions this client is authorised to access SHALL be included in the list.

6.5.3.1 Example: Reading all active subscriptions
(Informative)
Application client reads all active subscriptions.
6.5.3.1.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.5.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Tue, 03 Feb 2015 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningSubscriptionList xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <subscription>

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/twinning/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>6300</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001</resourceURL>
 </subscription>

 <resourceURL>http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions</resourceURL>

</twinning:twinningSubscriptionList>

6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 6.5.5 and 7.4.1 of [RFC7231].
6.5.5 POST
This operation is used to create a new subscription for notifications related to Twinning devices events.
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).

6.5.5.1 Example 1: Creating a new subscription, response with copy of created resource
(Informative)
Application client creates a subscription.
6.5.5.1.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningSubscription xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/twinning/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

</twinning:twinningSubscription>

6.5.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001

Content-Length: nnnn

Date: Tue, 03 Feb 2015 20:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningSubscription xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/twinning/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001</resourceURL>
</twinning:twinningSubscription>

6.5.5.2 Example 2: Creating a new subscription, response with location of created resource
(Informative)
Application client creates a subscription.

6.5.5.2.1 Request

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningSubscription xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/twinning/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

</twinning:twinningSubscription>

6.5.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001

Content-Length: nnnn

Date: Tue, 03 Feb 2015 20:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001</resourceURL>
</common:resourceReference>

6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 6.5.5 and 7.4.1 of [RFC7231].
6.6 Resource: Individual subscription to Twinning notifications
The resource used is:
//{serverRoot}/twinning/{apiVersion}/{userId}/subscriptions/{subscriptionId}
This resource is used to manage an individual event subscription. This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.2

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	subscriptionId
	Identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for Twinning devices, see section 7.

6.6.3 GET
This operation is used for reading an individual subscription.
6.6.3.1 Example 1: Reading an individual subscription
(Informative)
Application client reads a subscription.
6.6.3.1.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.6.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn

Date: Wed, 15 Jan 2014 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningSubscription xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <callbackReference>

 <notifyURL>http://applicationClient.example.com/twinning/notifications/77777</notifyURL>

 <callbackData>abcd</callbackData>

 </callbackReference>

 <duration>7200</duration>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001</resourceURL>
</twinning:twinningSubscription>

6.6.3.2 Example 2: Retrieve information about a non-existent individual subscription
 (Informative)

6.6.3.2.1 Request

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550100/subscriptions/sub6699 HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.6.3.2.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 11 Apr 2014 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="TwinningSubscription"
 href="http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/subscriptions/sub6699"/>

 <serviceException>

 <messageId>SVC0004</messageId>

 <text>No valid addresses provided in message part %1</text>

 <variables>Request-URI</variables>

 </serviceException>
</common:requestError>

6.6.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 6.5.5 and 7.4.1 of [RFC7231].
6.6.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].
6.6.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.6.6.1 Example: Cancelling a subscription
(Informative)
Application client cancels a subscription.
6.6.6.1.1 Request

	DELETE /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.6.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Wed, 15 Jan 2014 18:51:59 GMT

6.7 Resource: Subscription duration
The resource used is:

//{serverRoot}/twinning/{apiVersion}/{userId}/subscriptions/{subscriptionId}/duration
This resource is used to update (i.e. refresh) the duration of a subscription.

6.7.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of the user on whose behalf the application acts

Examples: tel:+19585550100, acr:pseudonym123, sip:alice@example.com

	subscriptionId
	Identifier of the subscription

6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning Devices, see section 7.
6.7.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.7.4 PUT

This operation is used to update the subscription’s duration.

6.7.4.1 Refresh an existing subscription
(Informative)
6.7.4.1.1 Request
	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001/duration HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:subscriptionDuration xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <duration>555555</duration>

</twinning:subscriptionDuration >

6.7.4.1.2 Response

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<twinning:subscriptionDuration xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <duration>555555</duration>

</twinning:subscriptionDuration >

6.7.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: PUT’ field in the response as per section 14.7 of [RFC 2616].
6.8 Resource: Client notification about Twinning events
This resource is a callback URL provided by the client for notifications about Twinning events.

The RESTful Twinning devices API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel to obtain the notifications, the client needs to use the mechanisms described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.6.5.

The following table gives detailed information about Twinning notification.

	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/twinning/{apiVersion}/{userId}

	Activated
	TwinningEventNotification
	client
	n/a
	TwinningSubscription
	/subscriptions/{subscriptionId}

	Deactivated
	TwinningEventNotification
	client
	n/a
	TwinningSubscription

	/subscriptions/{subscriptionId}

	ToggledOn
	TwinningEventNotification
	client
	n/a
	TwinningSubscription

	/subscriptions/{subscriptionId}

	ToggledOff
	TwinningEventNotification
	client
	n/a
	TwinningSubscription

	/subscriptions/{subscriptionId}

Table 1: Twinning event notification

6.8.1 Request URL variables

Client provided if any.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to the RESTful Network API for Twinning devices, see section 7.

6.8.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 6.5.5 and 7.4.1 of [RFC7231].

6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 6.5.5 and 7.4.1 of [RFC7231].

6.8.5 POST
This operation is used to notify the client about TWINNING events.
6.8.5.1 Example 1: Notify a client about Twinning status change
(Informative)
In this example, the application client is notified asynchronously that the Twinning relationship status has changed to “On”. In this example it is assumed that the previous Twinning status was “Pending” and it just changed to “On” due to Twinning activation successful completion.
6.8.5.1.1 Request

	POST /twinning/notifications/77777 HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Host: applicationClient.example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningEventNotification xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <callbackData>12345</callbackData>

 <eventType>Activated</eventType>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000</resourceURL>
 <link rel="TwinningSubscription"

 href="http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/subscriptions/sub001"/>
</twinning:twinningEventNotification>

6.8.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.8.5.2 Example 2: Notify a client about Twinning status toggle event
(Informative)
In this example, the application client is notified asynchronously of a Twinning toggle event. It is assumed that the Twinning status used to be “On” prior to this event notification.
6.8.5.2.1 Request

	POST /twinning/notifications/77777 HTTP/1.1

Accept: application/xml

Content-Type: application/xml

Host: applicationClient.example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:twinningEventNotification xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <callbackData>12345</callbackData>

 <eventType>ToggledOff</eventType>

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/1800</resourceURL>
 <link rel="TwinningSubscription"

 href="http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/subscriptions/sub001"/>

</twinning:twinningEventNotification>

6.8.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2013 17:51:59 GMT

6.8.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 6.5.5 and 7.4.1 of [RFC7231].

6.9 Resource: Inter-MNO Twinning activation code
The resource used is:
//{serverRoot}/twinning/{apiVersion}/interMnoActivationCode
In inter-MNO Twinning scenarios, this resource is used by one MNO to acquiring a new Twinning Activation Code from another MNO.

6.9.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

6.9.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to RESTful Network API for Twinning Devices, see section 7.
6.9.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.9.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.9.5 POST
In an inter-MNO Twinning scenario (which is triggered by the Secondary device’s Twinning activation request), the Secondary device’s server uses this POST operation to ask the Primary device’s server for a Twinning Activation Code. See section 5.4.6 for further information.

6.9.5.1 Secondary device’s server requests a new Twinning Activation Code from the Primary device’s server
(Informative)
6.9.5.1.1 Request

	POST /exampleAPI/twinning/v1/interMnoActivationCode / HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<twinning:interMnoActivationCode xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">

 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333</resourceURL>
 <address>tel:+19585550103</address>
</twinning:interMnoActivationCode>

6.9.5.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml

Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT

<?xml version="1.0" encoding="UTF-8"?>

<twinning:interMnoActivationCode xmlns:twinning="urn:oma:xml:rest:netapi:twinning:1">
 <resourceURL>http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333</resourceURL>
 <address>tel:+19585550103</address>
 <activationCode>

 <code>711711</code>

 <mno>

 <name>MNO-A</name>

 <ncc>310410</ncc>

 </mno>
 </activationCode>

</twinning:interMnoActivationCode>

6.9.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful Twinning Devices API.
7.1.1 SVC1014: Undefined twinning role
	Name

	Description

	MessageID
	SVC1014

	Text
	Role is required to form a Twinning relationship.

	Variables
	None

	HTTP status code(s)
	400 Bad Request

7.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful Twinning Devices API.
7.2.1 POL1037: Twinning role mixture not allowed
	Name
	Description

	MessageID
	POL1037

	Text
	A Twinned Primary device is not allowed to take on a Secondary role in another Twinning relationship

	Variables
	 None

	HTTP status code(s)
	403 Forbidden

7.2.2 POL1038: Twinning data update not allowed
	Name
	Description

	MessageID
	POL1038

	Text
	Updating Twinning data of an active Twinning relationship is not allowed

	Variables
	 None

	HTTP status code(s)
	403 Forbidden

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _Twinning-V1_0
	22 Oct. 2014
	All
	Initial baseline

	
	22 Jan. 2015
	2.2, 4, 4.1, 5, 5.1, 5.2
	OMA-ARC-TWIN-2015-0001R01-CR_Progress_TS,
OMA-ARC-TWIN-2015-0002R03-CR_Progress_TS_Section_5,

OMA-ARC-TWIN-2015-0004R02-CR_Concepts_section

	
	04 Feb. 2015
	5.3, 5.4, 6, 6.1
	OMA-ARC-TWIN-2015-0007R03-CR_ResourceTree_and_dataTypes,

OMA-ARC-TWIN-2015-0008R01-CR_TS_Sequence_Diagrams,

OMA-ARC-TWIN-2015-0010R01-CR_XML_Examples,

OMA-ARC-TWIN-2015-0011R01-CR_XML_Examples_ToggleAndSubscription,

OMA-ARC-TWIN-2015-0012-CR_Enhanced_event_dataType

	
	05 Mar. 2015
	All
	OMA-ARC-TWIN-2015-0015R01-CR_initial_sections

	
	01 Apr. 2015
	4.0, 5.1, 5.3, 5.4 & 6.6

	OMA-ARC-TWIN-2015-0018R01-CR_Concept_section_edits,

OMA-ARC-TWIN-2015-0019R02-CR_efficient_notif,

OMA-ARC-TWIN-2015-0020-CR_Primary_VM_Address

	
	29 Apr. 2015
	Appendix D, 6.1, 6.2, 7, Appendix F, Appendix G, 5.3.2.4, 6.3, 6.6
	OMA-ARC-TWIN-2015-0022-CR_add_error_examples,

OMA-ARC-TWIN-2015-0023-CR_add_section_7,
OMA-ARC-TWIN-2015-0024-CR_edit_auth_section,

OMA-ARC-TWIN-2015-0025R02-CR_Primary_VM_Address_fix,

OMA-ARC-TWIN-2015-0027-CR_typo_fix,

OMA-ARC-TWIN-2015-0028-CR_JSON_examples,

OMA-ARC-TWIN-2015-0029R01-CR_Notification_cleanup

	
	11 June 2015
	5.2.1, 5.3.2.4, 5.4.6, 6.2.4, 6.2.5, 7.2, 6.2.3.3, 6.1.5.5, 6.7

Appendix D, Appendix G,
Appendix B

	OMA-ARC-TWIN-2015-0031-CR_Policy_error_Number_change
OMA-ARC-TWIN-2015-0032R03-CR_POST_for_interMNO_update,
OMA-ARC-TWIN-2015-0034R01-CR_Cleanups,

OMA-ARC-TWIN-2015-0035-CR_Additional_JSON_examples,
OMA-ARC-TWIN-2015-0036R01-CR_SCR_section,
OMA-ARC-TWIN-2015-0037-CR_InterMnoActivationCode_examples,

OMA-ARC-TWIN-2015-0039R02-CR_Appendix_G_update

	
	23 July 2015
	5.2,x, 6.6

Appendix D,
	OMA-ARC-TWIN-2015-0040R02-CR_refresh_subscription,

OMA-ARC-TWIN-2015-0041R02-CR_editorials,

OMA-ARC-TWIN-2015-0043R01-CR_outOfBand_notify,

OMA-ARC-TWIN-2015-0046-CR_VMaddress_in_example

	
	28 July 2015
	5.,x, 6.x

Appendix D,
	OMA-ARC-TWIN-2015-0044R02-CR_userPreference_update,

OMA-ARC-TWIN-2015-0047-CR_interMNO_dataType_simplification,

OMA-ARC-TWIN-2015-0048-CR_Optional_POST_Response

	
	17 Aug 2015
	Appendix G,

Sections 6.x.x, 5.3.x.x, 5.4.x
Appendix D,
	OMA-ARC-TWIN-2015-0049R01-CR_Async_Response,

OMA-ARC-TWIN-2015-0050-CR_Optional_role,

OMA-ARC-TWIN-2015-0051-CR_Twinning_POST_datatype_simplification,
OMA-ARC-TWIN-2015-0052-CR_outOfBandNotifyUserId,
OMA-ARC-TWIN-2015-0053-CR_Seq_diagrams_addition,
OMA-ARC-TWIN-2015-0055-CR_Appendix_G_new_resources,

OMA-ARC-TWIN-2015-0056-CR_refresh_subscription_update

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.TWINNING Server

	Item
	Function
	Reference
	Requirement

	REST-TWINNING-SUPPORT-S-001-M
	Support for the RESTful Twinning Devices API
	5, 6
	

	REST-TWINNING-SUPPORT-S-002-M
	Support for the XML request & response format
	6
	

	REST-TWINNING-SUPPORT-S-003-M
	Support for the JSON request & response format
	6
	

B.1.1 SCR for REST.TWINNING.Relationships Server

	Item
	Function
	Reference
	Requirement

	REST-TWINNING-RELATIONSHIPS-S-001-M
	Support for Twinning devices
	6.1
	

	REST-TWINNING-RELATIONSHIPS-S-002-M
	Retrieve existing Twinning relationships a device is involved in including retrieving instructions on Twinning activation – GET
	6.1.3
	

	REST-TWINNING-RELATIONSHIPS-S-003-M
	Support for Twinning relationship creation -POST
	6.1.5
	

B.1.2 SCR for REST.TWINNING.ARelationship Server
	Item
	Function
	Reference
	Requirement

	REST-TWINNING-ARELATIONSHIP-S-001-M
	Support for managing individual Twinning relationship
	6.2
	

	REST-TWINNING-ARELATIONSHIP-S-002-M
	Retrieve Twinning relationship information – GET
	6.2.3
	

	REST-TWINNING-ARELATIONSHIP-S-003-O
	Update/activate an interMNO “pending” Twinning relationship – POST
	6.2.5
	

	REST-TWINNING-ARELATIONSHIP-S-004-M
	Delete Twinning relationship – DELETE
	6.2.6
	

B.1.3 SCR for REST.TWINNING.ARelationship.Status Server
	Item
	Function
	Reference
	Requirement

	REST-TWINNING-ARELATIONSHIP-STATUS-S-001-M
	Support for managing status of Twinning relationship
	6.3
	

	REST-TWINNING-ARELATIONSHIP-STATUS-S-002-O
	Retrieve status of Twinning relationship – GET
	6.3.3
	

	REST-TWINNING-ARELATIONSHIP-STATUS-S-003-M
	Toggle Off/On a Twinning relationship – PUT
	6.3.4
	

B.1.4 SCR for REST.TWINNING.Subscriptions Server
	Item
	Function
	Reference
	Requirement

	REST-TWINNING-SUBSCRIPTIONS-S-001-M
	Support for subscriptions to Twinning events
	6.4
	

	REST-TWINNING-SUBSCRIPTIONS-S-002-O
	Read the list of active subscriptions to Twinning event notifications – GET
	6.4.3
	

	REST-TWINNING-SUBSCRIPTIONS-S-003-M
	Create new subscription to Twinning event notifications – POST
	6.4.5
	

B.1.5 SCR for REST.TWINNING.IndSubscription Server
	Item
	Function
	Reference
	Requirement

	REST-TWINNING-INDSUBSCR-S-001-O
	Support for access to an individual subscription to Twinning event notifications
	6.5
	REST-TWINNING-INDSUBSCR-S-002-O AND

REST-TWINNING-INDSUBSCR-S-003-O

	REST-TWINNING-INDSUBSCR-S-002-O
	Read an individual subscription to Twinning event notifications – GET
	6.5.3
	

	REST-TWINNING-INDSUBSCR-S-003-O
	Cancel subscription and stop corresponding notifications – DELETE
	6.5.6
	

B.1.6 SCR for REST.TWINNING.Notifications Server
	Item
	Function
	Reference
	Requirement

	REST-TWINNING-NOTIF-S-001-M
	Support for notifications about Twinning events
	6.6
	

	REST-TWINNING-NOTIF-S-002-M
	Notifications about NMS changes – POST
	6.6.5
	

B.1.7 SCR for REST.TWINNING.InterMNO Server
	Item
	Function
	Reference
	Requirement

	REST-TWINNING-INTERMNO-S-001-O
	Support for InterMNO Twinning activation
	6.7
	REST-TWINNING-INTERMNO-S-002-O

	REST-TWINNING-INTERMNO-S-002-O
	Create new Activation Twinning Code – POST
	6.7.5
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
This specification does not define any API request based on application/x-www-form-urlencoded MIME type.
Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC7159].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 Retrieve a Primary device’s existing Twinning relationship (section 6.1.3.1)
Request:

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf999

Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 02:51:59 GMT

Content-Type: application/json
Content-Length: nnnn

{"twinningList": {"twinning": [

 {

 "name": "MyCar",

 "otherDevice": {

 "address": "tel:+19585550101",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550101/twinningRelations/1900"

 },

 "ownAddress": "tel:+19585550100",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/1800",

 "role": "Primary",

 "twinningStatus": "On"

 },

 {

 "name": "MyWatch",

 "otherDevice": {

 "address": "tel:+19585550102",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550102/twinningRelations/222"

 },

 "ownAddress": "tel:+19585550100",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/111",

 "role": "Primary",

 "twinningStatus": "Off"

 }

]}}

D.2 Retrieve a Secondary device’s existing Twinning relationship using “auth” keyword (section 6.1.3.2)
Request:

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf333
Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 02:54:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"twinningList": {"twinning": {

 "name": "MyCar",

 "otherDevice": {

 "address": "tel:+19585550100",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/1900"

 },

 "ownAddress": "tel:+19585550101",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550101/twinningRelations/1800",

 "role": "Secondary",

 "twinningStatus": "On"

}}}

D.3 Retrieve Twinning instruction from a Secondary device (section 6.1.3.3)
Request:

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations?instruction=ForSecondary HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf333
Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 02:54:59 GMT

Content-Type: application/json
Content-Length: nnnn

{"twinningList": {"instruction": {

 "activationInstruction": "If the Primary device with which this device is intended to be twinned is served by a different mobile service provider please select the Primary device's mobile service provider from the list above",

 "mno": [

 {

 "name": "MNO-A",

 "ncc": "310410"

 },

 {

 "name": "MNO-B",

 "ncc": "23415"

 },

 {

 "name": "MNO-C",

 "ncc": "310260"

 },

 {

 "name": "MNO-D Wireless",

 "ncc": "23208"

 }

]

}}}

D.4 Retrieve Twinning instruction from a Primary device (section 6.1.3.4)
Request:

	GET /exampleAPI/twinning/v1/acr%3Aauth/twinningRelations?instruction=ForPrimary HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b511111
Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 02:54:59 GMT

Content-Type: application/json
Content-Length: nnnn

{"twinningList": {

 "instruction": {"activationInstruction": "please enter an activation code acquired from the Secondary device with which this device is intended to be twinned with"},

 "twinning": [

 {

 "name": "MyCar",

 "otherDevice": {

 "address": "tel:+19585550101",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550101/twinningRelations/1900"

 },

 "ownAddress": "tel:+19585550100",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/1800",

 "role": "Primary",

 "twinningStatus": "On"

 },

 {

 "name": "MyWatch",

 "otherDevice": {

 "address": "tel:+19585550102",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550102/twinningRelations/222"

 },

 "ownAddress": "tel:+19585550100",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/111",

 "role": "Primary",

 "twinningStatus": "Off"

 }

]

}}

D.5 A Secondary device initiates a new Twinning relationship (section 6.1.5.1)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com
{"twinning": {"role": "Secondary"}}

Response:

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333

Content-Type: application/json
Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT
{"twinning": {

 "activationCode": {

 "code": "711711",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 }

 },

 "ownAddress": "tel:+19585550103",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333",

 "role": "Secondary",

 "twinningStatus": "Pending"

}}

D.6 A Primary device initiates and activates a new Twinning relationship (section 6.1.5.2)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com
{"twinning": {

 "activationCode": {"code": "711711"},

 "name": "FamilySUV",

 "role": "Primary"

}}

Response:

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000
Content-Type: application/json
Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT
{"twinning": {

 "activationCode": {

 "code": "711711",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 }

 },

 "name": "FamilySUV",

 "otherDevice": {

 "address": "tel:+19585550103",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333"

 },

 "ownAddress": "tel:+19585550100",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000",

 "role": "Primary",

 "twinningStatus": "On"

}}

D.7 A Primary device initiates and activates a new Twinning relationship, response with location of created resource (section 6.1.5.3)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com
{"twinning": {

 "activationCode": {"code": "711711"},

 "name": "FamilySUV",

 "role": "Primary"

}}

Response:

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000
Content-Type: application/json
Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT
{"resourceReference": {
 "resourceURL": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/2000"

}}

D.8 A Secondary device initiates a new inter-MNO Twinning relationship (section 6.1.5.3)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com
{"twinning": {

 "primaryMno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "role": "Secondary"

}}

Response:

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789
Content-Type: application/json
Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT
{"twinning": {

 "activationCode": {

 "code": "123123",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 }

 },

 "ownAddress": "tel:+19585550104",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789",

 "role": "Secondary",

 "twinningStatus": "Pending"

}}

D.9 A Primary device initiates and activates a new inter-MNO Twinning relationship (section 6.1.5.4)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com
{"twinning": {

 "activationCode": {"code": "123123"},

 "name": "ConnectedCar",

 "role": "Primary"

}}

Response:

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100
Content-Type: application/json
Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT
{"twinning": {

 "activationCode": {

 "code": "123123",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 }

 },

 "name": "ConnectedCar",

 "otherDevice": {

 "address": "tel:+19585550104",

 "mno": {

 "name": "MNO-B",

 "ncc": "310260"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789"

 },

 "ownAddress": "tel:+19585550100",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100",

 "role": "Primary",

 "twinningStatus": "On"

}}

D.10 A Primary device initiates Twinning relationship activation, failure due to an expired activation code (section 6.1.5.8)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/json

Content-Length: nnnn

Accept: application/json

Host: example.com

{"twinning": {

 "activationCode": {"code": "711711"},

 "name": "FamilySUV",

 "role": "Primary"

}}

Response:

	HTTP/1.1 400 Bad Request
Date: Tue, 03 Feb 2015 12:51:59 GMT

Content-Type: application/json

Content-Length: nnnn

{"requestError": {"serviceException": {

 "messageId": "SVC2004",

 "text": "Invalid input value for %1 %2: %3",

 "variables": [

 "activationCode",

 "711711",

 "has expired"

]

}}}

D.11 A Secondary device initiates Twinning relationship activation, failure due to undefined twinning role (section 6.1.5.9)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations HTTP/1.1

Content-Type: application/json

Content-Length: nnnn

Accept: application/json

Host: example.com

{"twinningActivationReq": null }

Response:

	HTTP/1.1 400 Bad Request
Date: Tue, 03 Feb 2015 12:51:59 GMT

Content-Type: application/json

Content-Length: nnnn

{"requestError": {"serviceException": {

 "messageId": "SVC1014",

 "text": "Role is required to form a Twinning relationship"
}}}

D.12 Retrieve an individual Twinning relationship (section 6.2.3.1)
Request:

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf999

Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 04:51:59 GMT

Content-Type: application/json
Content-Length: nnnn
{"twinning": {

 "activationCode": {

 "code": "123123",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 }

 },

 "name": "ConnectedCar",

 "otherDevice": {

 "address": "tel:+19585550104",

 "mno": {

 "name": "MNO-B",

 "ncc": "310260"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789"

 },

 "ownAddress": "tel:+19585550100",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100",

 "role": "Primary",

 "twinningStatus": "On"

}}

D.13 Retrieve an individual Twinning relationship (section 6.2.3.2)
Request:

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf

Accept: application/json

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 04:51:59 GMT

Content-Type: application/json
Content-Length: nnnn
{"twinning": {

 "activationCode": {

 "code": "123123",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 }

 },

 "ownAddress": "tel:+19585550104",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789",

 "role": "Secondary",

 "twinningStatus": "Pending"

}}

D.14 Retrieve information about a non-existent individual Twinning relationship (section 6.2.3.3)
Request:

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/399621 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf

Accept: application/json

HTTP/1.1 404 Not Found

Response:

	Content-Type: application/json
Content-Length: nnnn

Date: Fri, 11 Apr 2014 17:51:59 GMT
{"requestError": {"serviceException": {

 "messageId": "SVC0004",

 "text": "No valid addresses provided in message part %1",

 "variables": "Request-URI"

}}}

D.15 Activate an inter-MNO “Pending” Twinning relationship (section 6.2.5.1)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com
{"twinningUpdate": {

 "authCode": "6d0d-4aa6-a404",
 “primaryDeviceVMAddress": "tel:+19585550199",
 "name": "ConnectedCar",

 "otherDevice": {

 "address": "tel:+19585550100",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100"

 }

}}

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 04:51:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"twinning": {

 "activationCode": {

 "code": "123123",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 }

 },

 "authCode": "6d0d-4aa6-a404",
 “primaryDeviceVMAddress": "tel:+19585550199",
 "name": "ConnectedCar",

 "otherDevice": {

 "address": "tel:+19585550100",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100"

 },

 "ownAddress": "tel:+19585550104",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789",

 "role": "Secondary",

 "twinningStatus": "On"

}}

D.16 Updating information about an already active Twinning relationship fails (section 6.2.5.2)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com
{"twinningUpdate": {

 "authCode": "6d0d-4aa6-a404",

 "name": "ConnectedCar",

 "otherDevice": {

 "address": "tel:+19585550101",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550101/twinningRelations/101"

 }

}}

Response:

	HTTP/1.1 403 Forbidden

Date: Tue, 03 Feb 2015 04:51:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"requestError": {"policyException": {

 "messageId": "POL1038",

 "text": "Updating Twinning data of an active Twinning relationship is not allowed"

}}}

D.17 Delete a Twinning relationship (section 6.2.6.1)
Request:

	DELETE /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789 HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Accept: application/json

Response:

	HTTP/1.1 204 No Content

Date: Tue, 03 Feb 2015 06:55:59 GMT

D.18 Retrieve status of an individual Twinning relationship (section 6.3.3.1)
Request:

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/100/status HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d77-4aa6-a404-2bc19b5cf999

Accept: application/json

Response:

	HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: nnnn

Date: Tue, 03 Feb 2015 17:51:59 GMT

{"status": {"twinningStatus": "On"}}

D.19 Toggle Off a Twinning relationship (section 6.3.4.1)
Request:

	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/status HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

{"status": {"twinningStatus": "Off"}}

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"status": {"twinningStatus": "Off"}}

D.20 Rename a Twinning relationship (section 6.4.4.1)
Request:

	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/userPreference HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

{"userPreference": {"name": "MySportsCar"}}

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"userPreference": {

 "name": "MySportsCar"
 }
}

D.21 Rename a Twinning relationship and also turn Out-of-band notifications to Primary user on (section 6.4.4.2)
Request:

	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/userPreference HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

{"userPreference": {

 "name": "newWatch",

 “outOfBandNotifyPrimaryUser”: “true”

 }
}

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"userPreference": {

 "name": "newWatch",

 “outOfBandNotifyPrimaryUser”: “true”

 }
}

D.22 Turn on the “Out-of-band” notifications to Primary user and set the Primary user’s notification endpoint (section 6.4.4.3)
Request:

	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789/userPreference HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

{"userPreference": {

 “outOfBandNotifyPrimaryUser”: “true”,

 “outOfBandNotifyPrimaryUserId”: “+19585550109”

 }
}

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"userPreference": {

 “outOfBandNotifyPrimaryUser”: “true”,

 “outOfBandNotifyPrimaryUserId”: “+19585550109”

 }
}

D.23 Turn on the “Out-of-band” notifications to Primary user and set the Primary user’s notification endpoint, failure due to not allowed value (section 6.4.4.4)
Request:

	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550107/twinningRelations/777/userPreference HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

{"userPreference": {

 “outOfBandNotifyPrimaryUser”: “true”,

 “outOfBandNotifyPrimaryUserId”: “+19585550109”

 }
}

Response:

	HTTP/1.1 403 Forbidden

Date: Tue, 03 Feb 2015 04:51:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"requestError": {"policyException": {

 "messageId": "POL0002",

 "text": "Privacy verification failed for address %1, request is refused"
 "variables": ["+19585550109"]

}}}

D.24 Reading all active subscriptions (section 6.4.3.1)
Request:

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions HTTP/1.1

Accept: application/json
Host: example.com

Response:

	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Tue, 03 Feb 2015 17:51:59 GMT
{"twinningSubscriptionList": {

 "resourceURL": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions",

 "subscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://applicationClient.example.com/twinning/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "6300",

 "resourceURL": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001"

 }

}}

D.25 Creating a new subscription, response with copy of created resource (section 6.4.5.1)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com

{"twinningSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://applicationClient.example.com/twinning/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json
Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001

Content-Length: nnnn

Date: Tue, 03 Feb 2015 20:51:59 GMT
{"twinningSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://applicationClient.example.com/twinning/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200",

 "resourceURL": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001"

}}

D.26 Creating a new subscription, response with location of created resource (section 6.4.5.2)
Request:

	POST /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com

{"twinningSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://applicationClient.example.com/twinning/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json
Location: http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001

Content-Length: nnnn

Date: Tue, 03 Feb 2015 20:51:59 GMT
{"resourceReference": {
 "resourceURL": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001"

}}

D.27 Reading an individual subscription (section 6.5.3.1)
Request:

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001 HTTP/1.1

Accept: application/json

Host: example.com

Response:

	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Wed, 15 Jan 2014 17:51:59 GMT
{"twinningSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://applicationClient.example.com/twinning/notifications/77777"

 },

 "clientCorrelator": "12345",

 "duration": "7200",

 "resourceURL": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001"

}}

D.28 Retrieve information about a non-existent individual subscription (section 6.5.3.2)
Request:

	GET /exampleAPI/twinning/v1/tel%3A%2B19585550100/subscriptions/sub6699 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/json

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/json
Content-Length: nnnn

Date: Fri, 11 Apr 2014 17:51:59 GMT
{"requestError": {

 "link": {

 "href": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/subscriptions/sub6699",

 "rel": "TwinningSubscription"

 },

 "serviceException": {

 "messageId": "SVC0004",

 "text": "No valid addresses provided in message part %1",

 "variables": "Request-URI"

 }

}}

D.29 Refresh an existing subscription (section 6.6.4.1)
Request:

	PUT /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001/duration HTTP/1.1
Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

{"subscriptionDuration": {"duration": "555555"}}

Response:

	HTTP/1.1 200 OK

Date: Tue, 03 Feb 2015 08:51:59 GMT
Content-Type: application/json
Content-Length: nnnn
{"subscriptionDuration": {"duration": "555555"}}

D.30 Cancelling a subscription (section 6.5.6.1)
Request:

	DELETE /exampleAPI/twinning/v1/tel%3A%2B19585550101/subscriptions/sub001 HTTP/1.1

Accept: application/json
Host: example.com

Response:

	HTTP/1.1 204 No Content

Date: Wed, 15 Jan 2014 18:51:59 GMT

D.31 Notify a client about Twinning status change (section 6.6.5.1)
Request:

	POST /twinning/notifications/77777 HTTP/1.1

Accept: application/json
Content-Type: application/json
Host: applicationClient.example.com

{"twinningEventNotification": {

 "callbackData": "12345",

 "eventType": "Activated",

 "link": {

 "href": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550104/subscriptions/sub001",

 "rel": "TwinningSubscription"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550104/twinningRelations/789",

}}

Response:

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

D.32 Notify a client about Twinning status toggle event (section 6.6.5.2)
Request:

	POST /twinning/notifications/77777 HTTP/1.1

Accept: application/json
Content-Type: application/json
Host: applicationClient.example.com
{"twinningEventNotification": {

 "callbackData": "12345",

 "eventType": "ToggledOff",

 "link": {

 "href": "http://example.com/exampleAPI/twinning/v1/tel%3A%2B19585550100/subscriptions/sub001",

 "rel": "TwinningSubscription"

 },

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550100/twinningRelations/1800",

}}

Response:

	HTTP/1.1 204 No Content

Date: Fri, 28 Jun 2013 17:51:59 GMT

D.33 Secondary device’s server requests a new Twinning Activation Code from the Primary device’s server (section 6.7.5.1)
Request:

	POST /exampleAPI/twinning/v1/interMnoActivationCode / HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com
{"interMnoActivationCode ": {

 "address": "tel:+19585550103",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333"

}}

Response:

	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Tue, 03 Feb 2015 21:32:52 GMT
{" interMnoActivationCode ": {
 "address": "tel:+19585550103",

 "resourceURL": "http://exampleAPI/twinning/v1/tel%3A%2B19585550103/twinningRelations/333",
 “activationCode”: {
 "code": "711711",

 "mno": {

 "name": "MNO-A",

 "ncc": "310410"

 }
 }
}}

Appendix E. Operations mapping
(Informative)
As this specification does not have a baseline specification, this appendix is empty.

Appendix F. Light-weight Resources
(Informative)

As this version of the specification does not define any Light-weight Resources, this appendix is empty.
Appendix G. Authorization aspects
(Normative)

This appendix specifies how to use the RESTful Twinning Devices API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful Twinning Devices API MAY support the authorization framework defined in [Autho4API_10].

A RESTful Twinning Devices API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.1.1 Scope values
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful Twinning Devices API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_twinning.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section5.2. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_twinning.primary
	Provide access to all defined operations on the resources which need be exposed to the Twinning client application playing the role of the Primary in a given Twinning relationship
	No

	oma_rest_twinning.secondary
	Provide access to all defined operations on the resources which need be exposed to the Twinning client application playing the role of the Secondary in a given Twinning relationship
	No

	oma_rest_twinning.toggle
	Provide access to all defined operations relating to toggle on/off an existing Twinning relationship
	No

	oma_rest_twinning.userPref
	Provide access to operations relating to managing user preference data of an existing Twinning relationship
	No

	oma_rest_twinning.userPref_name
	Provide access to update the Twinning relationship’s name (which is part of user preference data).
	No

	oma_rest_twinning.subscription
	Provide access to all defined operations relating to managing notification subscriptions.
	No

	oma_rest_twinning.intermno
	Provide access to all defined operations on the resources which need be exposed between the two MNO servers participating in an inter-MNO Twinning relationship
	No

	oma_rest_twinning.intermnoprimary
	Provide access to all defined operations on the resources which need be exposed to the Primary device’s MNO server participating in an inter-MNO Twinning relationship.
	No

	oma_rest_twinning.intermnosecondary
	Provide access to all defined operations on the resources which need be exposed to the Secondary device’s MNO servers participating in an inter-MNO Twinning relationship.
	No

Table 2: Scope values for RESTful Twinning Devices API
G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_twinning.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· oma_rest_twinning.primary
· oma_rest_twinning.secondary
· oma_rest_twinning.toggle
· oma_rest_twinning.userPref
· oma_rest_twinning.userPref_name
· oma_rest_twinning.subscription

· oma_rest_twinning.intermno

· oma_rest_twinning.intermnoprimary
· oma_rest_twinning.intermnosecondary
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful Twinning Devices API map to the REST resources and methods of this API. In these tables, the root “oma_rest_Twinning.” of scope values is omitted for readability reasons.
	Resource
	URL
Base URL:

http://{serverRoot}/twinning /{apiVersion}/{userId}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Twinning Relationships
	/twinningRelations
	6.1
	all_{apiVersion}
or

primary
or

secondary
	n/a
	all_{apiVersion}

or

primary

or
secondary
	n/a

	An individual Twinning relationship
	/twinningRelations{twinningId}

	6.2

	all_{apiVersion}

or

primary

or

secondary
or

intermno
	n/a

	all_{apiVersion}

or
intermnoprimary

	all_{apiVersion}

or

primary

or

secondary
or

intermno

	Twinning status
	/twinningRelations{twinningId}/status

	6.3
	all_{apiVersion}

or

primary

or

secondary
or

toggle
or

intermno

	all_{apiVersion}

or

primary

or

secondary
or

toggle
or

intermno
	n/a
	n/a

	Twinning user preference parameters
	/twinningRelations{twinningId}/userPrefrence

	6.4
	n/a
	all_{apiVersion}

or

primary

or

or

userPref
or

userPref_name

or

intermnoprimary
	n/a
	n/a

	All subscriptions to Twinning notifications
	/subscriptions

	6.5
	all_{apiVersion}

or

primary

or

secondary
or

subscription
	n/a
	all_{apiVersion}

or

primary

or

secondary
or

subscription
	n/a

	Individual subscription to Twinning notifications
	/subscriptions/{subscriptionId}
	6.6
	all_{apiVersion}

or

primary

or

secondary
or

subscription
	n/a
	
	all_{apiVersion}

or

primary

or

secondary
or

subscription

	subscription duration
	/subscriptions/{subscriptionId}/duration
	6.7
	n/a
	all_{apiVersion}

or

primary

or

secondary
or

subscription
	n/a
	n/a

Table 3: Required scope values for: Twinning relationship management
	Resource
	URL
Base URL:

http://{serverRoot}/twinning /{apiVersion}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Inter-MNO Twinning activation code
	/interMnoActivationCode

	6.9

	n/a
	n/a
	all_{apiVersion}

or
intermnosecondary
	n/a

Table 4: Required scope values for: acquiring/generating inter_MNO Twinning activation code

G.1.2 Use of ‘acr:auth’

This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of a {userId} when the RESTful Twinning Devices API is used in combination with [Autho4API_10].
In the case the RESTful Twinning Devices API supports [Autho4API_10], the server:

· SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {userId}
· SHALL conform to [REST_NetAPI_Common] section 5.8.1.1 regarding the processing of ‘acr:auth’.
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20140101-I]
(2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20140101-I]

