Doc# OMA-BCAST-2005-0104-Key-Stream-Layer-for-service-protection_with hyatt discussions.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST-2005-0104-Key-Stream-Layer-for-service-protection_with hyatt discussions.doc
Change Request

Change Request

	Title:
	Key Stream Layer for service protection
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-BCAST

	Doc to Change:
	OMA-TS-BCAST-SvcCntProtection (latest version)

	Submission Date:
	March 2nd 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Sanjeev Verma, Nokia, sanjeev.verma@nokia.com

	Replaces:
	 n/a

1 Reason for Change

This document contains detailed proposals for the broadcast extensions to OMA DRM 2.0, and builds on the work that has been done in the joint BAC-DLDRM & BAC-BCAST meeting in Seoul.

2 Impact on Backward Compatibility

The intention is to define the broadcast extensions to OMA DRM 2.0 in a way that builds on the key concepts and mechanisms that have been carefully crafted.

Especially, it shall be possible to implement DRM agents in the terminal that can be used for broadcast and non-broadcast content and services at the same time.

3 Impact on Other Specifications

There is an impact on the BCAST service guide specification, e.g. related to discovery of the “key stream”, and related to identification of services. Other BCAST specifications may also be impacted.

The broadcast extensions build on the OMA DRM 2.0 enabler specifications. There is no impact on the OMA DRM 2.0 specifications as such. The idea is that the broadcast extensions can be integrated into OMA DRM as part of one of the upcoming releases.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

<provide a description of the intended actions to be taken by the group>

6 Detailed Change Proposal

Include the change proposals in the latest version of OMA-TS-BCAST_SvcCntProtection
(structuring of the individual extensions into the document structure would be left to the editor).

1.2 Key Stream

This chapter deals with the “Key Stream Layer” in the 4-layer model for service and content protection.

1.2.1 Key Stream Message (KSM)

Each KSM SHALL be encapsulated in exactly 1 UDP packet.

The KSM SHALL be transported in-band together with the media streams that are protected with the traffic keys contained in the KSM.

	Key_Stream_Message_Description
	Length
	Type

	key_stream_message {
	
	

	
selectors_and_flags {
	
	

	

traffic_protection_protocol
	3
	uimsbf

	

 reserved_for_future_use
	1
	uimsbf

	

reserved_for_future_use
	1
	uimsbf

	

next_traffic_key_flag
	1
	uimsbf

	

program_flag
	1
	uimsbf

	

service_flag
	1
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == KSM_ALGO_IPSEC) {
	
	

	

security_parameter_index
	32
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == KSM_ALGO_SRTP) {
	
	

	

master_key_index
	32
	uimsbf

	

number_of_media_flows
	8
	uimsbf

	

for (i = 0; i < number_of_media_flows; i++) {
	
	

	

synchronization_source
	32
	uimsbf

	

rollover_counter
	32
	uimsbf

	

}
	
	

	
}
	
	

	
wrapped_traffic_key_material_length
	8
	uimsbf

	
wrapped_traffic_key_material
	<8xlength>
	bit string

	
if (next_traffic_key_flag == KSM_FLAG_TRUE) {
	
	

	

next_wrapped_traffic_key_material
	<8xlength>
	bit string

	
}
	
	

	
reserved_for_future_use
	5
	uimsbf

	
traffic_key_lifetime
	3
	uimsbf

	
if (program_flag == KSM_FLAG_TRUE) {
	
	

	

program_selectors_and_flags {
	
	

	

reserved_for_future_use
	7
	uimsbf

	

access_criteria_flag
	1
	uimsbf

	

	
	

	

}
	
	

	

if (access_criteria_flag == KSM_FLAG_TRUE) {
	
	

	

reserved_for_future_use
	4
	uimsbf

	

reserved_for_future_use
	4
	uimsbf

	

number_of_access_criteria_descriptors
	8
	uimsbf

	

access_criteria_descriptor_loop {
	
	

	

<access_criteria_descriptor>
	
	

	

}
	
	

	

}
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

if (service_flag == KSM_FLAG_TRUE) {
	
	

	

wrapped_program_key_material
	320
	bit string

	

}
	
	

	

program_MAC
	96
	bit string

	

program_CID_extension
	32
	uimsbf

	
}
	
	

	
if (service_flag == KSM_FLAG_TRUE) {
	
	

	

service_MAC
	96
	bit string

	

service_CID_extension
	32
	uimsbf

	
}
	
	

	}
	
	

Descriptors for access_criteria_descriptor_loop

	tag
	8
	uimsbf

	length
	8
	uimsbf

	value
	<8xlength>
	bit string

A single access criteria descriptor can carry one or more access criteria. The descriptors and their contents are TBD.

	
	
	

	
	
	

	
	
	

Constant Values

KSM_ALGO_IPSEC
0

KSM_ALGO_SRTP
1

KSM_FLAG_FALSE
0

KSM_FLAG_TRUE
1

Coding and Semantics of Attributes

traffic_protection_protocol – defines the protocol used for the encryption and authentication of traffic:

KSM_ALGO_IPSEC = IPsec ESP (transport mode; encryption: AES-128-CBC [key length 128]; authentication: HMAC-SHA1-96 [key length 160])

KSM_ALGO_SRTP = SRTP (encryption: AES-128-CM [key length 128]; authentication: HMAC-SHA1-80 [key length 160])

other values = reserved for future use

next_traffic_key_flag – indicates whether or not the key stream message contains the next traffic key material:

KSM_FLAG_FALSE = the key stream message contains only the current traffic key material

KSM_FLAG_TRUE = the key stream message contains both the current and the next traffic key material

The next traffic key material SHALL be be included at least 1 second before it becomes current. This is to enable the devices to process the traffic key material and put the necessary security associations in place before the media packets start arriving that are encrypted with the next traffic encryption key.

The next traffic key material SHALL NOT be included earlier than 1 minute before it becomes current. This is to limit the effect on pay-per-view enforcement that is caused by sending the next traffic key material encrypted with the encryption key of a program that may end before the next traffic key becomes current to maximally 1 minute.

program_flag – indicates whether or not the program key layer is present in the key stream message:

KSM_FLAG_FALSE = the program key layer is not present, i.e. the optional program key layer is not used for the service

KSM_FLAG_TRUE = the program key layer is present, i.e. the optional program key layer is used for the service

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either or both of the key layers are present.

service_flag – indicates whether or not the service block is present in the key stream message:

KSM_FLAG_FALSE = the service key layer is not present, i.e. the optional service key layer is not used for the service

KSM_FLAG_TRUE = the service key layer is present, i.e. the optional service key layer is used for the service

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either or both of the key layers are present.

security_parameter_index – provides the link to the IPsec ESP header:

Upon reception of a protected IP packet, the terminal SHALL use the security parameter index (SPI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for the received IPsec ESP packet.

The SPI is associated with the current TEK. If the next traffic key flag is set to 1, the SPI associated with the “next TEK” is implicitely defined as SPI+1.

master_key_index – provides the link to the SRTP header:

Upon reception of a protected RTP packet, the terminal SHALL use the master key index (MKI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for a received SRTP packet.

The MKI is associated with the current TEK. If the next traffic key flag is set to 1, the MKI associated with the “next TEK” is implicitely defined as MKI+1.

number_of_media_flows – specifies how many RTP media flows are protected by the key stream:

For each of the media flows, the SRTP roll-over counter needs to be signaled.

synchronization_source – identifies an RTP media flow to which the associated roll-over counter applies.

rollover_counter – signals the current roll-over counter of the RTP media flow identified by synchronization source.

The roll-over counter is an extension of the sequence number contained in the SRTP packet. It can be different for each SRTP-protected media flow, even if the same key stream is used. Therefore, to allow terminals instant service access, the current value of the roll-over counter for each media flow is signalled in the KSM.

Whenever the sequence number of one of the media flows rolls over, a new crypto period SHALL be started, with an incremented MKI, and the new ROC for the media flow in question. The network SHALL ensure that such a ROC-triggered change of the crypto period doesn’t violate the lower bound of crypto period durations.

A terminal that is already tuned to a particular channel SHALL locally keep track of the ROC values and increment them when the RTP sequence number wraps around (this is really an SRTP requirement).

wrapped_traffic_key_material_length – is the length in bytes of the wrapped traffic key material.

The length of the traffic key meterial depends on the encryption and authentication algorithm, and is obtained by adding the respective key sizes. Wrapping adds 64 bits to the key material.

wrapped_traffic_key_material – is the key material currently used for encryption and optional authentication of the traffic, wrapped (encrypted) using AES-128-WRAP, as defined by RFC 3394.

If <program_flag> == KSM_FLAG_TRUE, the traffic key material is wrapped with the program encryption key (PEK).

If <program_flag> == 0 and <service_flag> == KSM_FLAG_TRUE, the traffic key material is wrapped with the service encryption key (SEK).

After unwrapping, which reduces the size of the key material by 64 bits, the traffic encryption key (TEK) and the traffic authentication key (TAK) are obtained by splitting the unwrapped key material into two parts as follows:

TEK = first part (size determined by the key size of the encryption algorithm)

TAK = second part (size determined by the key size of the authentication algorithm)

next_wrapped_traffic_key_material – is the wrapped (encrypted) key material used for encryption and optional authentication of the traffic after the current crypto period is over and the next crypto period starts.

traffic_key_lifetime – denotes is the lifetime in seconds of the traffic key, relative to the first occurrence of an SPI or MKI.

If <traffic_key_lifetime> is n, then the actual lifetime is 2n seconds.

The possible values are 1, 2, 4, …, 128 seconds (2 minutes 8 seconds).

After the lifetime has expired, the security association containing the traffic key can be safely deleted by the terminal. This may help managing the security association database in the terminal or enable other optimizations.

Any safety margins to cope with network and transmission delays MUST be added by the network. A typical value for the lifetime could be three times the crypto period.

access_criteria_flag – indicates whether or not access criteria are defined for the program:

KSM_FLAG_FALSE = no access criteria are defined, implying that the terminal is allowed to access program without further restrictions (provided the necessary keys are available to the terminal)

KSM_FLAG_TRUE = access criteria are defined, implying that the terminal is allowed to access the program only if the specified access criteria are met

Access criteria cannot change during a program, i.e. as long a program key is valid.

number_of_access_criteria_descriptors – indicates the number of access criteria descriptors.

program_MAC – is the AES-XCBC-MAC-96 according to RFC 3566 calculated over all preceding fields of the key stream message. It is used to authenticate the relevant part of the key stream message in case of pay-per-view, where program key material from a program RO is used to directly decrypt the traffic key material.

In case the terminal is accessing the key stream message with a Program RO, the terminal SHALL compute the program MAC, and drop the message if authentication fails. In this case, <program_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular key stream message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the key stream message with a Service RO, it will not be able to compute the program MAC, and there is no need for it to do so.

program_CID_extension – is the extension of the program_CID which allows to identify the program key material that has been delivered to the device within a Program RO.

[Note: It is envisioned that for binary rights objects, that can be used for the unconnected mode of operation, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.]

The CID/BCI of the service key is constructed as:

program_CID ::= socID + "#P" + serviceBaseCID + "@" + ascii(program_CID_extension)

program_BCI ::= hash(socID + "#P" + serviceBaseCID + "@") + program_CID_extension

The socID and serviceBaseCID are string values and are expected to be part of the service guide. Upon receiption of a KSM, the terminal can assemble the program_CID/BCI and look up the program key (wrapped inside an RO).

The hash function for the construction of program_BCI is SHA1-64. It doesn’t depend on the contents of the KSM, and can thus be pre-computed.
socID – is the globally co-ordinated ID of the Service Operation Centre (aka. “socID”).
wrapped_program_key_material – is the key material used within the current key stream message to wrap the traffic key material and calculate the program MAC, wrapped (encrypted) using AES-128-WRAP, as defined by RFC 3394.

The progam key material is wrapped with the service encryption key (SEK).

After unwrapping, which reduces the size of the key material by 64 bits, the program encryption key (PEK) and the program authentication key (PAK) are obtained by splitting the unwrapped key material into two parts as follows:

PEK = first part (128 bits, since AES-128 is used to wrap the traffic key material)

PAK = second part (128 bits, since AES-XCBC-MAC-96 is used to calculate the program_MAC)

service_MAC – is the AES-XCBC-MAC-96 according to RFC 3566 calculated over all preceding fields of the key stream message. It is used to authenticate the key stream message in case of subscription, where service key material from a service RO is used to decrypt the program key material and further decrypt the traffic key material.

In case the terminal is accessing the key stream message with a Service RO, the terminal SHALL compute the service MAC, and drop the message if authentication fails, i.e. if the computed MAC doesn’t correspond to <service_MAC>. In this case, <service_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular key stream message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the key stream message with a Program RO, it will not be able to compute the service MAC, and there is no need for it to do so.

service_CID_extension – is the extension of the service_CID which allows to identify the service key material that has been delivered to the device within a Service RO.

[Note: It is envisioned that for binary rights objects, that can be used for the unconnected mode of operation, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.]

The CID/BCI of the service key is constructed as:

service_CID ::= socID + "#S" + serviceBaseCID + "@" + ascii(service_CID_extension)

service_BCI ::= hash(socID + "#S" + serviceBaseCID + "@") + service_CID_extension

The socID and serviceBaseCID are string values and are expected to be part of the service guide. Upon receiption of a KSM, the terminal can assemble the service_CID/BCI and look up the service key (wrapped inside an RO).

The hash function for the construction of service_BCI is SHA1-64. It doesn’t depend on the contents of the KSM, and can thus be pre-computed.

socID – is the globally co-ordinated ID of the Service Operation Centre (aka. “socID”).
1.2.2 Key Stream Discovery

The access description to a particular service which is distributed as part of the Service Guide is assumed to contain a media description for each IP flow of the media service itself.

Based on the basic assumption that the service can’t be consumed (because the used IP addresses, codecs, and other “technical” parameters are not known) unless the access description is present in the terminal; the access description will also carry the static security-related parameters of the service or of a session of the service.

It SHALL be possible to buffer the access description in the terminal, in order to ensure quick service access without need for Service Guide acquisition.

Therefore, the access description can only contain parameters that are likely to change very infrequently for a particular service, so that it can be tolerated that in case of a change, the terminal performs service guide acquisition before accessing a service.

The following access information pertaining to the traffic key stream must be added to the access description of the service:

format_of_key_stream – defines the format of the key stream:

0 = key stream as defined in this specification

all other values = reserved for future use

port_of_key_stream – is the port number of the UDP stream carrying the KSM flow.

IP_address_of_key_stream – is the IP address on which the key stream is transported.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

