Doc# [image: image3.jpg]"sOMaQa

Open Mobile Alliance

OMA-BCAST-2006-0682-CR_Signalling_of_OFT
Change Request

Doc# OMA-BCAST-2006-0682-CR_Signalling_of_OFT
Change Request

Change Request

	Title:
	Signalling of OFT
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DLDRM/BCAST

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060321-D

	Submission Date:
	4 August 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

Lakshminath Dondeti, Qualcomm, ldondeti@qualcomm.com

	Replaces:
	n/a

1 Reason for Change

In Appendix A.13.4 the optional broadcast encryption scheme OFT is described. However there is no signalling of the use of this scheme and of the scheme specific parameters.
The signalling of the use of the OFT broadcast encryption scheme in the device_registration_response and the BCRO is introduced by this CR. In order to implement OFTs the necessary fields are also introduced.
This CR also allows the disabling of a broadcast encryption scheme, creating the possibility to use XBS as a conditional access system.

The CR is based on the XBS specification and the CR BCAST-2006-0592, which was tentatively agreed in Osaka. If we had based the CR on the XBS specification only, it would have been necessary to merge this CR with CR592 at a later time. The changes that are part of this CR have the author 'Bert Greevenbosch [2]'; changes by the author 'Bert Greevenbosch' are not part of this CR.

This CR aims at closing the following comment:

	DX074
	
	N
	7.2.1 and A.13
	Source: Fraunhofer, QUALCOMM

Form: OMA-BCAST-2006-0xxx

Comment:

In the OMADRMBroadcastRightsObjectBase (section 7.2.1), there is no way to signal which Broadcast Encryption Scheme is used

Proposed resolution:

Qualcomm and Fraunhofer IIS will submit a CR that solves this issue.
	Status: OPEN

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the DLDRM/BCAST group to agree the CR.
6 Detailed Change Proposal

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	AES
	Advanced Encryption Standard

	BAK
	BCRO Authentication Key

	BCD
	Binary Coded Decimal

	BCRO
	Broadcast Rights Object

	DEK
	Deduced Encryption Key

	DRD
	Device Registration Data

	DRM
	Digital Rights Management

	ECT
	Efficient Coding Table

	ESP
	Encapsulating Security Payload

	FSGK
	Flexible Subscriber Group Key

	GRO
	Generalised Rights Object

	HMAC
	Hashed Message Authentication Code

	IPsec
	IP Security

	LDK
	Local Domain Key

	LLDF
	Long-form Local Domain Filter (a.k.a. longform_domain_id)

	MAC
	Message Authentication Code

	MJD
	Modified Julian Date

	NDD
	Notification of Detailed Data

	OCSP
	Online Certificate Status Protocol

	OFT
	One-way Function Tree

	PAK
	Programme Authentication Key

	PAS
	Programme Authentication Seed

	PDR
	Push Device Registration

	PEAK
	Programme Encryption / Authentication Key

	PKC
	Public Key Certificate

	PKC-ID
	PKC Identifier: the hash of the Public Key Certificate

	PKI
	Public Key Infrastructure

	PRF
	Pseudo Random Function

	RI
	Rights Issuer

	RIAK
	Right Issuer Authentication Key

	RO
	Rights Object

	ROT
	Root Of Trust

	RSA
	Rivest-Shamir-Adelman public key algorithm

	SAK
	Service Authentication Key

	SAS
	Service Authentication Seed

	SEAK
	Service Encryption / Authentication Key

	SGK
	Subscriber Group Key

	SHA-1
	Secure Hash Algorithm

	SLDF
	Short-form Local Domain Filter (a.k.a. shortform_domain_id)

	TAK
	Traffic Authentication Key

	TAS
	Traffic Authentication Seed

	TDK
	Token Delivery Key

	TEK
	Traffic Encryption Key

	UDF
	Unique Device Filter

	UDK
	Unique Device Key

	UDN
	Unique Device Number

	UDP
	User Datagram Protocol

	UGK
	Unique Group Key

3.4 Notations

	E{K}(M)
	Encryption of message ‘M’ using key ‘K’

	D{K}(M)
	Decryption of message ‘M’ using key ‘K’

	A || B
	Concatenation of A and B

	LSBm(X)
	The bit string consisting of the m least significant bits of the bit string X.

	MSBm(X)
	The bit string consisting of the m most significant bits of the bit string X.

7.2 Format of the Broadcast Rights Object

7.2.1 Format of the OMADRMBroadcastRightsObject class

The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification. The MAC protected BCRO (OMADRMBroadcastRightsObject class) is mandatory for devices supporting BCROs. The Signature protected BCRO (OMADRMBroadcastRightsObjectSigned class) is optional for devices supporting BCROs.

align(8) class OMADRMBroadcastRightsObjectBase

{

int i;

bit(8)
message_tag;

bit(4)
version;

bit(12)
bcro_length;

bit(1)
group_size_flag;

bit(1)
timestamp_flag;

bit(1)
stateful_flag;

bit(1)
refresh_time_flag;

bit(3)
address_mode;

bit(1)
rights_issuer_flag;

if (address_mode == 0x0)

{

bit(32) fixed_group_address;

} else
if (address_mode == 0x1)

{

bit(32) fixed_group_address;

if(group_size_flag == 0)

{

bit(256)
fixed_bit_access_mask;

}

else

{

bit(512)
fixed_bit_access_mask;

}

} else if (address_mode & 0x6 == 0x2)

{

bit(40) udf;

} else if (address_mode == 0x4)

{

bit(38) domain_id;

bit(10) domain_generation;

} else if (address_mode == 0x5)

{

OMADRMGroupAddress
flexible_group_address;

bit(2)

broadcast_encryption_scheme;

if(flexible_bit_access_mask_present)

{

OMADRMBitAccessMask
flexible_bit_access_mask;

}

if(node_number_present)

{

OMADRMNodeNumber
node_number;

}

bit(xx) zero_padding_bits;

} else if (address_mode == 0x6)

{

OMADRMGroupAddress
flexible_group_address;

}

if (rights_issuer_flag == 1)

{

bit(160)
rights_issuer_id;

}

if (timestamp_flag == 1)

{

bit(40)
bcro_timestamp;

}

if (refresh_time_flag == 1)

{

bit(40)
refresh_time;

}

bit(1)
permissions_flag;

bit(7)
rekeying_period_number;

bit(32)
purchase_item_id;

bit(8)
number_of_assets;

for (i=0; i<number_of_assets; i++)

{

OMADRMAsset
asset[i];

}

if (permissions_flag == 1)

{

bit(8)
number_of_permissions;

for (i=0; i<number_of_permissions; i++)

{

OMADRMPermission permission[i];

}

}

}

align(8) class OMADRMBroadcastRightsObject

{

OMADRMBroadcastRightsObjectBase roBase;

bit(96)
MAC;

// MAC is computed over roBase

}

align(8) class OMADRMBroadcastRightsObjectSigned

{

OMADRMBroadcastRightsObjectBase roBase;

bit(2) signature_type_flag;

bit(6) reserved_for_future_use;

// signature is computed over all preceding fields.

if(signature_type_flag == 0x0{

bit(1024)
signature;

} else if (signature_type_flag == 0x01 {

bit(2048)
signature;

} else if (signature_type_flag == 0x02 {

bit(4096)
signature;

}

}

message_tag: Tag identifying this message as a BCRO. The value for this field is defined in Fehler! Verweisquelle konnte nicht gefunden werden..
version: 3-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. Devices SHALL ignore BCROs with versions it does not support.
bcro_length: this field indicates the length of the remainder of the BCRO in bytes starting immediately after this field (excluding locally added information).

See section 7.2.2.1 (refs) for details on its coding.

group_size_flag: In the case of Fixed Subscriber Group sizes, this 1-bit field indicates the group size used. If set to 0 a Subscriber Group size of 256 Devices is used. If set to 1 a Subscriber Group size of 512 Devices is used.

NOTE: this flag has no meaning in the case of Flexible Subscriber Groups.

timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO

address_mode: 3-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing of a whole Fixed Subscriber Group

	0x1
	addressing of a subgroup of devices in a Fixed Subscriber Group using a bitmask size of 256 or 512 bit depending on group_size_flag. This address mode is not used for Flexible Subscriber Groups.

	0x2-0x3
	addressing of a unique device

	0x4
	addressing of an OMA domain.

	0x5
	addressing of a subgroup of devices in a Flexible Subscriber Group. The size of the Subscriber Group is determined at registration. This addressing mode is not used for Fixed Subscriber Groups.

	0x6
	addressing of a whole Flexible Subscriber Group

	0x7
	reserved for future use

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.

fixed_group_address: indicates the Fixed Subscriber Group address. Each provider has its own address space.
rights_issuer_id: The ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.
fixed_bit_access_mask: if the BCRO addresses a subset of a Fixed Subscriber Group with size 256 or 512 (address_mode 0x1) then the fixed_bit_access_mask can be used to define to which receivers in the group this BCRO is addressed to. Receivers not listed in the fixed_bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. The size of the fixed_bit_access_mask is given by the group_size_flag.

udf: this 40-bit field contains a Unique Device Filter and is used to address a unique device.

In case of Fixed Suscriber Group addressing, the following applies. In the case of a group size of 256 devices, the first 32 bits of the udf contain the fixed_group_address field, whilst the last 8 bits contain the fixed_position_in_group field. In the case of 512 devices, the first 31 bits contain the fixed_group_address field whilst the last 9 bits contain the fixed_position_in_group field.

In the case of Flexible Subscriber Group addressing, the udf contains a 40 bit unique address.

flexible_group_address: indicates the Flexible Subscriber Group address. Each provider has its own address space. See section 7.2.2.2 (ref) for its coding.
broadcast_encryption_scheme - indicates which broadcast encryption scheme is used. See Table 50 in Appendix A.8.1 for more details.

flexible_bit_access_mask_present - this is no dedicated bit in the BCRO, but a boolean value depending on the broadcast_encryption_scheme. See Table 50 in Appendix A.8.1 for details. When TRUE, a flexible_bit_access_mask field follows.
node_number_present - this field is no dedicated bit in the BCRO, but a boolean value depending on the broadcast_encryption_scheme. See Table 50 in Appendix A.8.1 for details. When TRUE a node_number field follows.
reserved_for_future_use: this 2-bit field is reserved for future used, and SHALL be set to zero in this version of the specification.

flexible_
bit_access_mask: if the BCRO addresses a subset of a Flexible Subscriber Group, then the flexible_bit_access_mask is used to define to which receivers in the group this BCRO is addressed. Receivers not listed in the flexible_bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. See section 0 for the coding of flexible_bit_access_mask.

node_number: indicates the position of the node that contains the DEK in the OFT. See section A.13.4.1 for details on the numbering of the nodes and section 7.2.3.2 for the coding of the field.
zero_padding_bits: these (less than 8) bits ensure that the next field is byte aligned.
domain_id: this 38-bit field indicates the domain ID.

domain_generation: This 10 bit field specifies the generation of the domain.
bcro_timestamp: Field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: The refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

rekeying_period_number: 7-bit counter used to differentiate between different GROs with the same purchase_item_id.
purchase_item_id: 32-bit field specifying the purchase ID this GRO is associated with

number_of_assets: This field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions:This field specifies the number of permissions (see below) in this BCRO.

MAC: This is the authentication code calculated over all bytes before this field in the BCRO using HMAC-SHA-1-96 (see [RFC 2104]). The MAC is only present in the OMADRMBroadcastRightsObject class.

The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key BAK as described in Fehler! Verweisquelle konnte nicht gefunden werden..

signature_type_flag: The signature_type_flag is as defined in Section 6.1.3.2.1, reproduced below:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

signature: The signature is calculated over all bytes before this field with the exception of the first two bytes in the BCRO using RSA-1024, RSA-2048 or RSA-4096. This is only present in the optional OMADRMBroadcastRightsObjectSigned class.

7.2.2 Format of flexible_bit_access_mask

An addressing bitmask is a string of bits, where each bit corresponds to one particular device. When a device is addressed, its bit in the addressing bit mask is set to 1, otherwise to 0.

The field flexible_bit_access_mask contains the coded addressing bitmask. The addressing bitmask is split up into subblocks, each of which is coded separately. Depending on the characteristics of the subblock the coding method is chosen. The format of flexible_bit_access_mask is as follows:

class OMADRMBitAccessMask

{

do {

bit(2) subblock_coding_type;

if(subblock_coding_type == 0x1)

{

OMADRMBitmappedBitmask bitmapped_bitmask;

} else if(subblock_coding_type == 0x2)

OMADRMBlockCompressedBitmask block_compressed_bit_access_mask;

{

} else if(subblock_coding_type == 0x3)

OMADRMOutlierCompressedBitmask outlier_compressed_bit_access_mask;

}

} while(subblock_coding_type != 0x0)

}

subblock_coding_type: 2-bit value indicating how the subblock is coded.

	Field: subblock_coding_type
	Description

	0x0
	indicates the end of the bitmask

	0x1
	the subblock is not compressed, but coded by the method as described in Section Fehler! Verweisquelle konnte nicht gefunden werden..

	0x2
	the subblock is coded using the Block Compression Method as described in Section Fehler! Verweisquelle konnte nicht gefunden werden..

	0x3
	the subblock is coded using the Outlier Compression Method as described in Section Fehler! Verweisquelle konnte nicht gefunden werden..

Change 1:
7.2.3 Efficient Coding Tables
Efficient Coding Tables (ECTs) are used to code values in such a way that low values require a small number of bits, whilst extra bits are included for the higher values. In general they have the following form:

class

{

OMADRMEfficientCodingIndicator indicator;

OMADRMEfficientCodingTranslatedValue translated_value;

}

indicator: bit string of variable length indicating the amount of bits that are used to code the translated_value field.

translated_value: contains the binary representation of the relative position of the value in the value range as can be found in the corresponding Efficient Coding Table. This means that a value X is coded as X-L, where L is the lower bound of the value range that contains X.

5.1.1.1
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

7.2.3.1 OMADRMGroupAddress
	indicator
	amount of bits for value
	value range

	0
	6
	0 – 63

	10
	11
	64 – 2 111

	110
	16
	2 112 – 67 647

	1110
	20
	67 648 – 1 116 223

	1111
	32
	1 116 224 - 4 296 083 519

For EXAMPLE, the value 1200 is coded as 10 10001110000, where 10001110000 is the binary representation of 1136=1200-64.

7.2.3.2 OMADRMNodeNumber
	indicator
	amount of bits for value
	value range

	0
	10
	0 – 1 023

	10
	14
	1 024 – 17 407

	110
	18
	17 408 – 279 551

	1110
	22
	279 552 – 4 473 855

	1111
	27
	4 473 856 – 138 691 583

For EXAMPLE, the value 2000 is coded as 10 00001111010000, where 00001111010000 is the binary representation of 976=2000-1024.

7.2.3.3 OMADRMNole
	indicator
	amount of bits for value
	value range

	00
	4
	0 – 15

	01
	8
	16 – 271

	10
	16
	272 – 65 807

	11
	20
	65 808 – 1 114 383

For EXAMPLE, the value 18 is coded as 01 00000010, where 00000010 is the binary representation of 2=18-16.

7.2.3.4 OMADRMBlockLength
	indicator
	amount of bits for value
	value range

	0
	2
	0 – 3

	10
	4
	4 – 19

	110
	7
	20 – 147

	1110
	11
	148 – 2 195

	11110
	16
	2 196 – 67 731

	11111
	22
	67 732 – 4 262 035

For EXAMPLE, the value 16 is coded as 10 1100, where 1100 is the binary representation of 12=16-4.

7.2.4 Format of the OMADRMAsset class

class OMADRMAsset

{

int i;

bit(96)
BCI;

bit(1)
key_flag;

bit(1)
key_type;

bit(2)
reserved_for_future_use;

bit(1)
inherit_flag;

bit(2)
asset_type;

bit(1) permissions_category_flag;

if (inherit_flag)

{

bit(32)
purchase_item_id;

bit(1)
reserved_for_future_use;

bit(7)
rekeying_period_number;

}

if (permissions_category_flag == 1)

{

bit(8)
permissions_category;

}

if (key_flag == 1)

{

if (asset_type == 0x0)

{

if (key_type == 0x0)

{

bit(256)
encrypted_service_encryption_authentication_key;

}

else if (key_type == 0x1)

{

bit(256)
encrypted_program_encryption_authentication_key;

}

}

else

if (asset_type == 0x1)

{

bit(128)
encrypted_content_encryption_key;

}

}

}

BCI: This 96-bit field is the Binary Content ID. [The encoding of this field might be the SHA1-96 hash of the Content ID in ‘cid’ URI form.]

reserved_for_future_use: all fields reserved_for_future_use SHALL be set to 0 for this version of the specification.

key_flag:1-bit flag indicating that the asset does contain key material.

key_type: 1-bit flag indicating the type of the key material. If set to 0 the key material contains a service encryption key (SEK), when set to 1 it contains a program encryption key (PEK).

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent GRO.

asset_type: 2-bit flag indicating the asset type as defined in the table below. If the asset_type is set to 0 the asset MAY contain either a PEK or a SEK. If the asset_type is set to 0x1 then the asset MAY contain a content encryption key.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected IPSec or SRTP as defined in this specification

	0x1
	downloaded file content as defined by OMA

	0x2-0x3
	reserved

permissions_category_flag: 1-bit flag indicating that a permissions_category field is present in this asset object.
purchase_item_id: 32-bit field specifying the purchase ID this GRO is associated with.

rekeying_period_number: 7-bit field specifying the rekeying_period_number of the parent GRO. The purchase_item_id and rekeying_period_number are used together with the socID and deviceID or domainID to uniquely identify the parent GRO.

permissions_category: For programme assets, the value of this field (if present) is always zero. For service assets, the following rule applies. If the value of this field is nonzero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the same value in its permissions_category field. If the value of this field is zero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the value zero in its permissions_category field, or has value zero for its permissions_flag bit (indicating that there is no permissions_category field in the TKM). Note that there MAY be multiple assets with the same Service_BCI, in which case typically only one of them contains authentication and/or encryption keys in it asset object(s). TKM permissions_category field value thus selects the one with the permissions to be applied among the service assets with the same Service_BCI. The one with the authentication and/or encryption keys is found among the BCROs via inheritance, or by lookup for a BCRO with key material in its assets.

encrypted_service_encryption_authentication_key: If key_type is set to 0 then this field contains the encrypted SEAK, the service encryption key (SEK) concatenated with the Service Authentication Seed (SAS). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field depends on the addressing mode of the BCRO.

Table 1: keys used in different addressing modes

	Field: address_mode
	Keys used

	0x0 (Fixed Subscriber Group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (Fixed Subscriber Group addressing / subset)
	DEK (Deduced Encryption Key based on fixed_bit_access_mask and SGKs)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain Key)

	0x5 (Flexible Subscriber Group addressing / subset)
	DEK (Deduced Encryption Key, based on the broadcast_encryption_scheme and FSGKs; see Table 4 in Appendix A.8)

	0x6 (Flexible Subscriber Group addressing / whole group)
	UGK (Unique Group Key)

encrypted_program_encryption_authentication_key: If key_type is set to 1 then this field contains the encrypted PEAK, the program encryption key (PEK) concatenated with the program authentication seed (PAK). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO. Table 1 indicates which key is used in which addressing mode.
	
	

	
	

	
	

	
	

	
	

encrypted_content_encryption_key: This field contains the encrypted content encryption key (CEK). The field is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO. Table 1 indicates which key is used in which addressing mode.
	Change 2:
	Change 3:

	Change 4:
	Change 5:

	Change 6:
	Change 7:

	Change 8:
	Change 9:

	Change 10:
	Change 11:

9.3 Confidentiality of Message Content

9.3.1 Introduction
If the subscriber group addressing is cryptographically secure, then it can be used very effectively to distribute a BCRO to such a subset, where the content encryption keys in the BCRO are protected with the distinct key associated with that particular subset. All devices in the subset can determine this key, and hence can decrypt the content encryption keys in the BCRO. All other devices in the group cannot, and therefore cannot access the protected content.

Refer to Fehler! Verweisquelle konnte nicht gefunden werden. for a more detailed introduction to confidentiality in the subscriber group addressing concept.

9.3.2 Subscriber Group Key Material

Each subscriber group has a single unique group key that is used to protect the confidentiality of sensitive broadcast information when the subscriber group is addressed as a whole. This unique group key (UGK) is transferred to each device in the subscriber group upon registration with the rights issuer. The UGK is shared between all devices in the same subscriber group.

Each device in a subscriber group also receives a unique device key that is used to protect the confidentiality of sensitive broadcast information when device addressing is used (subscriber group address and subscriber position), This unique device key (UDK) is transferred to the device upon registration with the rights issuer.

Each device in a subscriber group also has a set of node keys NKi in case two or more, but not all devices in a subscriber group are addressed by a BCRO, and that can be used to compute all device keys DKj, except its own device key.

9.3.3 Fixed Subscriber Groups and Flexible Subscriber Groups

In this specification, the Subscriber Groups come in two flavours. There are the Fixed Subscriber Groups, which have a fixed size of 256 or 512 devices, and the Flexible Subscriber Groups.

The two flavours appear in the device_registration_response message and the BCRO. During registration the Device is informed whether it is assigned to a Flexible Subscriber Group or a Fixed Subscriber Group. The subsequent messages to a specific Subscriber Group will always be of the same flavour as in the registration.

Broadcast Services and Devices MAY support Flexible Subscriber Groups, and/or Fixed Subscriber Groups or no Subscriber Groups at all. The use of Subscriber Groups is bearer specific and is specified in the various adaptation specifications.

9.3.3.1 Fixed Subscriber Groups

Subscriber Groups of this type have a size of 256 or 512 devices. Devices in a Subscriber Group of 256 have a 32 bit group address (indicating the Subscriber Group) and the position of the device in the Subscriber Group is specified by 8 bits. For devices in a Subscriber Group of 512 devices the group address has 31 bits and the position in group is expressed by 9 bits. In a group of 256 devices, each device gets 8 SGKs, whereas in a group of 512 devices, each device gets 9 SGKs.

The following fields are typical Fixed Subscriber Group fields:

· fixed_group_address

· fixed_position_in_group

· group_size_flag

· SGK (Subscriber Group Key)

These fields are only used when the Device is assigned to a Fixed Subscriber Group.
9.3.3.2 Flexible Subscriber Groups

The size of a Flexible Subscriber Group can be selected from a set of 31 possible sizes ranging from 21 to 231 (always powers of 2). The device is informed about the size of the Flexible Subscriber Group at registration.
Flexible Subscriber Groups also allow the choice of another broadcast encryption scheme. See Table 4 in Appendix A.8
 for more details.
The following fields are typical Flexible Subscriber Group fields:

· flexible_device_data

· flexible_group_address

· flexible_position_in_group

· flexible_group_size_indicator
· broadcast_encryption_scheme
· FSGK (Flexible Subscriber Group Key)

These fields are only used when the Device is assigned to a Flexible Subscriber Group.

Note that when the zero-message broadcast encryption scheme is used, the FSGK has the same meaning as the SGK. However, there are 8 or 9 SGKs whilst there can be up to 31 FSGKs, supporting group sizes up to 231 ≈ 2 000 000 000 devices.

Devices and RIs that support Flexible Subscriber Groups MUST support group sizes of up to 214 = 16 384 devices. They MAY support bigger group sizes.
A.8 Tag Length Format for keyset_block

A.8.1 Syntax definition

A Tag Length Format (TLF) is defined to identify the keyset_items in the keyset_block. A keyset_item is identified by following syntax:

<tag> [optional <clarifier>] <length> <keyset_item>

Following values are defined and SHALL be used:

tag values:

This is a 4 bit field (bslbf) indicating the tag that uniquely identifies the keyset item.

Table 2: defined tag values

	Keyset_item
	Tag (b)
	remark

	UGK
	0000
	

	SGK
	0001
	

	UDK
	0010
	

	UDF
	0011
	

	LDK
	0100
	

	SLDF
	0101
	shortform_domain_id

	LLDF
	0110
	

	RIAK
	0111
	

	TDK
	1000
	

	flexible_device_data
	1001
	

	FSGK block
	1010
	

	reserved for future use
	1011-1111
	not used in this version of the spec

Note:

· The keyset items SHALL be included in the order of the table above.

· The keyset SHALL include only one instance of the following keys: UGK, UDK, UDF, RIAK and TDK.

· If included the SGKs (8 or 9) SHALL follow in fashion SGK1..n.

· The keyset MAY include zero or more domain sets (LDK, SLDF, LLDF). If included the SLDF SHALL follow the LDK it belongs to, followed by the optional LLDF that belongs to the aforementioned SLDF.
clarifier (optional):

This is a 10 bit field (bslbf) can be used to indicate the following possible values:

· in case the preceding <tag> value indicates a SGK, this field represents the position of a SGK in the Fiat Naor tree.

· in case the preceding <tag> value indicates a LLDF this field represents the length on the LLDF in bytes.

· in case the preceding <tag> value indicates flexible_device_data this field represents the length of the flexible_device_data in bytes.

· in case the preceding <tag> value indicates an FSGK block, this field represents the length of the FSGK block in bytes. The <length> field indicates the type of the FSGKs as shown in Fehler! Verweisquelle konnte nicht gefunden werden..
· If the zero-message broadcast encryption scheme is used, the FSGKs are stored in the FSGK block in descending order from root to leaf (the root itself not included). The maximum size of the keyset_item of 1023 bytes is sufficient to hold a maximum of 31 keys of length 256 bits each.
· describing the use of the clarifier field for position of SGK.

· If the One-Way Function Tree (OFT) scheme is used (see Appendix 13.4
), the FSGK block contains the blinded keys and the device key. No blinded keys for the root level and the first level under the root are transmitted. The other blinded keys follow in the order from root to leaf, after which the device key follows.
· When Flexible Subscriber Groups are used without a broadcast encryption scheme, the FGSK block contains only one FSGK, which is used as DEK where necessary.
If keyset_item == 0001 (i.e. SGK) then the optional field “clarifier” SHALL indicate the position of the SGK as a node in the [FIAT NAOR] tree. When m = groupsize, then n = log2 (m), where n is number of BGKs in tree. Possible positions for the BGKs in the tree are 2(n+1) -1 . Therefore parameter “position” is expressed with 10 bits to express 1023 nodes in a tree. First MSB left will be used as binary indicator to indicate if the SGK position is a node (0, zero) or a leaf (1, one). Bit positions 2..10 (from left to right LSB) are used in binary format as an indication of the node and leaf position. Nodes and leafs SHALL be numbered according to following Figure 1:

[image: image1.wmf]i

2i+2

2i+1

Parent

node

Right

child

node

Left

child

node

Figure 1: node numbering

Key:

The root key R is numbered zero. Node keys NK are sequentially numbered per “level” in a breadth-first manner from left to right, starting from the root node with number 0

describing the use of the clarifier for length of LLDF:

If LLDF is included the optional field “clarifier” describes the variable length of the LLDF in bits, as described in Fehler! Verweisquelle konnte nicht gefunden werden..

length values:

This is a 3 bit field (bslbf) indicating the length of a keyset item. This field SHALL be present for all keyset items except for the LLDF keyset item and the flexible_device_data item.

Table 3: defined length values

	(key)length prescriber
	Length (b)
	remark

	128 bit AES
	000
	

	192 bit AES
	001
	

	256 bit AES
	010
	

	5 byte Eurocrypt
	011
	

	6 byte
	100
	SLDF

	reserved for future use
	101-111
	not used in this version of the specification

Note: In case of the LLDF there is no extra length field, since the length value is indicated by the clarifier.
format of flexible_device_data
struct {

 OMADRMGroupAddress
flexible_group_address;

 OMADRMPositionInGroup
flexible_position_in_group;

 bit(5)

flexible_group_size_indicator;
 bit(2)

broadcast_encryption_scheme;
} flexible_device_data

flexible_group_size_indicator - when the device is assigned to a Flexible Subscriber Group, this 5-bit field indicates the size of that Subscriber Group. When flexible_group_size_indicator contains a value k, the Subscriber Group has a size of 2k Devices.
broadcast_encryption_scheme - indicates which broadcast encryption scheme is used by the RI. The number of Flexible Subscriber Group Keys (FSGKs) depends on the size of the Flexible Subscriber Group and the used broadcast encryption scheme. Table 4 explains this in more detail.
Table 4: the meaning of broadcast_encryption_scheme

	value of broadcast_encryption_scheme
	name of the broadcast encryption scheme used
	number of FSGKs by a Flexible Subscriber Group of size 2k.
	value of bitmask_present
	value of nodenumber_present

	00
	no broadcast encryption scheme used
(DEK equal to the sole FSGK)
	1
	TRUE
	FALSE

	01
	zero-message broadcast encryption
(DEK calculated by the method of section 9.3.4.4
)
	k
	TRUE
	FALSE

	10
	one-way function tree
(DEK calculated by the method of appendix A.13.4
)
	k
	FALSE
	TRUE

	11
	reserved for future use
	-
	-
	-

A.13.4 Efficient and secure BCRO delivery

Figure 34: the numbering of nodes in an OFT

[image: image2.wmf]

1

2

3

4

5

6

D4

:

1

1

D3:

1

0

D0

:

7

D1

:

8

D2

:

9

D5

:

1

2

D6

:

1

3

D7

:

1

4

0

This scheme is optional to implement or support in the network and optional to implement or support in the terminal.

In the figure, D0 has the ID 7, D1 8, D2 9, D3 10, D4 11, D5 12, D6 13 and finally D7 14. We define that all subscribers, whether currently members (defined as subscribers receiving current BCROs) or not, are part of the key tree as illustrated in the figure. In the simplest case, all the keys in the system are derived independently (i.e., random keys) by the group key manager.

The goal is to distribute the group key to the current membership among all the subscribers of the group. The BCRO itself is delivered protected with the group key.

To illustrate group key delivery, consider if D2 and D3 unsubscribe, the group key is sent encrypted with the intermediate keys, commonly known as key encryption keys (KEKs) K-3, and K-2. If D0 and D3 unsubscribe in another instance, the group key is sent encrypted with K-8, K-9, and K-2. This method is similar to OFT[OFT] and the complete subtree method defined by Naor et. al [Naor02]. The key list to encrypt the group key is the keys of the siblings of the keys in the path to the root of the unsubscribing members [OFT,Naor02].

The total number of keys in the system is 2n-2, and that includes the device keys as well as the intermediate keys. Each subscriber receives log(n) keys. For group key delivery, the complexity is as follows: if a single member unsubscribes, the group key can be delivered encrypted with at most log(n) KEKs. The worst case is when n/2 members unsubscribe (or need to be eliminated), one from each of the subtrees just above the leaf-level. In most cases, the cost is a small multiple of log(n).

Note that any combinations of members can be removed from the tree without any risk of collusion. Combining all the eliminated members’ keys does not yield the other keys.
Neither the blinded key of the root nor the blinded keys of the two children of the root need to be transmitted. The blinded keys of the two children would only be needed to calculate the key of the root, which would only be needed for the addressing of the whole group. However, when addressing the whole group the UGK is used rather than the root key from this tree.
A.13.4.1 Node numbering

Each node in the OFT has a number. The root node has the number 0. For a node with number Np, the first child has a number 2Np+1, and the second child a number 2NP+2. Likewise, the parent of a child with number Nc has the number (Nc-1)>>1 (see also figure 27
).
The node number of a leaf can be calculated from the leave number by adding 2k-1 to it, where k is the height of the tree.
For example, in Figure 34
 the height of the tree is 3, therefore leaf D4 has number 4+23-1 = 11.
[Naor02] M. Naor et. al., “Revocation and tracing schemes for stateless receivers,” June 2002.

[OFT] Sherman, A.T.; McGrew, D.A., “Key establishment in large dynamic groups using one-way function trees,”
IEEE Transactions on Software Engineering, Volume 29, Issue 5, May 2003. Page(s):444 – 458.

�to editor: add link here

Note to editor: �add link here

�Note to editor: please add link to section 9.3.4.: subset addressing

�Note to editor: please add link here

� This section should be integrated as part of section 13.4 in the description of OFTs, as part of the resolution of CONR comment DX075.

� to editor: add link here to figure 27: node numbering

� to editor: add link here

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 19)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 19 (of 19)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1174919035.vsd
text�

�

�

�

Parent node�

Right
child
node�

i�

2i+2�

2i+1�

Left child
node�

_1215935358.doc

[image: image1]

D0:

7

D1:

8

D3:

10

D2:

9

D7:

14

D6:

13

D5:

12

D4:

11

1

2

3

4

5

6

0	

