Doc# OMA-BCAST-2006-0892-DX081-one-coding-style-in-XBS.doc[image: image4.jpg]
Change Request

Doc# OMA-BCAST-2006-0892-DX081-one-coding-style-in-XBS.doc
Change Request

Change Request

	Title:
	OMA-BCAST-2006-0892-DX081-one-coding-style-in-XBS
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC BCAST and DLDRM

	Doc to Change:
	OMA-BCAST-2006-0793-INP_XBS_Interim_TS.zip (OMA-TS-DRM-XBS-V1_0-20060321-D)

	Submission Date:
	October 24, 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	John Bernsen, john.ac.bernsen@philips.com
Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

This CR is a proposal for solving review comment:

	DX081
	
	N
	All
	Source: Aram Perez, QUALCOMM

Form: OMA-BCAST-2006-0xxx

Comment:

No explanation of the pseudo C/C++ language used to describe the format of the messages. Why are there “char” and “string”?

Proposed resolution:

Provide a good description of the pseudo C/C++ language and how it is used.
	Status: OPEN
Relation to agreed CR643?

AP Mercè: Email to Sungoh and email from John asking.

MPEG could be one solution.

on OMA-BCAST-2006-0793-INP_XBS_Interim_TS.zip (OMA-TS-DRM-XBS-V1_0-20060321-D)
This CR replaces all non C-like syntax specifications of messages to C-like ones. No technical changes are introduced.
The adapted PDCF syntax specification is not changed in this CR, because it is in the style that is used in the MPEG4 file format specification. Changing this to C-style would confuse more instead of making the XBS document simpler to undderstand.

2 Impact on Backward Compatibility

This CR has no impact on backwards compatibility

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members are kindly asked to agree with the indicated changes in 6.

6 Detailed Change Proposal

Change 1: Section 8.2 in BCAST-2006-0793
2.5 Format of the Broadcast Rights Object

2.5.4 Format of OMADRMBroadcastRightsObject
The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification. The MAC protected BCRO (OMADRMBroadcastRightsObject class) is mandatory for devices supporting BCROs. The Signature protected BCRO (OMADRMBroadcastRightsObjectSigned object) is optional for devices supporting BCROs.

	Field
	Length
	Type

	OMADRMBroadcastRightsObjectBase() {
	
	

	message_tag
	8
	uimsbf

	version
	4
	uimsbf

	
bcro_length
	12
	uimsbf

	
group_size_flag
	1
	bslbf

	
timestamp_flag
	1
	bslbf

	
stateful_flag
	1
	bslbf

	
refresh_time_flag
	1
	bslbf

	
address_mode
	3
	uimsbf

	
rights_issuer_flag
	1
	bslbf

	if (address_mode == 0x0) {
	
	

	
fixed_group_address
	32
	uimsbf

	} else if (address_mode == 0x1) {
	
	

	
fixed_group_address
	32
	uimsbf

	
if(group_size_flag == 0) {
	
	

	

fixed_bit_access_mask
	256
	bslbf

	
} else {
	
	

	

fixed_bit_access_mask
	512
	bslbf

	
}
	
	

	} else if (address_mode & 0x6 == 0x2) {
	
	

	
udf
	40
	uimsbf

	} else if (address_mode == 0x4) {
	
	

	
domain_id
	38
	uimsbf

	
domain_generation
	10
	uimsbf

	} else if (address_mode == 0x5) {
	
	

	
flexible_group_address()
	variable
	OMADRMGroupAddress()

	
broadcast_encryption_scheme
	2
	uimsbf

	
if(flexible_bit_access_mask_present) {
	
	

	

flexible_bit_access_mask()
	variable
	OMADRMBitAccessMask()

	
}
	
	

	
if(node_number_present) {
	
	

	

node_number()
	variable
	OMADRMNodeNumber()

	
}
	
	

	
zero_padding_bits
	variable
	

	} else if (address_mode == 0x6) {
	
	

	
flexible_group_address()
	variable
	OMADRMGroupAddress()

	}
	
	

	if (rights_issuer_flag == 1) {
	
	

	
rights_issuer_id
	160
	bslbf

	}
	
	

	if (timestamp_flag == 1) {
	
	

	
bcro_timestamp
	40
	mjdutc

	}
	
	

	if (refresh_time_flag == 1) {
	
	

	
refresh_time
	40
	mjdutc

	}
	
	

	permissions_flag
	1
	bslbf

	rekeying_period_number
	7
	uimsbf

	purchase_item_id
	32
	uimsbf

	number_of_assets
	8
	uimsbf

	for (i=0; i<number_of_assets; i++) {
	
	

	
asset()[i]
	variable
	OMADRMAsset()

	}
	
	

	if (permissions_flag == 1) {
	
	

	
number_of_permissions
	8
	uimsbf

	
for (i=0; i<number_of_permissions; i++) {
	
	

	

permission()[i]
	variable
	OMADRMPermission()

	
}
	
	

	}
	
	

	}
	
	

	Field
	Length
	Type

	OMADRMBroadcastRightsObject() {
	
	

	
OMADRMBroadcastRightsObjectBase()
	variable
	

	
/* MAC is computed over OMADRMBroadcastRightsObjectBase() */
	
	

	
MAC
	96
	bslbf

	}
	
	

	Field
	Length
	Type

	OMADRMBroadcastRightsObjectSigned() {
	
	

	
OMADRMBroadcastRightsObjectBase()
	variable
	

	
signature_type_flag
	2
	uimsbf

	
reserved_for_future_use
	6
	bslbf

	
/* signature is computed over all preceding fields. */
	
	

	
if (signature_type_flag == 0x0) {
	
	

	

signature
	1024
	bslbf

	
} else if (signature_type_flag == 0x01) {
	
	

	

signature
	2048
	bslbf

	
} else if (signature_type_flag == 0x02) {
	
	

	

signature
	4096
	bslbf

	
}
	
	

	}
	
	

message_tag: Tag identifying this message as a BCRO. The value for this field is defined in A.10.
version: 4-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. Devices SHALL ignore BCROs with versions it does not support.
bcro_length: this field indicates the length of the remainder of the BCRO in bytes starting immediately after this field (excluding locally added information).

group_size_flag: in the case of Fixed Subscriber Group sizes, this 1-bit field indicates the group size used. If set to 0 a Subscriber Group size of 256 Devices is used. If set to 1 a Subscriber Group size of 512 Devices is used.

NOTE: this flag has no meaning in the case of Flexible Subscriber Groups.

timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO

address_mode: 3-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing of a whole Fixed Subscriber Group

	0x1
	addressing of a subgroup of devices in a Fixed Subscriber Group using a bitmask size of 256 or 512 bit depending on group_size_flag. This address mode is not used for Flexible Subscriber Groups.

	0x2-0x3
	addressing of a unique device

	0x4
	addressing of an OMA domain.

	0x5
	addressing of a subgroup of devices in a Flexible Subscriber Group. The size of the Subscriber Group is determined at registration. This addressing mode is not used for Fixed Subscriber Groups.

	0x6
	addressing of a whole Flexible Subscriber Group

	0x7
	reserved for future use

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.

fixed_group_address: indicates the Fixed Subscriber Group address. Each provider has its own address space.

rights_issuer_id: the ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.

fixed_bit_access_mask: if the BCRO addresses a subset of a Fixed Subscriber Group with size 256 or 512 (address_mode 0x1) then the fixed_bit_access_mask can be used to define to which receivers in the group this BCRO is addressed to. Receivers not listed in the fixed_bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. The size of the fixed_bit_access_mask is given by the group_size_flag.

udf: this 40-bit field contains a Unique Device Filter and is used to address a unique device.

In case of Fixed Suscriber Group addressing, the following applies. In the case of a group size of 256 devices, the first 32 bits of the udf contain the fixed_group_address field, whilst the last 8 bits contain the fixed_position_in_group field. In the case of 512 devices, the first 31 bits contain the fixed_group_address field whilst the last 9 bits contain the fixed_position_in_group field.

In the case of Flexible Subscriber Group addressing, the udf contains a 40 bit unique address.

flexible_group_address(): indicates the Flexible Subscriber Group address. Each provider has its own address space. See section 8.2.3.1 for its coding.

broadcast_encryption_scheme: indicates which broadcast encryption scheme is used. See Table 55 in Appendix A.8.1 for more details.

flexible_bit_access_mask_present: this is no dedicated bit in the BCRO, but a boolean value depending on the broadcast_encryption_scheme. See Table 55 in Appendix A.8.1 for details. When TRUE, a flexible_bit_access_mask field follows.

node_number_present: this field is no dedicated bit in the BCRO, but a boolean value depending on the broadcast_encryption_scheme. See Table 55 in Appendix A.8.1 for details. When TRUE a node_number field follows.

flexible_bit_access_mask(): if the BCRO addresses a subset of a Flexible Subscriber Group, then the flexible_bit_access_mask is used to define to which receivers in the group this BCRO is addressed. Receivers not listed in the flexible_bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. See section 8.2.2 for the coding of flexible_bit_access_mask.

node_number(): indicates the position of the node that contains the DEK in the OFT. See section A.14.4.1 for details on the numbering of the nodes and section 8.2.3.3 for the coding of the field.

zero_padding_bits: these (less than 8) bits ensure that the next field is byte aligned.

domain_id: this 38-bit field indicates the domain ID.

domain_generation: this 10 bit field specifies the generation of the domain.
bcro_timestamp: field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD), see also Appendix A.5.

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: the refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

rekeying_period_number: 7-bit counter used to differentiate between different GROs with the same purchase_item_id.
purchase_item_id: 32-bit field specifying the purchase ID this GRO is associated with

number_of_assets: this field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions: this field specifies the number of permissions (see below) in this BCRO.

MAC: this is the authentication code calculated over all bytes before this field in the BCRO using HMAC-SHA1-96 (see [RFC 2104]). The MAC is only present in the OMADRMBroadcastRightsObject object.
The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key BAK as described in A.11.3.
signature_type_flag: the signature_type_flag is as defined in Section 6.1.3.2.1, reproduced below:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

signature: the signature is calculated over all bytes before this field with the exception of the first two bytes in the BCRO using RSA-1024, RSA-2048 or RSA-4096. This is only present in the optional OMADRMBroadcastRightsObjectSigned object.

2.5.5 Format of flexible_bit_access_mask

An addressing bitmask is a string of bits, where each bit corresponds to one particular device. When a device is addressed, its bit in the addressing bit mask is set to 1, otherwise to 0.

The field flexible_bit_access_mask contains the coded addressing bitmask. The addressing bitmask is split up into subblocks, each of which is coded separately. Depending on the characteristics of the subblock the coding method is chosen. The format of flexible_bit_access_mask is as follows:

	Field
	Length
	Type

	OMADRMBitAccessMask() {
	
	

	
do {
	
	

	

subblock_coding_type
	2
	uimsbf

	

if(subblock_coding_type == 0x1) {
	
	

	

bitmapped_bitmask()
	variable
	OMADRMBitmappedBitmask()

	

} else if(subblock_coding_type == 0x2) {
	
	

	

block_compressed_bit_access_mask()
	variable
	OMADRMBlockCompressedBitmask()

	

} else if(subblock_coding_type == 0x3) {
	
	

	

outlier_compressed_bit_access_mask()
	variable
	OMADRMOutlierCompressedBitmask()

	

}
	
	

	
} while(subblock_coding_type != 0x0)
	
	

	}
	
	

subblock_coding_type: 2-bit value indicating how the subblock is coded.

	Field: subblock_coding_type
	Description

	0x0
	indicates the end of the bitmask

	0x1
	the subblock is not compressed, but coded by the method as described in section 8.2.2.1.

	0x2
	the subblock is coded using the Block Compression Method as described in section 8.2.2.2.

	0x3
	the subblock is coded using the Outlier Compression Method as described in section 8.2.2.3.

zero_padding_bits: these (less than 8) bits are appended at the end of the flexible_bit_access_mask field to ensure that the subsequent field is byte aligned.

2.5.5.1 Bitmapped Bitmask

The bitmapped_bitmask field contains a non-compressed subblock. It consists of an indicator for the length of the subblock followed by the subblock. The bitmapped_bitmask field has the following format:

	Field
	Length
	Type

	OMADRMBitmappedBitmask() {
	
	

	
block_length()
	variable
	OMADRMBlockLength()

	
bit_map
	block_length+1
	bslbf

	}
	
	

block_length: indicates the length of the subblock. For a subblock of length k, block_length contains the value k-1. See section 8.2.3.5 for more details on the coding of the field block_length.

bit_map: field of block_length+1 bits, that codes the subblock.

For EXAMPLE, a subblock 0010100101011010 has a length of 16 bits, therefore block_length contains a value 15 and is coded as 10 1011 (see section 8.2.3.5). It is followed by the 16 bits 0010100101011010.

2.5.5.2 Block Compression Method

The Block Compression Method is used when the subblock consists of alternating blocks of ones and zeros. The lengths of these blocks are specified. The block_compressed_bit_access_mask has the following format:

	Field
	Length
	Type

	OMADRMBlockCompressedBitmap() {
	
	

	
firstbit
	1
	bslbf

	
nole()
	variable
	OMADRMNole()

	
for(i=0; i<nole+1; i++) {
	
	

	

block_length()[i]
	variable
	OMADRMBlockLength()

	
}
	
	

	}
	
	

firstbit: indicates the value of the first bit.

nole (number of list entries): indicates the number of blocks that follow. If k blocks follow, nole contains a value k-1. This value is coded as indicated in section 8.2.3.4.

block_length: an array that indicates the lengths of the blocks. For a block of length k, the corresponding field block_length contains a value k-1.

EXAMPLE of coding a subblock using the Block Compression Method:

Let us consider the following 512 bit subblock:

20 x '0', 15 x '1', 2 x '0', 80 x '1', 92 x '0',100 x '1', 203 x '0'.

It starts with a '0', therefore firstbit contains a 0.

There are 7 blocks; therefore nole contains the value 6 and is coded as 00 0110 (see section 8.2.3.4).

Block 1 has a length of 20, therefore its block_length contains the value 19 and is coded as 10 1111, where 1111 is the binary representation of 15=19-4 (see section 8.2.3.5).

Block 2 has a length of 15; its block_length is coded as 10 1010.

Block 3 has a length of 2; its block_length is coded as 0 01.

Block 4 has a length of 80; its block_length is coded as 110 0111011.

Block 5 has a length of 92; its block_length is coded as 110 1000111.

Block 6 has a length of 100; its block_length is coded as 110 1001111.

Block 7 has a length of 203, its block_length is coded as 1110 00000110110

In this example 67 bits are needed in order to specify the subblock.

2.5.5.3 Outlier Compression Method

The Outlier Compression Method exploits the fact that a subblock can have a sparse amount of '1's or '0's. The outlier_compressed_bit_access_mask has the following format:

	Field
	Length
	Type

	OMADRMOutlierCompressedBitmap() {
	
	

	
range_flag
	1
	bslbf

	
nole
	variable
	OMADRMNole()

	
for(i=0; i<nole+2; i++) {
	
	

	

block_length()[i]
	variable
	OMADRMBlockLength()

	
}
	
	

	}
	
	

range_flag: indicates the coding type. When it is equal to 0, we have single '1's separated by blocks of '0's. When it equals 1, we have single '0's separated by blocks of '1's. A bit set to the value that is in a minority is called 'outlier'.

nole (number of list entries): indicates the number of blocks. The amount of blocks is one more than the amount of outliers (since the coding starts with a block before the first outlier and ends with a block behind the last outlier). If there are k blocks, nole contains a value of k-2. See section 8.2.3.4 for the coding of nole.

block_length: an array that indicates the lengths of the blocks. The first block_length defines the length of the block in front of the first outlier, whilst the last block_length defines the length of the block behind the last outlier. Notice that a length 0 is coded as 0. See section 8.2.3.5 for more details on the coding of block_length.

EXAMPLE of coding a subblock using the Outlier Compression Method:

Let us consider the following 512-bit bit_access_mask:

1x'0', 90 x '1', 1 x '0', 80 x '1', 2 x '0', 338 x '1'.

range_flag is equal to 1, since we have only 4 '0's in the bit_access_mask.

There are 4 '0's covered by 5 blocks, therefore nole contains 00 0011. Notice that 0011 is the binary representation of 3 = 5-2 (see section 7.2.2.3).

Since the 4 '0's are covered by 5 blocks of '1's (although two of these blocks have length 0), five block_length fields follow:

The first '0' occurs at the first position, so it is considered to be preceded by a block of length 0. Therefore the first block_length contains 0 and is coded as 0 00.

The second '0' occurs after 90 '1's, therefore the second block_length contains the value 90 and is coded as 110 1000110.

The third block_length contains the value 80 and is coded as 110 0111100.

The third block is followed by two adjacent zeros.

The fourth block_length contains the value 0 and is coded as 0 00.

The fifth block_length contains the value 338, and is coded as 1110 00010111110.

In this example 48 bits are needed in order to specify the bit_access_mask.

2.5.6 Efficient Coding Tables

Efficient Coding Tables (ECTs) are used to code values in such a way that low values require a small number of bits, whilst extra bits are included for the higher values. In general they have the following form:

	Field
	Length
	Type

	OMADRMEfficientCodingTable() {
	
	

	
indicator
	variable
	bslbf

	
translated_value
	variable
	uimsbf

	}
	
	

indicator: bit string of variable length indicating the amount of bits that are used to code the translated_value field.

translated_value: contains the binary representation of the relative position of the value in the value range as can be found in the corresponding Efficient Coding Table. This means that a value X is coded as X-L, where L is the lower bound of the value range that contains X.

2.5.6.1 OMADRMGroupAddress

	indicator
	bit length of translated_value
	value range

	0
	6
	0 – 63

	10
	11
	64 – 2 111

	110
	16
	2 112 – 67 647

	1110
	20
	67 648 – 1 116 223

	1111
	32
	1 116 224 - 4 296 083 519

For EXAMPLE, the value 1200 is coded as 10 10001110000, where 10001110000 is the binary representation of 1136=1200-64.

2.5.6.2 OMADRMPositionInGroup

	indicator
	bit length of translated_value
	value range

	0
	9
	0 – 511

	10
	13
	512 – 8703

	110
	18
	8704 – 270 847

	1110
	22
	270 848 – 4 465 151

	1111
	27
	4 465 152 – 138 682 879

For EXAMPLE, the value 2000 is coded as 10 0010111010000, where 0010111010000 is the binary representation of 1488=2000-512.

2.5.6.3 OMADRMNodeNumber

	indicator
	bit length of translated_value
	value range

	0
	10
	0 – 1 023

	10
	14
	1 024 – 17 407

	110
	18
	17 408 – 279 551

	1110
	22
	279 552 – 4 473 855

	1111
	27
	4 473 856 – 138 691 583

For EXAMPLE, the value 2000 is coded as 10 00001111010000, where 00001111010000 is the binary representation of 976=2000-1024.

2.5.6.4 OMADRMNole

	indicator
	bit length of translated_value
	value range

	00
	4
	0 – 15

	01
	8
	16 – 271

	10
	16
	272 – 65 807

	11
	20
	65 808 – 1 114 383

For EXAMPLE, the value 18 is coded as 01 00000010, where 00000010 is the binary representation of 2=18-16.

2.5.6.5 OMADRMBlockLength

	indicator
	bit length of translated_value
	value range

	0
	1
	0 –1

	10
	1
	2 – 3

	110
	1
	4 – 5

	1110
	2
	6 – 9

	11110
	3
	10 – 17

	111110
	4
	18 – 33

	1111110
	7
	34 – 161

	1111111
	22
	162 – 4 194 465

For EXAMPLE, the value 16 is coded as 11110 110, where 110 is the binary representation of 6=16-10.

2.5.7 Format of the OMADRMAsset Object

	Field
	Length
	Type

	OMADRMAsset() {
	
	

	
BCI
	96
	bslbf

	
key_flag
	1
	uimsbf

	
key_type
	1
	uimsbf

	
reserved_for_future_use
	2
	uimsbf

	
inherit_flag
	1
	uimsbf

	
asset_type
	2
	uimsbf

	
permissions_category_flag
	1
	uimsbf

	
if (inherit_flag == 1) {
	
	

	

purchase_item_id
	32
	uimsbf

	

reserved_for_future_use
	1
	uimsbf

	

rekeying_period_number
	7
	uimsbf

	
}
	
	

	
if (permissions_category_flag == 1) {
	
	

	

permissions_category
	8
	uimsbf

	
}
	
	

	
if (key_flag == 1) {
	
	

	

if (asset_type == 0x0) {
	
	

	

if (key_type == 0) {
	
	

	

encrypted_service_encryption_authentication_key
	256
	bslbf

	

} else if (key_type == 1) {
	
	

	

encrypted_program_encryption_authentication_key
	256
	bslbf

	

}
	
	

	

} else if (asset_type == 0x1) {
	
	

	

encrypted_content_encryption_key
	128
	bslbf

	

}
	
	

	
}
	
	

	}
	
	

BCI: this 96-bit field is the Binary Content ID. The BCI can be a service_bci or a program_bci. These are defined in section 11.1.1.
reserved_for_future_use: all fields reserved_for_future_use SHALL be set to 0 for this version of the specification.

key_flag:1-bit flag indicating that the asset does contain key material.

key_type: 1-bit flag indicating the type of the key material. If set to 0 the key material contains a service encryption key (SEK), when set to 1 it contains a program encryption key (PEK).

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent GRO.

asset_type: 2-bit flag indicating the asset type as defined in the table below.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected IPSec, SRTP or ISMACryp as defined in this specification. This asset MAY contain either a PEK or a SEK.

	0x1
	Downloaded file content as defined by OMA. This asset MAY contain a CEK (Content Encryption Key).

	0x2-0x3
	reserved

permissions_category_flag: 1-bit flag indicating that a permissions_category field is present in this asset object.
purchase_item_id: 32-bit field specifying the purchase ID this GRO is associated with.

rekeying_period_number: 7-bit field specifying the rekeying_period_number of the parent GRO. The purchase_item_id and rekeying_period_number are used together with the socID and deviceID or domainID to uniquely identify the parent GRO.

permissions_category: for program assets, the value of this field (if present) is always zero. For service assets, the following rule applies. If the value of this field is nonzero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the same value in its permissions_category field. If the value of this field is zero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the value zero in its permissions_category field, or has value zero for its permissions_flag bit (indicating that there is no permissions_category field in the TKM). Note that there MAY be multiple assets with the same service_bci, in which case typically only one of them contains authentication and/or encryption keys in it asset object(s). TKM permissions_category field value thus selects the one with the permissions to be applied among the service assets with the same service_bci. The one with the authentication and/or encryption keys is found among the BCROs via inheritance, or by lookup for a BCRO with key material in its assets.

encrypted_service_encryption_authentication_key: if key_type is set to 0 then this field contains the encrypted SEAK, the service encryption key (SEK) concatenated with the Service Authentication Seed (SAS). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field depends on the addressing mode of the BCRO.

Table 37: Keys used in different addressing modes

	Field: address_mode
	Keys used

	0x0 (Fixed Subscriber Group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (Fixed Subscriber Group addressing / subset)
	DEK (Deduced Encryption Key based on fixed_bit_access_mask and SGKs)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain Key)

	0x5 (Flexible Subscriber Group addressing / subset)
	DEK (Deduced Encryption Key, based on the braodcast_encryption_scheme and FSGKs; see Table 55 in Appendix A.8)

	0x6 (Flexible Subscriber Group addressing / whole group)
	UGK (Unique Group Key)

encrypted_program_encryption_authentication_key: if key_type is set to 1 then this field contains the encrypted PEAK, the program encryption key (PEK) concatenated with the program authentication seed (PAK). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO. Table 37 indicates which key is used in which addressing mode.

encrypted_content_encryption_key: this field contains the encrypted content encryption key (CEK). The field is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO. Table 37 indicates which key is used in which addressing mode.

2.5.8 Format of the OMADRMPermission Object

	Field
	Length
	Type

	OMADRMPermission() {
	
	

	
number_of_assets
	6
	uimsbf

	
constraint_flag
	1
	uimsbf

	
actions_flag
	1
	uimsbf

	
for (i=0; i<number_of_assets; i++) {
	
	

	

asset_index
	8
	uimsbf

	
}
	
	

	
if (constraint_flag == 1) {
	
	

	

OMADRMConstraint()
	
	

	
}

	
	

	
if (actions_flag == 1) {
	
	

	

number_of_actions
	8
	uimsbf

	

for (i=0; i<number_of_actions; i++) {
	
	

	

OMADRMAction()[i]

	
	

	

}
	
	

	
}
	
	

	}
	
	

number_of_assets: the number of assets this permission object links to. Assets linked to by this permission object are bound by this permission object.

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this permissions object. The constraint object applies to all action listed in this permission object.

action_flag: 1-bit flag. When set to 1, 1 or more actions are contained in this permission object.

asset_index: a list of number_of_assets links to assets in this BCRO. Assets are linked to by using the internal asset id (the index of the asset in this BCRO).

number_of_actions: field specifying the number of actions (see below) contained in this permission object

2.5.9 Format of the OMADRMAction Object
	Field
	Length
	Type

	OMADRMAction() {
	
	

	
action_type
	7
	uimsbf

	
constraint_flag
	1
	uimsbf

	
if (constraint_flag == 1) {
	
	

	

OMADRMConstraint()
	
	

	
}
	
	

	}
	
	

action_type: 7-bit field specifying the type of action as listed in table below:

	Field: action_type
	Description

	0x00
	play action

	0x01
	display action

	0x02
	execute action

	0x03
	print action

	0x04
	export action

	0x05
	access action

	0x06
	save action

	0x07-0x7F
	reserved for future use

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this action object. The constraint object only applies to the action it is in.

2.5.10 Format of the OMADRMConstraint Object
	Field
	Length
	Type

	OMADRMConstraint() {
	
	

	
number_of_constraints
	4
	uimsbf

	
constraint_descriptor_length
	12
	uimsbf

	
for (i=0; i<number_of_constraints; i++) {
	
	

	

OMADRMConstraintDescriptor()[i]

	
	

	
}
	
	

	}
	
	

number_of_constraints: 4-bit number specifying the number of constraint descriptors (see below)

constraints_descriptor_length: length of all constraint descriptors in bytes which follow this field.
	Field
	Length
	Type

	OMADRMConstraintDescriptor() {
	
	

	
constraint_tag
	8
	uimsbf

	
length
	8
	uimsbf

	
for (i=0; i<length; i++) {
	
	

	

byte[i]
	8
	uimsbf

	
}
	
	

	}
	
	

constraint_tag: tag identifying the specific constraint_descriptor as listed below:

	Field: constraint_tag
	Description

	0x00
	count constraint

	0x01
	timed-count constraint

	0x02
	date time constraint

	0x03
	interval constraint

	0x04
	accumulated constraint

	0x05
	individual constraint

	0x06
	system constraint

	0x07-0xFF
	reserved for future use

2.5.10.1 Count Constraint Descriptor

	Field
	Length
	Type

	OMADRMCountConstraintDescriptor() {
	
	

	
constraint_tag
	8
	uimsbf

	
length
	8
	uimsbf

	
count
	8*length
	uimsbf

	}
	
	

length: the number of bytes used for the count field. Length SHALL NOT exceed 4, hence the maximum size of the count field can be 32 bits.

count: the number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
2.5.10.2 Timed Count Constraint Descriptor

	Field
	Length
	Type

	OMADRMTimedCountConstraintDescriptor() {
	
	

	
constraint_tag
	8
	uimsbf

	
length
	8
	uimsbf

	
timer
	16
	uimsbf

	
count
	8*(length – 2)
	uimsbf

	}
	
	

length: the number of bytes following this field. The count field is length-2 bytes long and SHOULD NOT exceed 32 bits.

timer: specifies the number of seconds after which the count state is reduced starting from beginning to render the content.

count: the number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
2.5.10.3 Date-Time Constraint Descriptor

	Field
	Length
	Type

	OMADRMDateTimeConstraintDescriptor() {
	
	

	
constraint_tag
	8
	uimsbf

	
length
	8
	uimsbf

	
start_flag
	1
	uimsbf

	
end_flag
	1
	uimsbf

	
reserved
	6
	bslbf

	
if (start_flag == 1) {
	
	

	

start_date
	40
	mjdutc

	
}
	
	

	
if (end_flag == 1) {
	
	

	

end_date
	40
	mjdutc

	
}
	
	

	}
	
	

length: the number of bytes of the descriptor immediately following this field.

start_flag: 1-bit field. When set the descriptor contains a start time.

end_flag: 1-bit field. When set the descriptor contains a end time.

start_time: time field with the semantics of ‘not before’ time for a permission. The start_time must be before the end_time if present.

end_time: time field with the semantics of ‘not after’ time for a permission. The end_time must be after the start_time if present.

2.5.10.4 Interval Constraint Descriptor

	Field
	Length
	Type

	OMADRMIntervalConstraintDescriptor() {
	
	

	
constraint_tag
	8
	uimsbf

	
length
	8
	uimsbf

	
time_interval
	8*length
	uimsbf

	}
	
	

length: the number of bytes following this field. Length specifies the size of the time_interval field.

time_interval: specifies the number of seconds starting from first receiving this BCRO that the permission is valid. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

2.5.10.5 Accumulated Constraint Descriptor

The accumulated_constraint_descriptor specifies the maximum period of metered usage time during which the rights can be exercised over the DRM content.

	Field
	Length
	Type

	OMADRMAccumulatedConstraintDescriptor() {
	
	

	
constraint_tag
	8
	uimsbf

	
length
	8
	uimsbf

	
accumulated_time
	8*length
	uimsbf

	}
	
	

length: the number of bytes following this field. Length specifies the size of the accumulated_time field.

accumulated_time: specifies the maximum period of metered usage time during which the rights can be excercised. The period is given in seconds. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

2.5.10.6 Individual Constraint Descriptor

Constraint used to bind content to individuals. If the content should be bound to more than one individual multiple individual_constraint_descriptor(s) can be carried in one constraint object.

	Field
	Length
	Type

	OMADRMIndividualConstraintDescriptor() {
	
	

	
constraint_tag
	8
	uimsbf

	
length
	8
	uimsbf

	
reserved
	4
	bslbf

	
id_type
	4
	uimsbf

	
individual_id
	8*(length - 1)
	bslbf

	}
	
	

length: the number of bytes following this field. Length-1 specifies the size of the individual_id field.

id_type: tag identifying format of the individual_id as listed below:

	Field: id_type
	Description

	0x0
	The individual_id field contains the IMSI number coded as 16 digit 4-bit BCD. The first digit SHALL be 0 and SHALL be ignored. The length of the individual_id field is 64 bit.

	0x1
	The individual_id field contains the PKC id of the WIM to which the content is bound.

	0x2-0xF
	reserved for future use

individual_id: Individual ID. The format and length of this field is identified by the identifier_type and length field see the table above.

2.5.10.7 System Constraint Descriptor

Constraint used identify systems to which the content and GROs are allowed to be exported to.

	Field
	Length
	Type

	OMADRMSystemConstraintDescriptor() {
	
	

	
constraint_tag
	8
	uimsbf

	
length
	8
	uimsbf

	
system_id
	64
	bslbf

	
proprietaryinformation
	8*length - 64
	bslbf

	}
	
	

length: the number of bytes following this field.

system_id: the system id of the system the content and GRO can be exported to. This is the SHA1-64 encoded hash of the system name as registered with OMNA. [The values are registered with OMNA (currently only strings), we either use SHA1-64 to hash the strings or OMNA registers numbers for that as well]]

proprietaryinformation: this is a string of bytes, containing proprietary parameters for the system. It is outside the scope of this specification to define the syntax and semantics of these bytes. Thus, this is a mechanism to transport proprietary information This may e.g. be required when exporting to a (possibly non-DRM) system and requiring that no more copies are to be made.
2.6 Acquisition of Rights Objects over an Interaction Channel

Terminals can acquire rights to access broadcast content by retrieving and processing binary BCROs. In addition, terminals that support an interaction channel next to the broadcast interface can also acquire rights to access broadcast content via the ROAP protocol or the exchange of Domain GROs.

The ROAP protocol via the interaction channel ensures an authenticated delivery of one or more <protectedRO> elements. The exchange of Domain GRO’s also consists of the exchange of one or more <protectedRO> elements.

If a <protectedRO> is to convey rights to access broadcast content, then the following applies for all assets that encode rights for broadcast content:

· The <o-dd:uid> element in the <o-ex:context> element in the <o-ex:asset> element MUST hold the BCI (binary content identifier) for the broadcast content referred to by this asset.

· The <o-ex:digest> element in the <o-ex:asset> SHALL NOT be present.

· The <xenc:CipherValue> element contained in the <ds:KeyInfo> element MUST hold the AES-wrapped encryption key (SEK or PEK), The RO MUST also contain an additional <ds:KeyInfo> element holding the wrapped authentication seed (SAS or PAS).

2.7 Save Permission

The normative statements in this section 8.4 only apply to the concept of creating super-distributable OMA assets containing a recording of broadcast content, that is suitable for standard OMA DRM v2 devices.

A rights issuer can allow a device to make super-distributable recordings of a broadcast asset by including a save permission in a GRO for that asset. The save permission explicitly allows creating new assets containing a rendering of the broadcast content in permanent storage. The device MUST also have access permission for that broadcast asset in order to create this permanent copy.

The super-distributable recorded assets MUST be in a DCF or PDCF format, and are super-distributable to other devices. The recording device MUST create a new CommonHeaders box for use in each new asset file. The ContentID and RightsIssuerURL are generated from information that is retrieved from the service guide, and the secure DRM time of the device.

If the device does not support secure DRM time, it MUST not allow save permissions.

The context of the broadcast asset (service guide, session description protocol or key stream messages) SHOULD provide at least the Content Identifier, RightsIssuerURL and Content Encryption Key to use when creating the CommonHeaders box and the protected content in each created asset file.

2.7.4 Element <save>

	Element
	<!ELEMENT o-dd:save (o-ex:constraint?)>

	Semantics
	The <save> element grants the permission to create a permanent representation of some broadcast asset. It contains an optional <constraint> element. This <constraint> element, if present MUST be combined with any top-level constraint, and both constraints should be satisfied in order for the save permission to be enabled.

A rights issuer MUST only include a save permission for broadcast assets. A device MUST ignore save permissions for non-broadcast assets.

The save permission only allows creation of OMA DRM v2 compatible DCF or PDCF files. The device SHOULD get from context information (o.a. original assets CommonHeaders box, service guide, session description protocol) relevant information about the broadcast asset to create a CommonHeaders box for use in either a DCF or a PDCF file.

2.7.5 Construction of the Asset, CommonHeaders and Recording Key

All broadcast content accessed via a service/program GRO, and thus identified with a service_bci/program_bci, can be viewed as a continuum of content that belongs to the same OMA group. All content recorded by the device using a combined access+save permission for an asset identified by service_bci/program_bci must be accessible to that same device through a play permission associated with the same asset (identified by the service_bci/program_bci).

To enable this, and still create uniquely identifiable assets, the OMA group feature is used.

The way the new asset is created depends on whether the recording device has access to the broadcast content using a service GRO (containing a SEK, associated with a service_bci) or a program GRO (containing a PEK, associated with a program_bci).

2.7.5.1 Recording Broadcast Content

The device makes a recording of broadcast content that is accessed through an asset, that identifies the Broadcast Content Identifier (service_bci or program_bci), and which is associated with either a Service Encryption Key or a Program Encryption Key. In the following sections, BCI refers to the broadcast content identifier of that asset, and KEY refers to either the SEK or the PEK, whichever is associated with that asset.

	
	Asset contains program_bci and PEK
	Asset contains service_bci and SEK

	BCIservice/program
	program_bci
	service_bci

	KEYsek/pek
	PEK
	SEK

The device MUST include a GroupID box in the new asset that is to hold the recorded content. The GroupID in that box MUST equal BCIservice/program.

The content of the created asset MUST be encrypted with a key CIEK. The GroupKey stored in the box MUST be the key CIEK that is encrypted with KEYsek/pek.

The EncryptionAlgorithm field in the GroupID box MUST identify the AES-CBC mode algorithm. The recording device MUST either choose the CIEK to equal KEYsek/pek, or generate a suitable key value at random. The initialisation vector MUST be randomly generated by the device:

CIEK
:=
random 128-bit AES key or KEYsek/pek
IV
:=
random 128 bit number

GroupKey
:=
IV + AES-CBC{ KEYsek/pek }(CIEK)

Table 38: Fields in the GroupID box

	Field
	Contents

	GKEncryptionMethod
	MUST be AES-CBC.

	GroupID
	MUST equal BCIservice/program

	GroupKey
	Contains the result of applying the encryption algorithm defined by GKEncryptionMethod to the CIEK key as plaintext, using KEYsek/pek as encryption key and a randomly selected initialization vector. This initialization vector MUST be prefixed to the resulting ciphertext.

The CommonHeaders box MUST contain a unique ContentID, as well as a proper RightsIssuerURL.

Table 39: CommonHeaders box fields

	Field
	Contents

	EncryptionMethod
	Determined by the recording device.

	PaddingScheme
	Determined by the recording device.

	PlaintextLength
	Determined by the length of the recorded asset, calculated by the recording device.

	ContentIDLength ContentID[]
	MUST equal:

base64Binary(BCIservice/program) + base64(recording timestamp)

	RightsIssuerURLLength RightsIssuerURL[]
	MUST equal:

RightsIssuerURL + "?rib=" + base64(recording information block)

Where the RightsIssuerURL is retrieved from the service guide, using its association with the service_cid (in case the asset holds a service_bci) or the program_cid (in case the asset holds a program_bci).

The recording information block holds the BCIservice/program, the recording timestamp, KEYsek/pek (but salted and encrypted) and an integrity protection.

	TextualHeadersLength TextualHeaders[]
	Determined by context information (original asset, service guide, session description protocol).

	ExtendedHeaders[]
	Empty.

In the definition of these fields, the base64() operation is defined by [RFC2045], the ‘+’ denotes concatenation, the recording timestamp is defined by section 8.4.2.2 and the recording information block is defined in section 8.4.2.3.

Based on the values of the ‘rib’, the rights issuer can determine and verify the integrity of the recording information, including the CIEK. This then allows the rights issuer to issue GROs to the saved asset or to the whole group of recorded content (that share the same GroupId).

2.7.5.2 Recording Timestamp

The representation with which the device should represent the date and time of the start or the end of the recording is defined by two timestamps that are NTP timestamps as specified by [RFC1305], but with the fractional seconds part truncated to leave only the 4 most significant bits.

The first timestamp indicates the date and time of the start of the recording, whereas the second timestamp indicates the end of the recording.

	Field
	Length
	Type

	OMADRMRecordingTimestamp() {
	
	

	
startDateAndTime
	36
	NTP timestamp, see below

	
endDateAndTime
	36
	NTP timestamp, see below

	}
	
	

Example:

The recording timestamp:
(msb)
11000110100110011101010001010110 0001

11000110100110100000000101011100 0111 (lsb)

corresponds to the recording start time and date NTP timestamp:

11000110100110011101010001010110 00010000000000000000000000000000

which equals 3331970134.0625 seconds after January 1st, 1900, 00:00 UTC, or Jan 8th, 2005, 11:15:34.0625 UTC

and the recording end time and date NTP timestamp:

11000110100110100000000101011100 01110000000000000000000000000000

which equals 3331981660.4375 after January 1st, 1900, 00:00 UTC, or Jan 8th, 2005, 14:27:40.4375 UTC

Note that the whole seconds part of the NTP timestamp format is 32 bits, and will roll-over on February 6, 2036 06:28:16 UTC. For that reason, devices and rights issuers SHALL interpret NTP timestamps of which the whole seconds part has a most significant bit of 0, as signalling a date and time in the epoch 2036-2172.

2.7.5.3 Recording Information Block

The RightsIssuerURL holds a ‘rib’ parameter, which equals the base64 encoded recording information block defined in this section.

	Field
	Length
	Type

	OMADRMRecordingInformationBlockBase() {
	
	

	
BCI
	96
	bslbf

	
timestamp()
	72
	OMADRMRecordingTimestamp()

	
salt
	128
	bslbf

	
salted_key
	128
	bslbf

	}
	
	

	Field
	Length
	Type

	OMADRMRecordingInformationBlock() {
	
	

	
OMADRMRecordingInformationBlockBase()
	424
	

	
MAC
	96
	bslbf

	}
	
	

	Field
	Length
	Type

	OMADRMRecordingInformationBlockSigned() {
	
	

	
OMADRMRecordingInformationBlockBase()
	424
	

	
signature_type_flag
	2
	uimsbf

	
reserved_for_future_use
	6
	bslbf

	
/* signature is computed over all preceding fields. */
	
	

	
if(signature_type_flag == 0x0) {
	
	

	

signature
	1024
	bslbf

	
} else if (signature_type_flag == 0x01) {
	
	

	

signature
	2048
	bslbf

	
} else if (signature_type_flag == 0x02) {
	
	

	

signature
	4096
	bslbf

	
}
	
	

	}
	
	

BCI: contains the BCIservice/program (service_bci or program_bci, depending on the asset to which the save permission is applied).

timestamp(): this contains the recording start date and time and the recording end date and time.

salt: this is a random 128 bit number, generated by the recording device which is used to salt the CIEK before it is encrypted.

salted_key: this field contains the result of encrypting the salted C IEK with KEYsek/pek:

salted_key
:=
AES-ECB{ KEYsek/pek } (CIEK xor salt)
Note: AES-ECB is used in this case to avoid the padding overhead of AES-CBC as used in section 8.4.2.1.

MAC: this is the authentication code calculated over all bytes before this field in the OMADRMRecordingInformationBlock using HMAC-SHA1-96 (see [RFC 2104]). The MAC is used check the integrity of the recording information. The key used to create the MAC is KEYsek/pek, depending on the asset to which the save permission is applied.

OMADRMRecordingInformationBlockSigned is only applicable when the sign_bcro_flag is turned on in the device_registration_response message. As such this class is OPTIONAL.
2.7.5.4 Access to Recorded Assets

Recorded assets have a GroupID box that defines them as being part of a group of assets that are protected with the same key, and that share a common GroupId. By making sure that the recording device uses its access permission content id as the GroupId of all the recorded assets recorded using that access permission, play permissions can be issued with the same content id as the access permission; and it will apply to all recorded material that was recorded using that access permission.

On the other hand, the ContentIDs of the generated assets are unique (by qualifying the base content id with the recording timestamp) as required by the OMA DCF specification, and other devices can use the RightsIssuerURL to contact the original rights issuer to acquire play rights for that content. The rights issuer is free to provide group rights or individual asset rights. A group right would contain the GroupId, whereas an individual right would refer to the exact ContentID (as can be retrieved from the RightsIssuerURL).

2.7.6 Recording Concept

The concept of controlled recording is illustrated in the following figure. A rights issuer has issued a GRO to device A. This gives device A the right to access a certain broadcast asset, as well as the right to create a super-distributable copy of (part) of that broadcast asset in a new asset. Another device B may receive a copy of this new content file and contacts the rights issuer to acquire (play) rights for this content.

[image: image1.wmf]

(P)DCF

Rights

Issuer

Device

A

Device

B

access, save and play permission

Broadcast asset

(P)DCF

rights acquisition request

play permission for device B

all assets created from the

same joined access+save

permission are part of t

he

same group that is identified

by a GroupId that is equal to

the asset id of the access

permission.

Figure 11: Recording and super-distributing the recorded asset
Change 2: Appendix A.8 in OMA-BCAST-2006-0793
A.1 Tag Length Format for keyset_block

A.1.1 Syntax Definition

A Tag Length Format (TLF) is defined to identify the keyset_items in the keyset_block. A keyset_item is identified by following syntax:

<tag> [optional <clarifier>] <length> <keyset_item>

Following values are defined and SHALL be used:

tag values:

This is a 4 bit field (bslbf) indicating the tag that uniquely identifies the keyset item.

Table 53: Defined tag values

	Keyset_item
	Tag (b)
	remark

	UGK
	0000
	

	SGK
	0001
	

	UDK
	0010
	

	UDF
	0011
	

	LDK
	0100
	

	SLDF
	0101
	shortform_domain_id

	LLDF
	0110
	

	RIAK
	0111
	

	TDK
	1000
	

	flexible_device_data()
	1001
	

	FSGK block
	1010
	

	reserved for future use
	1011-1111
	not used in this version of the spec

Note:

· The keyset items SHALL be included in the order of the table above.

· The keyset SHALL include only one instance of the following keys: UGK, UDK, UDF, RIAK and TDK.

· If included the SGKs (8 or 9) SHALL follow in fashion SGK1..n.

· The keyset MAY include zero or more domain sets (LDK, SLDF, LLDF). If included the SLDF SHALL follow the LDK it belongs to, followed by the optional LLDF that belongs to the aforementioned SLDF.
clarifier (optional):

This is a 10 bit field (bslbf) can be used to indicate the following possible values:

· in case the preceding <tag> value indicates a SGK, this field represents the position of a SGK in the Fiat Naor tree.

· in case the preceding <tag> value indicates a LLDF this field represents the length on the LLDF in bytes.

· in case the preceding <tag> value indicates flexible_device_data this field represents the length of the flexible_device_data in bytes.

· in case the preceding <tag> value indicates an FSGK block, this field represents the length of the FSGK block in bytes. The <length> field indicates the type of the FSGKs as shown in Table 54.

· If the zero-message broadcast encryption scheme is used, the FSGKs are stored in the FSGK block in descending order from root to leaf (the root itself not included). The maximum size of the keyset_item of 1023 bytes is sufficient to hold a maximum of 31 keys of length 256 bits each. This definition is valid for zero-message broadcast encryption method.

· If the One-Way Function Tree (OFT) scheme is used (see Appendix A.14.4), the FSGK block contains the blinded keys and the device key. No blinded keys for the root level and the first level under the root are transmitted. The other blinded keys follow in the order from root to leaf, after which the device key follows.

· When Flexible Subscriber Groups are used without a broadcast encryption scheme, the FGSK block contains only one FSGK, which is used as DEK where necessary.
If keyset_item == 0001 (i.e. SGK) then the optional field "clarifier" SHALL indicate the position of the SGK as a node in the [FIAT NAOR] tree. When m = groupsize, then n = log2 m, where n is number of SGKs that have to be transmitted to the Device by the registration process. Possible positions for these SGKs in the tree are 2n+1-2 (the root cannot contain an SGK). Therefore parameter "position" is expressed with 10 bits to express 1023 nodes in a tree. The MSB will be used as binary indicator to indicate if the SGK position is an internal node (MSB = 0) or a leaf (MSB = 1). Bit positions 2..10 (from left to right LSB) are used in binary format as an indication of the node and leaf position. Internal nodes and leafs SHALL be numbered according to following Figure 28:

[image: image2.wmf]i

2i+2

2i+1

Parent

node

Right

child

node

Left

child

node

Figure 28: Node numbering

The root key R is numbered zero. Internal node keys NK are sequentially numbered per "level" in a breadth-first manner from left to right, starting from the root node with number 0. The leaf keys are numbered from left to right, starting at the binary value 1000000000.

describing the use of the clarifier for length of LLDF:

If LLDF is included the optional field "clarifier" describes the variable length of the LLDF in bits, as described in A.8.2.

length values:

This is a 3 bit field (bslbf) indicating the length of a keyset item. This field SHALL be present for all keyset items except for the LLDF keyset item and the flexible_device_data item.

Table 54: Defined length values

	(key)length prescriber
	Length (b)
	remark

	128 bit AES
	000
	

	192 bit AES
	001
	

	256 bit AES
	010
	

	5 byte Eurocrypt
	011
	

	6 byte
	100
	SLDF

	reserved for future use
	101-111
	not used in this version of the specification

Note: In case of the LLDF there is no extra length field, since the length value is indicated by the clarifier.

format of flexible_device_data:
If a Device is assigned to a Flexible Subscriber Group, the flexible_device_data() structure is included. It contains information about the Flexible Subscriber Group and has the following format:
Table 55: Format of flexible_device_data

	Field
	Length
	Type

	flexible_device_data() {
	
	

	
flexible_group_address()
	variable
	OMADRMGroupAddress()

	
flexible_position_in_group()
	variable
	OMADRMPositionInGroup()

	
flexible_group_size_indicator
	5
	uimsbf

	
broadcast_encryption_scheme
	2
	uimsbf

	}
	
	

flexible_group_address(): the address of the Flexible Subscriber Group.

flexible_position_in_group(): the position of the Device in its Flexible Subscriber Group.

flexible_group_size_indicator: this 5-bit field indicates the size of the Flexible Subscriber Group. When flexible_group_size_indicator contains a value k, the Subscriber Group has a size of 2k devices.

broadcast_encryption_scheme: indicates which broadcast encryption scheme is used by the RI. The number of Flexible Subscriber Group Keys (FSGKs) depends on the size of the Flexible Subscriber Group and the used broadcast encryption scheme. Table 55 explains this in more detail.

Table 56: The meaning of broadcast_encryption_scheme

	value of broadcast_encryption_scheme
	name of the broadcast encryption scheme used
	number of FSGKs by a Flexible Subscriber Group of size 2k.
	value of bitmask_present
	value of nodenumber_present

	00
	no broadcast encryption scheme used

(DEK equal to the sole FSGK)
	1
	TRUE
	FALSE

	01
	zero-message broadcast encryption

(DEK calculated by the method of section 10.3.4.4)
	k
	TRUE
	FALSE

	10
	one-way function tree

(DEK calculated by the method of appendix A.14.4)
	k
	FALSE
	TRUE

	11
	reserved for future use
	-
	-
	-

TLF examples

E.g.1: A 5 byte Eurocrypt address implementing the UDF is coded as:

<0011> <011> <UDF>

E.g.2: A 48 bits SLDF address is coded as:

<0101> <100> <SLDF>

E.g.3: A LLDF address of 105 bytes is coded as:

<0110> <1101001000> <LLDF>

E.g.4: A 128 but AES key implementing the UGK is coded as:

<0000> <000> <UGK>

[image: image3.wmf]R

NK1

D1

D0

NK2

NK3

D3

D2

NK4

D5

D4

NK5

D7

D6

NK6

NK10

NK14

NK13

NK12

NK11

NK9

NK8

NK7

Figure 29: Sample tree with correct node and device numbering

E.g.5: A 128 bit AES key implementing the SGK on node position NK5 in Figure 29 is coded as:

<0001> <0000000101> <000> <SGK>

E.g.6: A 128 bit AES key implementing the SGK on node position NK7 (i.e. D0) in Figure 29 is coded as:

<0001> <1000000000> <000> <SGK>

E.g.7: A 128 bit AES key implementing the SGK on leaf position D300 in a Fixed Subscriber Group of size 512 is coded as

<0001> <1100101100> <000> <SGK>
Change 3: Section 2.2 in BCAST-2006-0793
2.8 Informative References

	[DRM-v2]
	"Digital Rights Management", Open Mobile Alliance(, OMA-DRM-DRM-V2_0, URL:http://www.openmobilealliance.org/

	[DRMARCH-v2]
	"OMA DRM Architecture Overview", Open Mobile Alliance™, OMA-DRM-ARCH-V2-0, URL:http://www.openmobilealliance.org/

	[DRMCF-v2]
	"DRM Content Format", Open Mobile Alliance(, OMA-DRM-DCF-V2_0, URL:http://www.openmobilealliance.org/

	[DRMREL-v2]
	"DRM Rights Expression Language", Open Mobile AllianceTM, OMA-DRM-REL-V2_0, URL: http://www.openmobilealliance.org/

	[FIAT_NAOR]
	"Broadcast Encryption", Advances in Cryptology - CRYPTO ’93, Lecture Notes in Computer Science, Vol. 773, 1994, pp. 480–491, A. Fiat, M. Naor.

	[ISO/IEC 13818-1]
	ISO/IEC 13818-1, Information technology - Generic coding of moving pictures and associated audio information - part 1: Systems

	[NAOR02]
	"Revocation and Tracing Schemes for Stateless Recievers", D. Naor, M. Naor, J. Lotspiech, June 2002

	[OFT]
	"Key establishment in large dynamic groups using one-way function trees", Sherman, A.T., McGrew, D.A., IEEE Transactions on Software Engineering, Volume 29, Issue 5, May 2003. Page(s):444 – 458.

	[BCAST10-ServContProt]
	"Service and Content Protection for Mobile Broadcast Services", Open Mobile AllianceTM, OMA-TS-BCAST-SvcCntProtection-v1.doc, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.5 Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except "Scope" and "Introduction", are normative, unless they are explicitly indicated to be informative.
The C-style specification of the syntax of the messages is defined in [ISO/IEC 13818-1], section 2.3.

�This term is not defined

[BG] therefore it is replaced

�This term is not defined

[BG] therefore it is replaced

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 30)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 30 (of 30)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1179063040.vsd
text�

�

�

�

�

R�

NK1�

D1�

D0�

NK2�

NK3�

�

�

D3�

D2�

NK4�

�

�

�

D5�

D4�

NK5�

�

�

�

D7�

D6�

NK6�

NK10�

NK14�

NK13�

NK12�

NK11�

NK9�

NK8�

NK7�

�

�

�

_1191914694.doc

Rights Issuer

Device A

Device B

access, save and play permission

Broadcast asset

(P)DCF

rights acquisition request

play permission for device B

(P)DCF

all assets created from the same joined access+save permission are part of the same group that is identified by a GroupId that is equal to the asset id of the access permission.

_1174919035.vsd
text�

�

�

�

Parent node�

Right
child
node�

i�

2i+2�

2i+1�

Left child
node�

